Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Pharm Res ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375243

ABSTRACT

PURPOSE: We have shown previously that benzyl isothiocyanate (BITC) derived from cruciferous vegetables inhibits self-renewal of breast cancer stem-like cells (bCSC). The current study provides insights into the mechanism of bCSC inhibition by BITC. METHODS: Quantitative real time-polymerase chain reaction and western blot analysis were performed to detect microRNAs (miRNAs) and Forkhead box Q1 (FoxQ1) protein expression, respectively. The bCSC were characterized by aldehyde dehydrogenase 1 activity and flow cytometric analysis of CD49f high/CD133high fraction. RESULTS: BITC treatment resulted in induction of miR-124-3p expression in MDA-MB-231 and MCF-7 cells. miR-124-3p did not affect BITC-mediated inhibition of cell migration or cell proliferation but it significantly regulated bCSC in response to BITC. We also found that miR-124-3p directly targets the 3'untranslated regions (UTR) of FoxQ1 and negatively regulates its expression. The BITC-mediated inhibition of bCSC was partially attenuated by miR-124-3p inhibitor. CONCLUSIONS: These findings indicate that miR-124-3p plays an important role in BITC-mediated inhibition of bCSC.

2.
Int J Biol Macromol ; 276(Pt 1): 133689, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971272

ABSTRACT

Benzyl isothiocyanate (BITC) is a naturally active bacteriostatic substance and κ-carrageenan (KC) is a good film-forming substrate. In the present study, a nanoemulsion incorporating BITC was fabricated with a particle size of 224.1 nm and an encapsulation efficiency of 69.2 %. Subsequently, the acquired BITC nanoemulsion (BITC-NE) was incorporated into the KC-based film, and the light transmittance of the prepared composite films was lower than that of the pure KC film. Fourier transform infrared spectroscopy and scanning electron microscopy revealed that BITC-NE was compatible with the KC matrix. BITC-NE incorporation enhanced the tensile strength of the KC-based films by 33.7 %, decreased the elongation at break by 33.8 %, decreased the water vapor permeability by 60.1 %, increased the maximum thermal degradation temperature by 48.8 %, and decreased the oxygen permeability by 42 % (p < 0.05). Furthermore, the composite films showed enhanced antimicrobial activity against Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas fluorescens. The developed KC-based composite films were applied to wrap raw beef, which significantly delayed the increase in total viable count, total volatile base nitrogen content, and thiobarbituric acid reactive substances, and prolonged the shelf-life of the raw beef by up to 10 days. These results indicated that the composite films prepared by incorporating BITC nanoemulsions into KC matrices have great antimicrobial application potential.


Subject(s)
Anti-Bacterial Agents , Carrageenan , Emulsions , Isothiocyanates , Carrageenan/chemistry , Carrageenan/pharmacology , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Permeability , Food Preservation/methods , Cattle , Red Meat , Food Packaging/methods , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Tensile Strength
3.
Foods ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998586

ABSTRACT

The aim of our study was to investigate whether the combination of benzyl isothiocyanate (BITC) and resveratrol (RES) has a synergistic effect on the inhibition of inflammation in colitis. The results revealed that the BITC and RES combination (BITC_RES) was more effective than either substance alone at significantly alleviating the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, including the prevention of colon shortening and loss of body weight, a reduction in the disease activity index, and prevention of colon damage. Similarly, compared with the DSS group, BITC_RES reduced myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) levels in the mouse colon by 1.4-3.0-fold and 1.4-fold, respectively. In addition, the combination of BITC and RES upregulated the inflammatory factor IL-10 by 1.3- and 107.4-fold, respectively, compared to the individual BITC and RES groups, whereas the proinflammatory factors, including TNF-α, IL-1ß, and IL-6, were downregulated by 1.1-7.4-, 0.7-3.6-, and 0.6-2.6-fold, respectively, in the BITC_RES group compared with the individual groups. Gut microbiome analysis indicated that BITC_RES remodeled the structure of gut bacteria at the phylum, family, and genus levels, upregulating the abundance of the phylum Bacteroidetes and the family Muribaculaceae and the genus norank_f_Muribaculaceae and downregulating the abundance of the phylum Firmicutes. Significant correlations between the relative levels of these proinflammatory cytokines and changes in the gut microbiota were found using Pearson's correlation analysis. BITC and RES exhibited synergistic effects by reshaping the gut microbiota and modulating the level of serum cellular inflammatory factors, thus exerting a protective effect against colitis.

