Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2403845, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120071

ABSTRACT

Magnetron-sputtered thermoelectric thin films have the potential for reproducibility and scalability. However, lattice mismatch during sputtering can lead to increased defects in the epitaxial layer, which poses a significant challenge to improving their thermoelectric performance. In this work, nanocrystalline n-type Bi2Te3 thin films with an average grain size of ≈110 nm are prepared using high-temperature sputtering and post-annealing. Herein, it is demonstrated that high-temperature treatment exacerbates Te evaporation, creating Te vacancies and electron-like effects. Annealing improves crystallinity, increases grain size, and reduces defects, which significantly increases carrier mobility. Furthermore, the pre-deposited Ti additives are ionized at high temperatures and partially diffused into Bi2Te3, resulting in a Ti doping effect that increases the carrier concentration. Overall, the 1 µm thick n-type Bi2Te3 thin film exhibits a room temperature resistivity as low as 3.56 × 10-6 Ω∙m. Notably, a 5 µm thick Bi2Te3 thin film achieves a record power factor of 6.66 mW mK-2 at room temperature, which is the highest value reported to date for n-type Bi2Te3 thin films using magnetron sputtering. This work demonstrates the potential for large-scale of high-quality Bi2Te3-based thin films and devices for room-temperature TE applications.

2.
Small Methods ; : e2400953, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101298

ABSTRACT

Bi2Te3-based materials play a crucial role in solid cooling and power generation, but the rapidly deteriorated ZT with rising temperatures above 450 K severely limits further applications. Here, this paper reports a novel preparation method of annealing treatment for molten ingot, which can enhance the thermoelectric performance of n-type Bi2Te2.4Se0.6 in a wide temperature range. Instead of conventional halides, copper is adopted to regulate the carrier concentration and grain size to optimal levels. During the process of annealing at 573 K for 4 h, the number of twins significantly increases and the grains of Cu-doped samples become larger and more oriented. These optimizations lead to higher carrier mobility with similar carrier concentration compared with the sample without heat treatment. The synergistic effects of Cu doping and annealing treatment realize a high average ZT of 0.89 within 300-600 K in n-type Cu0.02Bi2Te2.4Se0.6. Combined with p-type (Bi,Sb)2Te3, the fabricated thermoelectric device exhibits a high conversion efficiency of 6.9% at a temperature difference of 300 K. This study suggests that annealing treatment is a simple and effective scheme to promote the applications of n-type Bi2(Te,Se)3 in a wide temperature range.

3.
Polymers (Basel) ; 16(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065296

ABSTRACT

Converting low-grade thermal energy into electrical energy is crucial for the development of modern smart wearable energy technologies. The free-standing films of PEDOT@Bi2Te3 prepared by tape-casting hold promise for flexible thermoelectric technology in self-powered sensing applications. Bi2Te3 nanosheets fabricated by the solvothermal method are tightly connected with flat-arranged PEODT molecules, forming an S-Bi bonded interface in the composite materials, and the bandgap is reduced to 1.63 eV. Compared with the PEDOT film, the mobility and carrier concentration of the composite are significantly increased at room temperature, and the conductivity reaches 684 S/cm. Meanwhile, the carrier concentration decreased sharply at 360 K indicating the creation of defect energy levels during the interfacial reaction of the composites, which increased the Seebeck coefficient. The power factor was improved by 68.9% compared to PEDOT. In addition, the introduction of Bi2Te3 nanosheets generated defects and multidimensional interfaces in the composite film, which resulted in weak phonon scattering in the conducting polymer with interfacial scattering. The thermal conductivity of the film is decreased and the ZT value reaches 0.1. The composite film undergoes 1500 bending cycles with a 14% decrease in conductivity and has good flexibility. This self-supporting flexible thermoelectric composite film has provided a research basis for low-grade thermal energy applications.

