Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Pharmacol Exp Ther ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849140

ABSTRACT

Beta-adrenergic receptors (ß-AR) are expressed on the membranes of various cell types and their activation affects body water balance by modulating renal sodium and water excretion, cardiovascular function and metabolic processes. However, ß-AR-associated body fluid imbalance has not been well characterised. In the present study, we hypothesized that chronic ß-AR stimulation increases electrolyte and water content at the tissue level. We evaluated the effects of isoproterenol, a non-selective ß-AR agonist, on electrolyte and water balance at the tissue level. Continuous isoproterenol administration for 14 days induced cardiac hypertrophy, associated with sodium-driven water retention in the heart, increased the total body sodium, potassium and water contents at the tissue level, and increased the water intake and blood pressure of the mice. There was greater urine output in response to the isoproterenol-induced body water retention. These isoproterenol-induced changes were reduced by propranolol, a non-selective beta-receptor inhibitor. Isoproterenol-treated mice even without excessive water intake had higher total body electrolyte and water contents, and this tissue water retention was associated with lower dry body mass, suggesting that ß-AR stimulation in the absence of excess water intake induces catabolism and water retention. These findings suggest that ß-AR activation induces tissue sodium and potassium retention, leading to body fluid retention, with or without excess water intake. This characterisation of ß-AR-induced electrolyte and fluid abnormalities improves our understanding of the pharmacological effects of ß-AR inhibitors. Significance Statement We have shown that chronic ß-AR stimulation causes cardiac hypertrophy associated with sodium-driven water retention in the heart and increases the accumulation of body sodium, potassium and water at the tissue level. This characterisation of the ß-AR-induced abnormalities in electrolyte and water balance at the tissue level improves our understanding of the roles of ß-AR in physiology and pathophysiology and the pharmacological effects of ß-AR inhibitors.

2.
Neurobiol Stress ; 30: 100628, 2024 May.
Article in English | MEDLINE | ID: mdl-38550854

ABSTRACT

Uncontrollable stress exposure impairs working memory and reduces the firing of dorsolateral prefrontal cortex (dlPFC) "Delay cells", involving high levels of norepinephrine and dopamine release. Previous work has focused on catecholamine actions on dlPFC pyramidal cells, but inhibitory interneurons may contribute as well. The current study combined immunohistochemistry and multi-scale microscopy with iontophoretic physiology and behavioral analyses to examine the effects of beta1-noradrenergic receptors (ß1-ARs) on inhibitory neurons in layer III dlPFC. We found ß1-AR robustly expressed on different classes of inhibitory neurons labeled by the calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV). Immunoelectron microscopy confirmed ß1-AR expression on the plasma membrane of PV-expressing dendrites. PV interneurons can be identified as fast-spiking (FS) in physiological recordings, and thus were studied in macaques performing a working memory task. Iontophoresis of a ß1-AR agonist had a mixed effect, increasing the firing of a subset and decreasing the firing of others, likely reflecting loss of firing of the entire microcircuit. This loss of overall firing likely contributes to impaired working memory during stress, as pretreatment with the selective ß1-AR antagonist, nebivolol, prevented stress-induced working memory deficits. Thus, selective ß1-AR antagonists may be helpful in treating stress-related disorders.