4.
Front Neurol ; 15: 1330102, 2024.
Article in English | MEDLINE | ID: mdl-38715687

ABSTRACT

Objective: Temporal lobe epilepsy (TLE) is a prevalent refractory partial epilepsy seen in clinical practice, with most cases originating from the hippocampus and being characterized by impaired learning and memory. Oxidative stress plays a direct role in the development of epilepsy and neurodegeneration while promoting cognitive dysfunction. Previous research indicates that benzyl isothiocyanate (BITC) has antioxidative stress properties and contributes to neuroprotection. In this study, we aimed to investigate the neuroprotective effect of BITC on a lithium-pilocarpine-induced temporal lobe epileptic mice model. Methods: We conducted Intellicage learning tests, Morris water maze, open field test, and step-down-type passive avoidance tests, respectively. In addition, body weight and brain-to-body ratio were calculated. Nissl staining, real-time quantitative PCR detection of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase quinone 1(NQO1) were performed. Content of malondialdehyde (MDA) and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) were determined. Results: Our results demonstrate that BITC enhances cognitive function and motor ability in mice, as determined by Intellicage learning tests, Morris water maze, open field test, and step-down-type passive avoidance tests, respectively. Epilepsy leads to the loss of neurons in the CA3 region, while BITC treatment plays a positive role in neuroprotection, especially in the cortex. In comparison to the control group, the EP group exhibited decreased transcription levels of HO-1 and NQO1, alongside reduced GSH-Px activity, while MDA content was elevated. Conversely, the BITC treatment group, when compared to the EP group, showed enhanced transcription levels of Nrf2, HO-1, and NQO1, along with increased GSH-Px activity, and a decrease in MDA content. Conclusion: In summary, our study provides evidence that BITC can improve cognitive impairments in pilocarpine-induced epileptic mice, demonstrating significant antioxidant effects and neuroprotective properties. This highlights its potential as a phytochemical for managing the sequelae of epilepsy.

5.
Cancers (Basel) ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730647

ABSTRACT

Triple-negative breast cancer (TNBC) presents a therapeutic challenge due to its complex pathology and limited treatment options. Addressing this challenge, our study focuses on the effectiveness of combination therapy, which has recently become a critical strategy in cancer treatment, improving therapeutic outcomes and combating drug resistance and metastasis. We explored a novel combination therapy employing Benzyl isothiocyanate (BITC) and Sorafenib (SOR) and their nanoformulation, aiming to enhance therapeutic outcomes against TNBC. Through a series of in vitro assays, we assessed the cytotoxic effects of BITC and SOR, both free and encapsulated. The BITC-SOR-loaded nanoparticles (NPs) were synthesized using an amphiphilic copolymer, which demonstrated a uniform spherical morphology and favorable size distribution. The encapsulation efficiencies, as well as the sustained release profiles at varied pH levels, were quantified, revealing distinct kinetics that were well-modeled by the Korsmeyer-Peppas equation. The NP delivery system showed a marked dose-dependent cytotoxicity towards TNBC cells, with an IC50 of 7.8 µM for MDA-MB-231 cells, indicating improved efficacy over free drugs, while exhibiting minimal toxicity toward normal breast cells. Furthermore, the NPs significantly inhibited cell migration and invasion in TNBC models, surpassing the effects of free drugs. These findings underscore the potential of BITC-SOR-NPs as a promising therapeutic approach for TNBC, offering targeted delivery while minimizing systemic toxicity.

6.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792178

ABSTRACT

Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 - GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 - GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC's GI was comparable to chloroquine's. BITC's IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery.