4.
ACS Appl Mater Interfaces ; 16(30): 40297-40308, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39016434

ABSTRACT

Helicity-dependent photocurrent (HDPC) and its modulation in topological insulator Bi2Te3 nanowires have been investigated. It is revealed that when the incident plane of a laser is perpendicular to the nanowire, the HDPC is an odd function of the incident angle, which is mainly contributed by the circular photogalvanic effect originating from the surface states of Bi2Te3 nanowire. When the incident plane of a laser is parallel to the nanowire, the HDPC is approximately an even function of the incident angle, which is due to the circular photon drag effect coming from the surface states. It is found that the HDPC can be effectively tuned by the back gate and the ionic liquid top gate. By analyzing the substrate dependence of the HDPC, we find that the HDPC of the Bi2Te3 nanowire on the Si substrate is an order of magnitude larger than that on SiO2, which may be due to the spin injection from the Si substrate to the Bi2Te3 nanowire. In addition, by applying different biases, the Stokes parameters of a polarized light can be extracted by arithmetic operation of the photocurrents measured in the Bi2Te3 nanowire. This work suggests that topological insulator Bi2Te3 nanowires may provide a good platform for opto-spintronic devices, especially in chirality and polarimtry detection.

5.
ACS Appl Mater Interfaces ; 16(27): 35353-35360, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940538

ABSTRACT

Thermoelectric generators (TEGs) are environmentally friendly energy harvesting technologies that hold great promise in the field of self-powered electronics and sensing. However, the current development of thermoelectric (TE) devices has largely lagged behind the development of thermoelectric materials, especially in the preparation of thermoelectric components with customizable shapes and excellent properties, which largely limits their practical applications. These issues can be effectively addressed by using 3D printing technology. Here, we print multiple p-type thermoelectric legs (pins) consecutively with this simple technique, and the printed TEGs have excellent thermal potential (288 µV K-1 at room temperature) and excellent temperature response properties, which exhibited an output voltage of 127.94 mV at a temperature difference (ΔT) of 40 K. The 3D-printed thermoelectric generator enables the collection of thermal energy. In addition, the device has excellent temperature sensing characteristics, and this temperature signal to electrical signal conversion is very rapid, which enables temperature sensing alarms in a wide temperature domain. Combining these features, an energy harvesting and electrical alarm concept for home-scale applications is proposed, which is expected to provide a diverse research idea for the application of next-generation thermoelectric devices.

6.
Nano Lett ; 24(25): 7741-7747, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870320

ABSTRACT

The existence of fractionally quantized topological corner charge serves as a key indicator for two-dimensional (2D) second-order topological insulators (SOTIs), yet it has not been experimentally observed in realistic materials. Here, based on effective model analysis and symmetry arguments, we propose a strategy for achieving SOTI phases with in-gap corner states in 2D systems with antiferromagnetic (AFM) order. We discover that the band topology originates from the interplay between intrinsic spin-orbital coupling and interlayer AFM exchange interactions. Using first-principles calculations, we show that the 2D AFM SOTI phase can be realized in (MnBi2Te4)(Bi2Te3)m films. Moreover, we demonstrate that the SOTI states are linked to rotation topological invariants under 3-fold rotation symmetry C3, resulting in fractionally quantized corner charge, i.e., n3|e| (mod e). Due to the great achievements in (MnBi2Te4)(Bi2Te3)m systems, our results providing reliable material candidates for experimentally accessible AFM SOTIs should draw intense attention.

7.
Small ; : e2401929, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934508

ABSTRACT

Defective bismuth telluride (Bi2Te3) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H2O2. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi2Te3 nanosheets creates controlled defects (d), such as Bi3+species, in d-Bi2Te3-X that induces enhanced hPOD activity. d-Bi2Te3-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi2Te3 nanosheets. The antibacterial activity of d-Bi2Te3-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for Staphylococcus aureus and Pseudomonas aeruginosa, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi2Te3-250 nanozyme has been studied on Pseudomonas aeruginosa biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.