3.
Arch Oral Biol ; 162: 105939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490087

ABSTRACT

BACKGROUND: Psychological stressors have been related to tumor progression through the activation of beta-adrenergic receptors (ß-AR) in several types of cancer. PURPOSE: This study aimed to investigate the expressions of ß1- and ß2-AR and their association with psychological and clinicopathological variables in patients with oral squamous cell carcinoma. METHODS: Tumor samples from 99 patients diagnosed with OSCC were subjected to immunohistochemical reaction to detect the expression of ß1-AR and ß2-AR. Anxiety and depression symptoms were assessed using the Beck Anxiety Inventory and Beck Depression Inventory (BDI), respectively. The Brunel Mood Scale was used for measuring affective mood states. RESULTS: Univariate analyzes revealed that higher expression of ß1-AR was associated with increased alcohol consumption (p = 0.032), higher education (p = 0.042), worse sleep quality (p = 0.044) and increased levels of pain related to the primary tumor (p < 0.001). Higher expression of ß2-AR was related with regional metastasis (p = 0.014), increased levels of pain related to the primary tumor (p = 0.044), anxiety (p < 0.001) and depressive (p = 0.010) symptoms and higher mood scores of angry (p = 0.010) and fatigue (p = 0.010). Multivariate analysis identified that patients with advanced clinical stage had lower ß1-AR expression (OR=0.145, 95% CI=0.025-0.828, p = 0.003). Higher anxiety symptoms and higher mood fatigue are independent factors for increased ß2-AR expression (OR=4256, 95% CI=1439-12606, p = 0.009; OR=3816, 95% CI=1258-11,573, p = 0.018, respectively). CONCLUSION: This study reveal that anxiety, fatigue symptoms, and clinical staging are associated with tumor expression of beta-adrenergic receptors in patients with oral cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Receptors, Adrenergic, beta-2/metabolism , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/pathology , Receptors, Adrenergic, beta , Fatigue , Pain
4.
J Neurotrauma ; 41(7-8): 771-788, 2024 04.
Article in English | MEDLINE | ID: mdl-38117124

ABSTRACT

Trauma is a serious public health issue, and remains a major cause of mortality and disability worldwide. The notion that genetic factors contribute to an individual's response to traumatic injury has advanced significantly. Genetic variations in severely injured patients have been linked to mortality, morbidity, and psychological outcomes. We conducted a comprehensive review of beta-adrenergic receptor polymorphisms and their impact on the pathogenetics of traumatic injuries, which could pave the way for a transformational frontier of personalized medicine in neurotrauma. It remains unclear why some individuals are vulnerable to worse outcomes, whereas others are resilient. Although genetic factors may be significant, the intricate interplay between environmental and genetic factors may be responsible for variations in the presentation and outcome after injury. Recent advancements in genetic analysis and molecular physiology have helped to shed light on the causes of such variability. Although exposure to trauma can initiate a cascade of stress-related responses, these responses alone are insufficient to explain etiopathogenesis. Therefore, gaining insights into how trauma and genetic predispositions to adrenergic variations interact at the molecular level to affect an individual's susceptibility and recuperation could provide an essential understanding of the molecular pathogenesis of traumatic injuries. Therefore, it is imperative to identify potential genetic and physiological markers to guide early management and prognosis of trauma. Such knowledge could pave the way for the discovery of novel biomarkers that can identify a transdiagnostic subgroup that is at high risk and requires early intervention. This could lead to the adoption of personalized medical approaches in neurotrauma care.


Subject(s)
Precision Medicine , Receptors, Adrenergic, beta , Humans , Receptors, Adrenergic, beta/genetics , Polymorphism, Genetic , Prognosis , Genetic Predisposition to Disease , Biomarkers
5.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139366

ABSTRACT

This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.


Subject(s)
Citrus , Synephrine , Animals , Synephrine/adverse effects , Receptors, Glucocorticoid/metabolism , Plant Extracts/pharmacology , Anti-Inflammatory Agents , Citrus/metabolism
6.
Circ Arrhythm Electrophysiol ; 16(11): e012199, 2023 11.
Article in English | MEDLINE | ID: mdl-37933567

ABSTRACT

BACKGROUND: ß-AR (ß-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced ß-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS: Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS: Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the ß-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS: NPR-B protects against AF by preventing enhanced atrial responses to ß-adrenergic receptor agonists.