Subject(s)
Antimalarials , Isothiocyanates , Nasturtium , Plant Extracts , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Plasmodium falciparum/drug effects , Nasturtium/chemistry , Humans , Plant Leaves/chemistry , Seeds/chemistry , Chloroquine/pharmacology
7.
Article in English | MEDLINE | ID: mdl-38709426

ABSTRACT

Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.

8.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543016

ABSTRACT

Moringa oleifera Lam, commonly known as moringa, is a plant widely used both as a human food and for medicinal purposes around the world. This research aimed to evaluate the efficacy of the aqueous extract of Moringa oleifera leaves (MoAE) and benzyl isothiocyanate (BIT) in rats with induced breast cancer. Cancer was induced with 7,12-dimethylbenz[a]anthracene (DMBA) at a dose of 60 mg/kg by orogastric gavage once only. Forty-eight rats were randomly assigned to eight groups, each consisting of six individuals. The control group (healthy) was called Group I. Group II received DMBA plus saline. In addition to DMBA, Groups III, IV, and V received MoAE at 100, 250, and 500 mg/kg/day, respectively, while Groups VI, VII, and VIII received BIT at 5, 10, and 20 mg/kg/day, respectively. Treatment was carried out for 13 weeks. Secondary metabolite analysis results identified predominantly quercetin, caffeoylquinic acid, neochlorogenic acid, vitexin, and kaempferol, as well as tropone, betaine, loliolide, and vitexin. The administration of MoAE at a dose of 500 mg/kg and BIT at 20 mg/kg exhibited a notable decrease in both the total tumor count and the cumulative tumor weight, along with a delay in their onset. Furthermore, they improved the histological grade. A significant decrease in serum levels of VEGF and IL-1ß levels was observed (p < 0.001) with a better effect demonstrated with MoAE at 500 mg/kg and BIT at 20 mg/kg. In conclusion, this study suggests that both the aqueous extract of Moringa oleifera leaves and the benzyl isothiocyanate possess antitumor properties against mammary carcinogenesis, and this effect could be due, at least in part, to the flavonoids and isothiocyanates present in the extract.


Subject(s)
Moringa oleifera , Mice , Rats , Humans , Animals , Moringa oleifera/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Isothiocyanates/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Carcinogenesis , Plant Leaves/chemistry
9.
Mol Carcinog ; 63(2): 301-313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37921547

ABSTRACT

Bone is the most favored site for metastasis for each major subtype of breast cancer. Therapeutic modalities for alleviation of clinical symptoms associated with bone metastasis include surgical resection, radiation, and bone-targeted therapies, including bisphosphonates (e.g., zoledronic acid; ZA) and a humanized antibody against receptor activator of nuclear factor-κB ligand (denosumab). However, the bone-targeted therapies are expensive, and have poor pharmacokinetic attributes and/or serious adverse effects. Therefore, novel strategies are needed for treatment of bone metastasis or to increase effectiveness of existing bone-targeted therapies. We have shown previously that benzyl isothiocyanate (BITC) is a novel inhibitor of osteoclast differentiation in vitro and bone metastasis in vivo. The present study shows that BITC + ZA combination synergistically inhibits osteoclast differentiation induced by addition of conditioned media from breast cancer cells. These effects were associated with a significant increase in levels of several antiosteoclastogenic cytokines, including interferons, interleukin (IL)-3, IL-4, and IL-27. Kyoto Encyclopedia of Genes and Genomes pathway analysis of RNA-seq data from BITC and/or ZA-treated cells revealed downregulation of genes of many pathways (e.g., actin cytoskeleton, Hippo signaling, etc.) by treatment with BITC + ZA combination, but not by BITC alone or ZA alone. Confocal microscopy confirmed severe disruption of actin cytoskeleton upon treatment of MCF-7 and MDA-MB-231 cells with the BITC + ZA combination. This combination also decreased the nuclear level of yes-associated protein, a core component of Hippo signaling. In conclusion, the present study offers a novel combination for prevention or treatment of bone metastasis of breast cancer.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Isothiocyanates , Humans , Female , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use , Breast Neoplasms/genetics , Cell Line, Tumor , Osteoclasts/metabolism , Osteoclasts/pathology , Cell Transformation, Neoplastic , Bone Neoplasms/drug therapy
10.
Nutr Res ; 121: 95-107, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056034