8.
J Phys Condens Matter ; 36(35)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38804063

ABSTRACT

We have,in-situ, prepared and measured the temperature dependence of thermopowerS(T) and resistanceR(T) of Bi2Te3topological insulator (TI) thin films in the amorphous and crystalline phase. Samples were prepared by sequential flash-evaporation at liquid4He temperature. TheS(T) in the amorphous phase is negative and much larger compared to other known amorphous materials, while in the crystalline phase it is also negative and behaves linearly with the temperature. The resistivityρ(T)in the amorphous phase shows a semiconducting like behavior that changes to a linear metallic behavior after crystallization.S(T) anρ(T)results in the crystalline phase are in good agreement with results obtained both in bulk and thin films reported in the literature. Linear behavior of theρ(T)forT > 15 K indicates the typical metallic contribution from the surface states as observed in other TI novel materials. The low temperature conductivityT < 10 K exhibits logarithmic temperature dependent positive slopeκ ≈ 0.21, indicating the dominance of electron-electron interaction (EEI) over the quantum interference effect, with a clear two dimensional nature of the contribution. Raman spectroscopy showed that the sample has crystallized in the trigonalR3-mspace group. Energy-dispersive x-ray spectroscopy reveales high homogeneity in the concentration and no magnetic impurities introduced during preparation or growth.

9.
ACS Appl Mater Interfaces ; 16(21): 27541-27549, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38758664

ABSTRACT

Thermoelectric cooling devices utilizing Bi2Te3-based alloys have seen increased utilization in recent years. However, their thermoelectric performance remains inadequate within the operational temperature range (≤400 K), with limited research addressing this issue. In this study, we successfully modulated the carrier concentration of the sample through Te content reduction, consequently lowering the peak temperature of the zT value from 400 to 300 K. This led to a substantial enhancement in thermoelectric performance at room temperature (≤400 K). Furthermore, by doping with La, the electrical transport properties have been further optimized, and the lattice thermal conductivity has been effectively reduced at the same time; the average zT value was ultimately elevated from 0.69 to 0.9 within the temperature range of 300-400 K. These findings hold significant promise for enhancing the efficacy of existing thermoelectric cooling devices based on Bi2Te3-based alloys.

10.
ACS Appl Mater Interfaces ; 16(17): 22147-22154, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639142

ABSTRACT

The high performance of a multistage thermoelectric cooler (multi-TEC) used in a wide low-temperature range depends on the optimized thermoelectric (TE) performance of materials during the corresponding working temperature range for each stage. Despite decades of research on the commercial TE materials of Bi2Te3, the main research is still focused on temperatures above 300 K, lacking suitable hierarchical low-temperature n-Bi2Te3 for multistage TEC. In this work, we systematically investigated the influence of doping concentration and matrix material compositions on the TE performance of n-Bi2Te3 below room temperature by the high-energy ball milling and hot deformation. Consequently, two hierarchical n-Bi2Te3 materials with excellent mechanical properties working below 248 and around 298 K, respectively, have been screened out. The Bi2Te2.7Se0.3 + 0.03 wt % TeI4 can be adopted in a low-temperature range that exhibits the high average figure of merit (zTave) of 0.61 within 173-248 K. Meanwhile, the Bi2Te2.7Se0.3 + 0.05 wt % TeI4 sample displays a competitive zTave of 0.85 within 248-298 K, which can be applied above 248 K. The research of hierarchical TE materials provides valuable insights into the high-performance design of multistage TE cooling devices.