Subject(s)
Atrial Fibrillation , Humans , Mice , Animals , Atrial Fibrillation/prevention & control , Atrial Fibrillation/metabolism , Isoproterenol/pharmacology , Natriuretic Peptide, C-Type/pharmacology , Heart Atria , Myocytes, Cardiac/metabolism
7.
Biomed Pharmacother ; 168: 115763, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865997

ABSTRACT

Asthma and other airway obstructive disorders are characterized by heightened inflammation and excessive airway epithelial cell reactive oxygen species (ROS), which give rise to a highly oxidative environment. After decades of use, ß2-adrenergic receptor (ß2AR) agonists remain at the forefront of treatment options for asthma, however, chronic use of ß2-agonists leads to tachyphylaxis to the bronchorelaxant effects, a phenomenon that remains mechanistically unexplained. We have previously demonstrated that ß2AR agonism increases ROS generation in airway epithelial cells, which upholds proper receptor function via feedback oxidation of ß2AR cysteine thiolates to Cys-S-sulfenic acids (Cys-SOH). Our previous results also demonstrate that prevention of normal redox cycling of this post-translational oxi-modification back to the thiol prevents proper receptor function. Given that Cys-S-sulfenic acids can be irreversibly overoxidized to Cys-S-sulfinic (Cys-SO2H) or S-sulfonic (Cys-SO3H) acids, which are incapable of further participation in redox reactions, we hypothesized that ß2-agonist tachyphylaxis may be explained by hyperoxidation of ß2AR to S-sulfinic acids. Here, using airway epithelial cell lines and primary small airway epithelial cells from healthy and asthma-diseased donors, we show that ß2AR agonism generates H2O2 in a receptor and NAPDH oxidase-dependent manner. We also demonstrate that acute and chronic receptor agonism can facilitate ß2AR S-sulfination, and that millimolar H2O2 concentrations are deleterious to ß2AR-mediated cAMP formation, an effect that can be rescued to a degree in the presence of the cysteine-donating antioxidant N-acetyl-L-cysteine. Our results reveal that the oxidative state of ß2AR may contribute to receptor functionality and may, at least in part, explain ß2-agonist tachyphylaxis.


Subject(s)
Asthma , Hydrogen Peroxide , Humans , Hydrogen Peroxide/metabolism , Sulfenic Acids/metabolism , Cysteine/metabolism , Reactive Oxygen Species/metabolism , Tachyphylaxis , Asthma/metabolism , Epithelial Cells/metabolism , Receptors, Adrenergic/metabolism
8.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176069

ABSTRACT

Radix aconiti carmichaeli is a widely used traditional Chinese medicine that has been found to be effective in treating cardiovascular diseases and metabolic disorders. Patients with these diseases often experience a heat generation disorder, which is characterized by chilliness and can worsen the progression of the disease. This study established an in vitro screening model combining the examination of cellular mitochondrial membrane potential and mitochondrial temperature to screen drugs with thermogenic activity. After differentiation and determination of the content of characteristic metabolites of the drug-containing serum blood components, it was found that Fuziline (FZL) is the key thermogenic property in Radix aconiti carmichaeli, responsible for its thermogenic effects with a high relative importance of 33%. Experiments were conducted to evaluate the thermogenic activity of Radix aconiti carmichaeli and FZL in vivo by assessing temperature changes in various organs, including the rectum, liver, and brown adipose tissue. Moreover, the effects of intracellular ß3-adrenergic receptor (ß3-AR) agonistic effects were evaluated using transient ß3-AR transfection and dual-luciferase assay systems. The molecular mechanism by which FZL promotes thermogenesis and improves mitochondrial function was investigated by verifying the ß-adrenergic receptors (ß-AR) downstream signaling pathway. The results suggest that FZL activates ß-AR nonselectively, which in turn activates the downstream cAMP-PKA signaling pathway and leads to an increase in liver glycogenolysis and triglyceride hydrolysis, accompanied by enhancing mitochondrial energy metabolism. Consequently, the liver and brown adipose tissue receive energy to generate heat. In summary, these findings provide insight into the therapeutic application of Radix aconiti carmichaeli for metabolic disorders associated with heat generation disorders.