ABSTRACT

Tumor necrosis factor α (TNFα), an inflammatory cytokine, induces lipolysis and increases circulating concentrations of free fatty acids. In addition, TNFα is the first adipokine produced by adipose tissue in obesity, contributing to obesity-associated metabolic disease. Given that benzyl isothiocyanate (BITC) is a well-known anti-inflammatory agent, we hypothesized that BITC can ameliorate TNFα-induced lipolysis and investigated the working mechanisms involved. We first challenged 3T3-L1 adipocytes with TNFα to induce lipolysis, which was confirmed by increased glycerol release, decreased protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and perilipin 1 (PLIN1), and increased phosphorylation of ERK, protein kinase A (PKA), and hormone-sensitive lipase (HSL). However, inhibition of ERK or PKA significantly attenuated the lipolytic activity of TNFα. Meanwhile, pretreatment with BITC significantly ameliorated the lipolytic activity of TNFα; the TNFα-induced phosphorylation of ERK, PKA, and HSL; the TNFα-induced ubiquitination of PPARγ; the TNFα-induced decrease in PPARγ nuclear protein binding to PPAR response element; and the TNFα-induced decrease in PLIN1 protein expression. Our results indicate that BITC ameliorates TNFα-induced lipolysis by inhibiting the ERK/PKA/HSL signaling pathway, preventing PPARγ proteasomal degradation, and maintaining PLIN1 protein expression.


Subject(s)
Sterol Esterase , Tumor Necrosis Factor-alpha , Animals , Mice , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Sterol Esterase/metabolism , Lipolysis , 3T3-L1 Cells , PPAR gamma/metabolism , Signal Transduction , Phosphorylation , Adipocytes/metabolism , Obesity/metabolism , Perilipin-1/metabolism
11.
Chinese Pharmacological Bulletin ; (12): 114-158, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013615

ABSTRACT

Aim To investigate the effect of benzyl iso-thiocyanate (BITC) on the proliferation of mouse U14 cervical cancer cells and to explore the mechanism of cytotoxicity based on transcriptomic data analysis. Methods The effect of BITC on U14 cell activity was detected by MTT, nuclear morphological changes were observed by Hochest 33258 and fluorescent inverted microscope, cell cycle and apoptosis were determined by flow cytometry, and the transcriptome database of U14 cells before and after BITC (20 μmol · L

12.
Plants (Basel) ; 12(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005794

ABSTRACT

Tropaeolum majus L. is a traditional medicinal plant with a wide range of biological activities due to the degradation products of the glucosinolate glucotropaeolin. Therefore, the goals of this study were to identify volatiles using gas chromatography-mass spectrometry analysis (GC-MS) of the hydrosols (HYs) isolated using microwave-assisted extraction (MAE) and microwave hydrodiffusion and gravity (MHG). Cytotoxic activity was tested against a cervical cancer cell line (HeLa), human colon cancer cell line (HCT116), human osteosarcoma cell line (U2OS), and healthy cell line (RPE1). The effect on wound healing was investigated using human keratinocyte cells (HaCaT), while the antibacterial activity of the HYs was tested against growth and adhesion to a polystyrene surface of Staphylococcus aureus and Escherichia coli. Antiphytoviral activity against tobacco mosaic virus (TMV) was determined. The GC-MS analysis showed that the two main compounds in the HYs of T. majus are benzyl isothiocyanate (BITC) and benzyl cyanide (BCN) using the MAE (62.29% BITC and 15.02% BCN) and MHG (17.89% BITC and 65.33% BCN) extraction techniques. The HYs obtained using MAE showed better cytotoxic activity against the tested cancer cell lines (IC50 value of 472.61-637.07 µg/mL) compared to the HYs obtained using MHG (IC50 value of 719.01-1307.03 µg/mL). Both concentrations (5 and 20 µg/mL) of T. majus HYs using MAE showed a mild but statistically non-significant effect in promoting gap closure compared with untreated cells, whereas the T. majus HY isolated using MHG at a concentration of 15 µg/mL showed a statistically significant negative effect on wound healing. The test showed that the MIC concentration was above 0.5 mg/mL for the HY isolated using MAE, and 2 mg/mL for the HY isolated using MHG. The HY isolated using MHG reduced the adhesion of E. coli at a concentration of 2 mg/mL, while it also reduced the adhesion of S. aureus at a concentration of 1 mg/mL. Both hydrosols showed excellent antiphytoviral activity against TMV, achieving100% inhibition of local lesions on the leaves of infected plants, which is the first time such a result was obtained with a hydrosol treatment. Due to the antiphytoviral activity results, hydrosols of T. majus have a promising future for use in agricultural production.