11.
Materials (Basel) ; 17(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38591609

ABSTRACT

This research focuses on enhancing the efficiency of Bi2Te3-based thermoelectric generators (TEGs) in ocean thermal energy conversion (OTEC) systems through innovative heat exchanger designs. Our comparative study uses computer simulations to evaluate three types of heat exchangers: cavity, plate-fins, and longitudinal vortex generators (LVGs). We analyze their impact on thermoelectric conversion performance, considering the thermal energy transfer from warm surface seawater to TEGs. The results demonstrate that heat exchangers with plate-fins and LVGs significantly outperform the cavity heat exchanger regarding thermal energy transfer efficiency. Specifically, plate-fins increase TEG output power by approximately 22.92% and enhance thermoelectric conversion efficiency by 38.20%. Similarly, LVGs lead to a 13.02% increase in output power and a 16.83% improvement in conversion efficiency. These advancements are contingent upon specific conditions such as seawater flow rates, fin heights, LVG tilt angles, and locations. The study underscores the importance of optimizing heat exchanger designs in OTEC systems, balancing enhanced heat transfer against the required pump power. Our findings contribute to a broader understanding of materials science in sustainable energy technologies.

12.
Sci Bull (Beijing) ; 69(11): 1728-1737, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688741

ABSTRACT

Thermoelectric materials have a wide range of application because they can be directly used in refrigeration and power generation. And the Bi2Te3 stand out because of its excellent thermoelectric performance and are used in commercial thermoelectric devices. However, n-type Bi2Te3 has seriously hindered the development of Bi2Te3-based thermoelectric devices due to its weak mechanical properties and inferior thermoelectric performance. Therefore, it is urgent to develop a high-performance n-type Bi2Te3 polycrystalline. In this work, we employed interstitial Cu and the hot deformation process to optimize the thermoelectric properties of Bi2Te2.7Se0.3, and a high-performance thermoelectric module was fabricated based on this material. Our combined theoretical and experimental effort indicates that the interstitial Cu reduce the defect density in the matrix and suppresses the donor-like effect, leading to a lattice plainification effect in the material. In addition, the two-step hot deformation process significantly improves the preferred orientation of the material and boosts the mobility. As a result, a maximum ZT of 1.27 at 373 K and a remarkable high ZTave of 1.22 across the temperature range of 300-425 K are obtained. The thermoelectric generator (TEG, 7-pair) and thermoelectric cooling (TEC, 127-pair) modules were fabricated with our n-type textured Cu0.01Bi2Te2.7Se0.3 coupled with commercial p-type Bi2Te3. The TEC module demonstrates superior cooling efficiency compared with the commercial Bi2Te3 device, achieving a ΔT of 65 and 83.4 K when the hot end temperature at 300 and 350 K, respectively. In addition, the TEG module attains an impressive conversion efficiency of 6.5% at a ΔT of 225 K, which is almost the highest value among the reported Bi2Te3-based TEG modules.

13.
ACS Appl Mater Interfaces ; 16(14): 17683-17691, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38531014

ABSTRACT

Porous thermoelectric materials offer exciting prospects for improving the thermoelectric performance by significantly reducing the thermal conductivity. Nevertheless, porous structures are affected by issues, including restricted enhancements in performance attributed to decreased electronic conductivity and degraded mechanical strength. This study introduces an innovative strategy for overcoming these challenges using porous Bi0.4Sb1.6Te3 (BST) by combining porous structuring and interface engineering via atomic layer deposition (ALD). Porous BST powder was produced by selectively dissolving KCl in a milled mixture of BST and KCl; the interfaces were engineered by coating ZnO films through ALD. This novel architecture remarkably reduced the thermal conductivity owing to the presence of several nanopores and ZnO/BST heterointerfaces, promoting efficient phonon scattering. Additionally, the ZnO coating mitigated the high resistivity associated with the porous structure, resulting in an improved power factor. Consequently, the ZnO-coated porous BST demonstrated a remarkable enhancement in thermoelectric efficiency, with a maximum zT of approximately 1.53 in the temperature range of 333-353 K, and a zT of 1.44 at 298 K. Furthermore, this approach plays a significant role in enhancing the mechanical strength, effectively mitigating a critical limitation of porous structures. These findings open new avenues for the development of advanced porous thermoelectric materials and highlight their potential for precise interface engineering through the ALD.