Subject(s)
Lipid Metabolism , Receptors, Adrenergic, beta , Humans , Receptors, Adrenergic, beta/metabolism , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Thermogenesis , Receptors, Adrenergic, beta-3/metabolism , Energy Metabolism
9.
Brain Res Bull ; 192: 168-174, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442693

ABSTRACT

Experiments demonstrating post-reactivation amnesia for learned fear in animals have generated a novel and influential hypothesis on the plasticity of memory, usually referred to as memory reconsolidation. The clinical potential of pharmacologically disrupting the process of memory reconsolidation has sparked a wave of interest into whether this phenomenon can also be demonstrated in humans, and ultimately harnessed for therapeutic purposes. In this essay we outline how the work of Karim Nader and colleagues has moved the field forward from a focus on extinction learning to the prospect of disrupting memory reconsolidation. We then review some promising findings on the necessary conditions, as well as potential boundary conditions, of pharmacologically disrupting the process of memory reconsolidation obtained in our laboratory. Even though laboratory experiments in animals and humans suggest that we may be at the brink of a breakthrough in fundamentally changing emotional memories, the necessary and sufficient conditions for targeting and disrupting memory reconsolidation in clinical practice are largely unknown. There is likely no universally effective reactivation procedure for triggering the reconsolidation of clinically significant emotional memories, and the impact of subtle boundary conditions observed in basic experiments compounds this issue. Notwithstanding these challenges, the discovery of changing emotional memory through disrupting the process of memory reconsolidation has unquestionably invigorated the field.


Subject(s)
Fear , Memory Disorders , Animals , Humans , Fear/physiology , Memory Disorders/therapy , Emotions , Amnesia , Learning , Extinction, Psychological/physiology
10.
Cells ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36497147

ABSTRACT

Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a ß-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through ß1 and ß2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in ß1 and ß2 null mice or Car8wdl/wdl mice lacking ß1 and ß2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through ß-adrenergic receptors and may contribute to tremor therapeutics.


Subject(s)
Cerebellum , Propranolol , Mice , Animals , Propranolol/pharmacology , Cerebellum/metabolism , Purkinje Cells , Ataxia , Neurons/metabolism , Adrenergic beta-Antagonists/pharmacology , Mice, Knockout , Nerve Tissue Proteins/metabolism , Biomarkers, Tumor
11.
Biomedicines ; 10(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36289638

ABSTRACT

Norepinephrine is a catecholamine neurotransmitter that has been extensively implicated in the neurobiology of major depressive disorder (MDD). An accumulating body of evidence indicates that investigations into the action of norepinephrine at the synaptic/receptor level hold high potential for a better understanding of MDD neuropathology and introduce possibilities for developing novel treatments for depression. In this review article, we discuss recent advances in depression neuropathology and the effects of antidepressant medications based on preclinical and clinical studies related to beta-adrenergic receptor subtypes. We also highlight a beta-3 adrenergic receptor-involved mechanism that promotes stress resilience, through which antidepressant efficacy is achieved in both rodent models for depression and patients with major depression-an alternative therapeutic strategy that is conceptually different from the typical therapeutic approach in which treatment efficacy is achieved by reversing pathological alterations rather than by enhancing a good mechanism such as natural resilience. Altogether, in this review, we systematically describe the role of beta-adrenergic receptors in depression and stress resilience and provide a new avenue for developing a conceptually innovative treatment for depression.

12.
Medicina (Kaunas) ; 58(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36143915

ABSTRACT

Over the last years, repurposed agents have provided growing evidence of fast implementation in oncology treatment such as certain antimalarial, anthelmintic, antibiotics, anti-inflammatory, antihypertensive, antihyperlipidemic, antidiabetic agents. In this study, the four agents of choice were present in our patients' daily treatment for nonmalignant-associated pathology and have known, light toxicity profiles. It is quite common for a given patient's daily administration schedule to include two or three of these drugs for the duration of their treatment. We chose to review the latest literature concerning metformin, employed as a first-line treatment for type 2 diabetes; mebendazole, as an anthelmintic; atorvastatin, as a cholesterol-lowering drug; propranolol, used in cardiovascular diseases as a nonspecific inhibitor of beta-1 and beta-2 adrenergic receptors. At the same time, certain key action mechanisms make them feasible antitumor agents such as for mitochondrial ETC inhibition, activation of the enzyme adenosine monophosphate-activated protein kinase, amelioration of endogenous hyperinsulinemia, inhibition of selective tyrosine kinases (i.e., VEGFR2, TNIK, and BRAF), and mevalonate pathway inhibition. Despite the abundance of results from in vitro and in vivo studies, the only solid data from randomized clinical trials confirm metformin-related oncological benefits for only a small subset of nondiabetic patients with HER2-positive breast cancer and early-stage colorectal cancer. At the same time, clinical studies confirm metformin-related detrimental/lack of an effect for lung, breast, prostate cancer, and glioblastoma. For atorvastatin we see a clinical oncological benefit in patients and head and neck cancer, with a trend towards radioprotection of critical structures, thus supporting the role of atorvastatin as a promising agent for concomitant association with radiotherapy. Propranolol-related increased outcomes were seen in clinical studies in patients with melanoma, breast cancer, and sarcoma.