13.
Foods ; 12(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37835300

ABSTRACT

Glucosinolates in Brassica vegetables can be hydrolyzed into various products, e.g., chemopreventive agents, isothiocyanates (ITCs) and anti-thyroid substance, goitrin. Cooking can reduce goitrin but destroy isothiocyanates. This study aimed to optimize cooking conditions for reducing goitrin while preserving isothiocyanates in Brassica vegetables. Cabbage and Chinese kale samples were divided evenly into raw, blanched, steamed, and water-based stir-fried samples. Cooking temperature and time were varied at 60, 80, or 100 °C for 2, 4, or 6 min. The levels of goitrin, benzyl isothiocyanate (BITC), and sulforaphane (SFN) were measured using LC-MS/MS. Response surface model (RSM) was used to identify the optimal cooking conditions to reduce goitrin but preserve ITCs. Results showed that goitrin content in cabbage depended on the cooking methods, temperature, and time, while that of Chinese kale only depended on the methods. In contrast, the concentrations of SFN in cabbage and BITC in kale depended on the cooking temperature and time but not methods. Based on RSM analysis, the suggested household cooking methods for preserving isothiocyanates and reducing goitrin are steaming cabbage at 80-100 °C for 4 min and stir-frying Chinese kale at 60-100 °C for 2 min. Such methods may preserve the bioactive compounds while reducing food hazards.

14.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37761977

ABSTRACT

Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure-activity relationship of tubulin-isothiocyanate interactions, we designed and synthesized a series of sixteen known and novel, structurally diverse ITCs, including amino acid ester-derived isothiocyanates, bis-isothiocyanates, analogs of benzyl isothiocyanate, and phosphorus analogs of sulforaphane. All synthesized compounds and selected natural isothiocyanates (BITC, PEITC, AITC, and SFN) were tested in vitro to evaluate their antiproliferative activity, tubulin polymerization inhibition potential, and influence on cell cycle progression. The antiproliferative activity of most of the newly tested compounds exceeded the action of natural isothiocyanates, with four structures being more potent as tubulin polymerization inhibitors than BITC. As a confirmation of anti-tubulin activity, the correlation between polymerization inhibition and cell cycle arrest in the G2/M phase was observed for the most active compounds. In light of the biological results indicating significant differences in the impact of structurally diverse isothiocyanate on tubulin polymerization, in silico analysis was conducted to analyze the possible mode of isothiocyanate-tubulin binding and to show how it can influence the polymerization reaction.