14.
ACS Appl Mater Interfaces ; 16(13): 16505-16514, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38527233

ABSTRACT

The micro thermoelectric device (m-TED) boasts features such as adjustable volume, straightforward structure, and precise, rapid temperature control, positioning it as the only current solution for managing the temperature of microelectronic systems. It is extensively utilized in 5G optical modules, laser lidars, and infrared detection. Nevertheless, as the size of the m-TED diminishes, the growing proportion of interface damages the device's operational reliability, constraining the advancement of the m-TED. In this study, we used commercially available bismuth telluride materials to construct the m-TED. The device's reliability was tested under various temperatures: -40, 85, 125, and 150 °C. By deconstructing and analyzing the devices that failed during the tests, we discovered that the primary cause of device failure was the degradation of the solder layer. Moreover, we demonstrated that encapsulating the device with polydimethylsiloxane (PDMS) could effectively delay the deterioration of its performance. This study sparks new insights into the service reliability of m-TEDs and paves the way for further optimizing device interface design and enhancing the device manufacturing process.

15.
Adv Mater ; 36(1): e2305128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37555532

ABSTRACT

Low-cost, safe, and environmental-friendly rechargeable aqueous zinc-ion batteries (ZIBs) are promising as next-generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hamper their deployment. Herein, a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi2 Te3 ), coated with polypyrrole (PPy) is proposed. Taking advantage of the PPy coating, the Bi2 Te3 @PPy composite presents strong ionic absorption affinity, high oxidation resistance, and high structural stability. The ZIBs based on Bi2 Te3 @PPy cathodes exhibit high capacities and ultra-long lifespans of over 5000 cycles. They also present outstanding stability even under bending. In addition, here the reaction mechanism is analyzed using in situ X-ray diffraction, X-ray photoelectron spectroscopy, and computational tools and it is demonstrated that, in the aqueous system, Zn2+ is not inserted into the cathode as previously assumed. In contrast, proton charge storage dominates the process. Overall, this work not only shows the great potential of LMCs as ZIB cathode materials and the advantages of PPy coating, but also clarifies the charge/discharge mechanism in rechargeable ZIBs based on LMCs.

16.
Nano Lett ; 23(24): 11395-11401, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38079217

ABSTRACT

Thermoelectric materials with high electrical conductivity and low thermal conductivity (e.g., Bi2Te3) can efficiently convert waste heat into electricity; however, in spite of favorable theoretical predictions, individual Bi2Te3 nanostructures tend to perform less efficiently than bulk Bi2Te3. We report a greater-than-order-of-magnitude enhancement in the thermoelectric properties of suspended Bi2Te3 nanoribbons, coated in situ to form a Bi2Te3/F4-TCNQ core-shell nanoribbon without oxidizing the core-shell interface. The shell serves as an oxidation barrier but also directly functions as a strong electron acceptor and p-type carrier donor, switching the majority carriers from a dominant n-type carrier concentration (∼1021 cm-3) to a dominant p-type carrier concentration (∼1020 cm-3). Compared to uncoated Bi2Te3 nanoribbons, our Bi2Te3/F4-TCNQ core-shell nanoribbon demonstrates an effective chemical potential dramatically shifted toward the valence band (by 300-640 meV), robustly increased Seebeck coefficient (∼6× at 250 K), and improved thermoelectric performance (10-20× at 250 K).

17.
ACS Appl Mater Interfaces ; 15(50): 59066-59074, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38051946

ABSTRACT

Electrode diffusion barrier plays an important role in thermoelectric cooling devices. Compared with p-type Bi0.5Sb1.5Te3, the compatibility between commercial Ni barrier and n-type Bi2Te2.7Se0.3 is a key bottleneck to enhance the performance of Bi2Te3-based cooling devices. This paper proposed a NiP alloy barrier to improve the compatibility with n-type Bi2Te2.7Se0.3, and systemically investigated the contact and interfacial dynamics properties. Due to the low diffusion rate of NiP alloy, the initial interfacial contact resistivity of Bi2Te2.7Se0.3/NiP is as low as 0.90 µΩ cm2, and it further can be depressed below 1.98 µΩ cm2 even after aging at 423 K for 35 days, indicating the superior thermal stability of the NiP barrier layer compared to the commercial Ni barrier layer. Based on the NiP barrier, a 15-pair bismuth telluride device is prepared and a high cooling temperature difference of 71.5 K at a hot-side temperature of 304 K is achieved, which proves the practical applications potential of NiP barrier for Bi2Te3-based modules.