Subject(s)
Anthelmintics , Antimalarials , Antineoplastic Agents , Breast Neoplasms , Diabetes Mellitus, Type 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Metformin , Adenosine Monophosphate/therapeutic use , Adrenergic beta-Antagonists/therapeutic use , Anthelmintics/therapeutic use , Anti-Bacterial Agents/therapeutic use , Antihypertensive Agents/therapeutic use , Antimalarials/therapeutic use , Antineoplastic Agents/therapeutic use , Atorvastatin/therapeutic use , Breast Neoplasms/pathology , Cholesterol , Diabetes Mellitus, Type 2/drug therapy , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Male , Mebendazole/therapeutic use , Metformin/therapeutic use , Mevalonic Acid/therapeutic use , Propranolol/therapeutic use , Protein Kinases/metabolism , Protein Kinases/therapeutic use , Proto-Oncogene Proteins B-raf , Receptors, Adrenergic, beta-2/therapeutic use , Tyrosine
13.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077313

ABSTRACT

The noradrenergic system is implicated in neuropathologies contributing to major disorders of the memory, including post-traumatic stress disorder and Alzheimer's disease. Determining the impact of norepinephrine on cellular function and plasticity is thus essential for making inroads into our understanding of these brain conditions, while expanding our capacity for treating them. Norepinephrine is a neuromodulator within the mammalian central nervous system which plays important roles in cognition and associated synaptic plasticity. Specifically, norepinephrine regulates the formation of memory through the stimulation of ß-ARs, increasing the dynamic range of synaptic modifiability. The mechanisms through which NE influences neural circuit function have been extended to the level of the epigenome. This review focuses on recent insights into how the noradrenergic recruitment of epigenetic modifications, including DNA methylation and post-translational modification of histones, contribute to homo- and heterosynaptic plasticity. These advances will be placed in the context of synaptic changes associated with memory formation and linked to brain disorders and neurotherapeutic applications.


Subject(s)
Long-Term Potentiation , Norepinephrine , Animals , Epigenesis, Genetic , Long-Term Potentiation/physiology , Mammals/metabolism , Neuronal Plasticity/genetics , Norepinephrine/physiology , Receptors, Adrenergic, beta/metabolism , Synapses/metabolism
14.
Int J Mol Sci ; 23(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35269919

ABSTRACT

G-protein coupled receptor (GPCR) kinase 2 (GRK2) is upregulated in heart failure (HF) patients and mouse models of cardiac disease. GRK2 is a regulator of ß-adrenergic receptors (ßARs), a GPCR involved in ionotropic and chronotropic responses. We and others have recently reported GRK2 to be localized in the mitochondria, although its function in the mitochondria and/or metabolism remain not clearly defined. We hypothesized that upregulation of GRK2 reduced mitochondrial respiratory function and responses to ßAR activation. Utilizing isolated mouse primary adult cardiomyocytes (ACMs), we investigated the role of glucose, palmitate, ketone bodies, and BCAAs in mediating cell survival. Our results showed that myocyte upregulation of GRK2 promotes palmitate-induced cell death. Isotopologue labeling and mass spectrometry showed that the upregulation of GRK2 reduces ß-hydroxybutyryl CoA generation. Next, using isoproterenol (ISO), a non-selective ßAR-agonist, we determined mitochondrial function in mouse and human primary ACMs. Upregulation of GRK2 impaired ISO-mediated mitochondrial functional responses, which we propose is important for metabolic adaptations in pathological conditions. Increased cardiac levels of GRK2 reduced fatty acid-specific catabolic pathways and impaired ISO-stimulated mitochondrial function. Our data support the notion that GRK2 participates in bioenergetic remodeling and may be an important avenue for the development of novel pharmacological strategies in HF.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Heart Failure , Receptors, Adrenergic, beta , Animals , Fatty Acids/metabolism , Heart Failure/metabolism , Humans , Isoproterenol/pharmacology , Mice , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Palmitates/metabolism , Receptors, Adrenergic, beta/metabolism
15.
Eur J Trauma Emerg Surg ; 48(1): 455-470, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32488449