15.
Front Nutr ; 10: 1223158, 2023.
Article in English | MEDLINE | ID: mdl-37599682

ABSTRACT

Scope: As prostaglandin E2 (PGE2) has important roles in physiological and inflammatory functions, a double-blind randomized controlled crossover study to investigate the potential of nasturtium (Tropaeolum majus) for modulating PGE2 was conducted, aiming at clarifying the role of benzyl isothiocyanate (BITC). As secondary parameters leukotriene 4 (LTB4), and cytokine release (tumor necrosis factor alpha, TNF-α; interleukins IL-1ß, IL-10, and IL-12) were quantified. Methods and results: Thirty-four healthy female participants consumed 1.5 g nasturtium containing BITC, (verum) or no BITC (control) twice a day for 2 weeks each. Nasturtium intervention resulted in an increase in mean PGE2 levels in serum samples (verum: 1.76-fold, p ≤ 0.05; control: 1.78-fold, p ≤ 0.01), and ex vivo stimulated peripheral blood mononuclear cells (PBMC) (verum: 1.71-fold, p ≤ 0.01; control: 1.43-fold). Using a pre-to-post responder analysis approach, 18 of 34 subjects showed a > 25% PGE2 increase in serum, while it was >25% decreased for 9 subjects (stimulated PBMC: 14 and 8 of 28, respectively). Under the selected conditions, the BITC content of nasturtium did not affect the observed changes in PGE2. Verum intervention also increased mean LTB4 serum level (1.24-fold, p ≤ 0.01), but not in LPS stimulated PBMC, and significantly increased TNF-α release in stimulated PBMC after 3 h (verum: 1.65-fold, p = 0.0032; control: 1.22-fold, p = 0.7818). No change was seen in the anti-inflammatory cytokine IL-10, or the pro-inflammatory cytokines IL-1ß, and IL-12. Conclusion: In contrast to the previously reported in vitro results, on average, LPS activated PBMC and serum from both groups showed increased PGE2 levels. Further analyses suggest that PGE2 release after intervention could possibly depend on the baseline PGE2 level. Identification of phenotypes that respond differently to the nasturtium intervention could be useful to establish personalized approaches for dosing phytopharmaceuticals medicines.

16.
Cancers (Basel) ; 15(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37190316

ABSTRACT

Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.

17.
Int J Bioprint ; 9(2): 671, 2023.
Article in English | MEDLINE | ID: mdl-37065671

ABSTRACT

Benzyl isothiocyanate (BITC) is an isothiocyanate of plant origin, especially the mustard family, which has good antibacterial properties. However, its applications are challenging due to its poor water solubility and chemical instability. We used food hydrocolloids, including xanthan gum, locust bean gum, konjac glucomannan, and carrageenan as three-dimensional (3D)-printing food ink base and successfully prepared 3D-printed BITC antibacterial hydrogel (BITC-XLKC-Gel). The characterization and fabrication procedure of BITC-XLKC-Gel was studied. The results show that BITC-XLKC-Gel hydrogel has better mechanical properties by low-field nuclear magnetic resonance (LF-NMR), mechanical properties, and rheometer analysis. The strain rate of BITC-XLKC-Gel hydrogel is 76.5%, which is better than that of human skin. Scanning electron microscope (SEM) analysis showed that BITC-XLKC-Gel has uniform pore size and provides a good carrier environment for BITC carriers. In addition, BITC-XLKC-Gel has good 3D-printing performance, and 3D printing can be used for customizing patterns. Finally, inhibition zone analysis showed that the BITC-XLKC-Gel added with 0.6% BITC had strong antibacterial activity against Staphylococcus aureus and the BITC-XLKC-Gel added with 0.4% BITC had strong antibacterial activity against Escherichia coli. Antibacterial wound dressing has always been considered essential in burn wound healing. In experiments that simulated burn infection, BITC-XLKC-Gel showed good antimicrobial activity against methicillin-resistant S. aureus. BITC-XLKC-Gel is a good 3D-printing food ink attributed to strong plasticity, high safety profile, and good antibacterial performance and has great application prospects.