18.
Nanomaterials (Basel) ; 13(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37947738

ABSTRACT

Bi2Te3 has been extensively used because of its excellent thermoelectric properties at room temperature. Here, 230-420 nm of Bi2Te3 hexagonal nanosheets has been successfully synthesized via a "green" method by using ethylene glycol solution and applying polyvinyl pyrrolidone (PVP) as a surfactant. In addition, factors influencing morphological evolution are discussed in detail in this study. Among these parameters, the reaction temperature, molar mass of NaOH, different surfactants, and reaction duration are considered as the most essential. The results show that the existence of PVP is vital to the formation of a plate-like morphology. The reaction temperature and alkaline surroundings played essential roles in the formation of Bi2Te3 single crystals. By spark plasma sintering, the Bi2Te3 hexagonal nanosheets were hot pressed into solid-state samples. We also studied the transport properties of solid-state samples. The electrical conductivity σ was 18.5 × 103 Sm-1 to 28.69 × 103 Sm-1, and the Seebeck coefficient S was -90.4 to -113.3 µVK-1 over a temperature range of 300-550 K. In conclusion, the observation above could serve as a catalyst for future exploration into photocatalysis, solar cells, nonlinear optics, thermoelectric generators, and ultraviolet selective photodetectors of Bi2Te3 nanosheet-based photodetectors.

19.
ACS Appl Mater Interfaces ; 15(48): 56064-56071, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37990531

ABSTRACT

Commercial Bi2Te3-based thermoelectric (TE) coolers typically comprise equal-size p- and n-type legs. However, this traditional structure limits the cooling temperature differences of TE coolers (TECs) due to identical current density, when their electrical or thermal characteristics differ significantly. This work presents a novel design of p- and n-type TE legs to optimize the performance of TECs. The cooling properties of the materials are initially calculated by theoretical equations and then evaluated by using a combination of finite element simulations and experiments. The research findings suggest that by utilizing higher ZT p-type materials to enhance the TEC cooling performance, further optimization of the ratio of the cross-sectional area of the TE legs (Ap/An) improves the structural matching of the legs, which achieves the maximum figure of merit Z and leads to a 5.4% increase in cooling power density. Additionally, the TEC with optimized Ap/An increases the cooling temperature difference by 3.3 and 2.7 K for the same current at hot side temperatures of 300 and 315 K, respectively, while the coefficient of performance remains unchanged. Moreover, the maximum cooling temperature difference reaches 70 and 74 K, respectively. We anticipate that our results will guide the design and optimization of the TECs.

20.
Micromachines (Basel) ; 14(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37893325

ABSTRACT

The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin-orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K. A clear correlation was found between the density of electronic states at the Fermi level and the current carrier concentration. In the case of Bi2Te3, the density of states at the Fermi level and the current carrier concentration increase with increasing temperature, from 0.296 states eV-1 cell-1 (5 K) to 0.307 states eV-1 cell-1 (300 K) and from 0.9 × 1019 cm-3 (5 K) to 2.6 × 1019 cm-3 (300 K), respectively. On the contrary, in the case of Bi2Se3, the density of states decreases with increasing temperature, from 0.201 states eV-1 cell-1 (5 K) to 0.198 states eV-1 cell-1 (300 K), and, as a consequence, the charge carrier concentration also decreases from 2.94 × 1019 cm-3 (5 K) to 2.81 × 1019 cm-3 (300 K).

SELECTION OF CITATIONS
SEARCH DETAIL