ABSTRACT

BACKGROUND: Crush injury/crush syndrome (CI/CS) is the second most common cause of death during earthquakes. Most studies of CI/CS have mainly focused on kidney injury after decompression. Few studies have focused on myocardial injury caused by crush injury and its potential mechanisms. METHODS: We first verified cardiomyocyte injury during compression in rats with a crush injury. The survival rate, electrocardiographic results, histological results, catecholamine changes and cardiac ß1-AR expression were evaluated. Next, we explored the effects of pretreatment with a selective ß1-blocker (bisoprolol) with or without fluid resuscitation on rats with a crush injury. In addition to evaluating the survival rates, biochemical and histological analyses and echocardiographic measurements were also performed. RESULTS: Reduced heart rates, elevated ST segments, and tall-peaked T waves were observed in the rats with a crush injury. The changes in the myocardial enzymes and pathological results demonstrated that myocardial damage occurred during compression in rats with a crush injury. The levels of the catecholamine norepinephrine in both the serum and myocardial tissue were elevated during compression. Pretreatment with a selective ß1-blocker combined with fluid resuscitation significantly improved the survival rates of the rats with lethal crush injury. The myocardial enzymes and pathological results showed that the combined therapy decreased myocardial damage. The echocardiography measurements showed that the rats that received the combined therapy exhibited decreased left ventricular mass (LVM), left ventricular volume at end-systole (LVVs) and left ventricular internal diameter (LVID) compared with the rats with a crush injury. CONCLUSIONS: Our findings demonstrated the presence of myocardial injury in the early stage of compression in rats with a crush injury. Pretreatment with a ß1-blocker (bisoprolol) with fluid resuscitation significantly reduced mortality, decreased myocardial tissue damage, and improved ventricular remodelling in rats with a lethal crush injury.


Subject(s)
Crush Syndrome , Ventricular Remodeling , Animals , Electrocardiography , Heart Ventricles , Myocardium , Rats
17.
Pharmaceutics ; 13(6)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198801

ABSTRACT

Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (ß-arrestin), a protein responsible for beta-adrenergic receptors' (ß-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. ß-arrestin isoforms, namely ß-arrestin1 and ß-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two ß-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of ß-arrestin in the treatment of HF.

18.
Korean J Physiol Pharmacol ; 25(4): 355-363, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34187952

ABSTRACT

Dynamic changes in adipose tissue blood flow (ATBF) with nutritional status play a role in the regulation of metabolic and endocrine functions. Activation of the sympathetic nervous system via ß-adrenergic receptors (ß-AR) contributes to the control of postprandial enhancement of ATBF. Herein, we sought to identify the role of each ß-AR subtype in the regulation of ATBF in mice. We monitored the changes in visceral epididymal ATBF (VAT BF), induced by local infusion of dobutamine, salbutamol, and CL316,243 (a selective ß1-, ß2-, and ß3-AR agonist, respectively) into VAT of lean CD-1 mice and global adipose triglyceride lipase (ATGL) knockout (KO) mice, using laser Doppler flowmetry. Administration of CL316,243, known to promote lipolysis in adipocytes, significantly increased VAT BF of CD-1 mice to a greater extent compared to that of the vehicle, whereas administration of dobutamine or salbutamol did not produce significant differences in VAT BF. The increase in VAT BF induced by ß3-AR stimulation disappeared in ATGL KO mice as opposed to their wild-type (WT) littermates, implying a role of ATGL-mediated lipolysis in the regulation of VAT BF. Different vascular reactivities occurred despite no significant differences in vessel density and adiposity between the groups. Additionally, the expression levels of the angiogenesis-related genes were significantly higher in VAT of ATGL KO mice than in that of WT, implicating an association of ATBF responsiveness with angiogenic activity in VAT. Our findings suggest a potential role of ß3-AR signaling in the regulation of VAT BF via ATGL-mediated lipolysis in mice.

19.
Cells ; 10(5)2021 05 15.
Article in English | MEDLINE | ID: mdl-34063503

ABSTRACT

When myocardial function is compromised as in heart failure (HF), there is activation of the sympathetic nervous system with elevated circulating catecholamine levels. These catecholamines activate cardiac and extra-cardiac adrenergic receptors (ARs). Interest in secreted extracellular vesicles (EVs) from the heart is growing and in HF, it is not known whether excessive activation of α- or ß-adrenergic receptors (ARs) could induce specific changes in EV content. In this study, we have evaluated, by next generation sequencing, the small RNA content, including micro-RNAs (miRs), of circulating EVs of mice exposed to chronic selective α- or ß- AR stimulation. EVs from mouse blood were purified by differential ultracentrifugation resulting in EVs with an average size of 116.6 ± 4.8 nm that by immunoblotting included protein markers of EVs. We identified the presence of miRs in blood EVs using miR-21-5p and -16-5p real-time PCR as known constituents of blood exosomes that make up a portion of EVs. We next performed next generation sequencing (NGS) of small non-coding RNAs found in blood EVs from mice following 7 days of chronic treatment with isoproterenol (ISO) or phenylephrine (PE) to stimulate α- or ß-ARs, respectively. PE increased the percent of genomic repeat region reads and decreased the percent of miR reads. In miR expression analysis, PE and ISO displayed specific patterns of miR expression that suggests differential pathway regulation. The top 20 KEGG pathways predicted by differential expressed miRs show that PE and ISO share 11 of 20 pathways analyzed and reveal also key differences including three synapse relative pathways induced by ISO relative to PE treatment. Both α-and ß-AR agonists can alter small RNA content of circulating blood EVs/exosomes including differential expression and loading of miRs that indicate regulation of distinct pathways. This study provides novel insight into chronic sympathetic nervous system activation in HF where excessive catecholamines may not only participate in pathological remodeling of the heart but alter other organs due to secretion of EVs with altered miR content.


Subject(s)
Cardiovascular Diseases/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/blood , Receptors, Adrenergic, alpha/blood , Receptors, Adrenergic, beta/blood , Animals , Biomarkers/blood , Biomarkers/metabolism , Mice
20.
Transl Oncol ; 14(8): 101117, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33993095

ABSTRACT

Chronic stress leads to the activation of the beta-adrenergic pathway. Its activation has been implicated in the progression of different types of cancer but its role on head and neck squamous cell carcinomas (HNSCCs) remains undefined. The aim of this study was to investigate the influence of the beta-adrenergic pathway activation in the progression of HNSCCs and offer a panel of potential treatments for patients with the active beta-adrenergic pathway. Five hundred and twenty TCGA patients with primary HNSCCs were divided in two groups: ADRB2low / SLC6A2low and ADRB2high / SLC6A2high. Differentially expressed genes (DEGs) were identified through differential expression analysis. The association of clinicopathological and genomic features between the groups was analyzed using a bioinformatic approach. Potential drugs for treatment of HNSCC were identified based on the DEGs. There was association between ADRB2 and SLC6A2 expressions with age, race, tumor site, histologic grade, perineural invasion, and HPV p16 status. It was identified 898 DEGs between the groups. High ADRB2/SLC6A2 expression stimulated HNSCC proliferation, adhesion, invasion, and angiogenesis. On the other hand, genes related to cell stemness were downregulated in patients with activation of the beta- adrenergic pathway. Finally, 56 FDA-approved antineoplastic and immunotherapeutic drugs were identified as potential targets for the personalized treatment.

SELECTION OF CITATIONS
SEARCH DETAIL