18.
Food Chem ; 419: 135984, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37044056

ABSTRACT

This study aimed to investigate the synergistic effects of benzyl isothiocyanate (BITC) and resveratrol (RS) on Listeria monocytogenes and their application in chicken meat preservation. BITC combined with RS (BR) significantly enhanced the antimicrobial activity and inhibited the growth of Listeria monocytogenes within 24 h compared to individual treatment, as well as suppressing bacterial swimming and swarming motility, reducing biofilm formation by 56.4%, increasing cell membrane disruption, and inducing intracellular ROS surges. Synergistic effects were associated with the inhibition of biofilm formation, cell membrane destruction, and ROS production. Biofilm removal facilitated the direct antimicrobial action of BR. RS disrupted cell membrane permeability, allowing more BITC into the cells, resulting in increased intracellular antibacterial levels, cell membrane hyperpolarization, and rapid ROS accumulation. Furthermore, BR visibly slowed the microbial growth in chicken flesh stored at 25 °C and 4 °C. Therefore, BR is expected to be a new strategy for food preservation.


Subject(s)
Listeria monocytogenes , Animals , Chickens , Resveratrol/pharmacology , Meat/microbiology , Reactive Oxygen Species/pharmacology , Food Preservation/methods , Anti-Bacterial Agents/pharmacology , Food Microbiology , Colony Count, Microbial
19.
Front Microbiol ; 14: 1119568, 2023.
Article in English | MEDLINE | ID: mdl-36876115

ABSTRACT

Aspergillus fumigatus keratitis is a potential blinding disease associated with A. fumigatus invasion and excessive inflammatory response. Benzyl isothiocyanate (BITC) is a secondary metabolite with broad antibacterial and anti-inflammatory activity extracted from cruciferous species. However, the role of BITC in A. fumigatus keratitis has not been discovered yet. This study aims to explore the antifungal and anti-inflammatory effects and mechanisms of BITC in A. fumigatus keratitis. Our results provided evidences that BITC exerted antifungal effects against A. fumigatus by damaging cell membranes, mitochondria, adhesion, and biofilms in a concentration-dependent manner. In vivo, fungal load and inflammatory response including inflammatory cell infiltration and pro-inflammatory cytokine expression were reduced in BITC-treated A. fumigatus keratitis. Additionally, BITC significantly decreased Mincle, IL-1ß, TNF-α, and IL-6 expression in RAW264.7 cells that stimulated by A. fumigatus or Mincle ligand trehalose-6,6-dibehenate. In summary, BITC possessed fungicidal activities and could improve the prognosis of A. fumigatus keratitis by reducing fungal load and inhibiting the inflammatory response mediated by Mincle.

20.
Toxicol Appl Pharmacol ; 462: 116424, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36775252

ABSTRACT

The NLRP3 inflammasome plays an important role in the pathogenesis of numerous inflammation-related diseases. Benzyl isothiocyanate (BITC) is rich in cruciferous vegetables and possesses potent antioxidant, anti-inflammatory, anti-cancer, and anti-obesogenic properties. In this study, we investigated the role of the NLRP3 inflammasome in the protection by BITC against steatohepatitis and insulin resistance. A mouse model of high-fat/cholesterol/cholic acid diet (HFCCD)-induced steatohepatitis, LPS/nigericin-stimulated primary Kupffer cells, and IL-1ß treated primary hepatocytes were used. BITC attenuated LPS/nigericin-induced activation of the NLRP3 inflammasome by enhancing protein kinase A-dependent NLRP3 ubiquitination, which increased the degradation of NLRP3 and reduced IL-1ß secretion in Kupffer cells. In hepatocytes, BITC pretreatment reversed the IL-1ß-induced decrease in the phosphorylation of IR, AKT, and GSK3ß in response to insulin. After 12 weeks of HFCCD feeding, increases in blood alanine aminotransferase (ALT) and glucose levels were ameliorated by BITC. Hepatic IL-1ß production, macrophage infiltration, and collagen expression induced by HFCCD were also mitigated by BITC. BITC suppresses activation of the NLRP3 inflammasome in Kupffer cells by enhancing the PKA-dependent ubiquitination of NLRP3, which leads to suppression of IL-1ß production and subsequently ameliorates hepatic inflammation and insulin resistance.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Inflammasomes/metabolism , Kupffer Cells , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nigericin/metabolism , Lipopolysaccharides/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Cholesterol/metabolism , Diet, High-Fat , Inflammation/metabolism , Interleukin-1beta/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL