Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Biofouling ; 40(8): 499-513, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39108059

ABSTRACT

The bacterial community from a cooling water system was investigated through culture-dependent and independent strategies, and the responses of planktonic and sessile bacteria (grown in glass slides and stainless-steel coupons) to antimicrobials of industrial and clinical use were assessed. The morphotypes with higher biofilm-forming potential were Pseudoxanthomonas sp., Rheinheimera sp., Aeromonas sp. and Staphylococcus sp., and the first also exhibited lower susceptibility to all antibiotics and biocides tested. 16S rRNA high throughput sequencing indicated that Pseudomonadota (77.1% on average, sd 11.1%), Bacteroidota (8.4, sd 5.7%), and Planctomycetota (3.0, sd 1.3%) were the most abundant phyla. KEGG orthologs associated with antibiotics and biocide resistance were abundant in all samples. Although the minimum inhibitory and bactericidal concentrations were generally higher for biofilms, morphotypes in planktonic form also showed high levels of resistance, which could be associated with biofilm cells passing into the planktonic phase. Overall, monochloramine was the most effective biocide.


Subject(s)
Bacteria , Biofilms , Microbiota , Plankton , Biofilms/drug effects , Plankton/drug effects , Microbiota/drug effects , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Disinfectants/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Water Microbiology
2.
Water Res ; 252: 121192, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309066

ABSTRACT

Samples from a dairy cattle waste-fed anaerobic digester were collected across seasons to assess sanitary safety for biofertilizer use. Isolated enterobacteria (suggestive of Escherichia coli) were tested for susceptibility to biocides, antimicrobials, and biofilm-forming capability. Results revealed a decrease in total bacteria, coliforms, and enterobacteria in biofertilizer compared to the effluent. Among 488 isolates, 98.12 % exhibited high biofilm formation. Biofertilizer isolates exhibited a similar biofilm formation capability as effluent isolates in summer, but greater propensity in winter. Resistance to biocides and antimicrobials varied, with tetracycline resistance reaching 19 %. Of the isolates, 25 were multidrug-resistant (MDR), with 64 % resistant to three drugs. Positive correlations were observed between MDR and increased biofilm formation capacity in both samples, while there was negative correlation between MDR and increased biocide resistance. A higher number of MDR bacteria were found in biofertilizer compared to the effluent, revealing the persistence of E. coli resistance, posing challenges to food safety and public health.


Subject(s)
Anti-Infective Agents , Disinfectants , One Health , Animals , Cattle , Escherichia coli , Enterobacteriaceae , Virulence , Anaerobiosis , Wastewater , Anti-Bacterial Agents , Disinfectants/pharmacology , Microbial Sensitivity Tests
3.
Pathogens ; 13(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38251370

ABSTRACT

Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de novo assembled by CLC. Bioinformatic analyses were carried out using tools from the Center for Genomic Epidemiology. The genome size was estimated at 4.9 Mb, with 4790 coding sequences. A wide resistome was detected, with genes encoding resistance to several clinically significant antimicrobials, heavy metals, and biocides. The blaCTX-M-2 gene was inserted in an In229 class 1 integron inside a ∆TnAs3 transposon located in an IncHI2/ST2 plasmid. The strain was assigned to ST5506, CH type fumC19/fimH32, serotype O8:K87, and phylogroup B1. Virulence genes associated with survival in acid conditions, increased serum survival, and adherence were also identified. These data highlight the role of migratory seabirds as reservoirs and carriers of antimicrobial resistance determinants and can help to elucidate the antimicrobial resistance dynamics under a One Health perspective.

4.
Environ Sci Pollut Res Int ; 31(3): 3572-3581, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085476

ABSTRACT

Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country. In this study, we conducted six sampling campaigns over the course of 1 year to assess the presence and associated risks of Diuron and Irgarol in water collected from areas under the influence of the Maranhão Port Complex in the Brazilian Northeast. Our results revealed the absence of Irgarol in the study area, irrespective of the sampling season and site. In contrast, the mean concentrations of Diuron varied between 2.0 ng L-1 and 34.1 ng L-1 and were detected at least once at each sampling site. We conducted a risk assessment of Diuron levels in this area using the risk quotient (RQ) method. Our findings indicated that Diuron levels at all sampling sites during at least one campaign yielded an RQ greater than 1, with a maximum of 22.7, classifying the risk as "high" based on the proposed risk classification. This study underscores the continued concern regarding the presence of antifouling biocides in significant ports and marinas in Brazilian ports, despite international bans.


Subject(s)
Biofouling , Disinfectants , Water Pollutants, Chemical , Diuron/analysis , Disinfectants/analysis , Brazil , Estuaries , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Triazines/analysis
5.
Animals (Basel) ; 13(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37893982

ABSTRACT

Limnoperna fortunei, the golden mussel, is a bivalve mollusk considered an invader in South America. This species is responsible for ecological and economic damages due to its voluminous fouling capability. Chemical biocides such as MXD-100™ and sodium dichloroisocyanurate (NaDCC) are often used to control L. fortunei infestations in hydraulic systems. Thus, we proposed to investigate the effects of different periods (24, 48 and 72 h) of exposure to MXD-100™ (0.56 mg L-1) and NaDCC (1.5 mg L-1) on the gills of L. fortunei through morphological and molecular analyses. NaDCC promoted progressive morphological changes during the analyzed periods and only an upregulation of SOD and HSP70 expression during the first 24 h of exposure. MXD-100™ led to severe morphological changes from the first period of exposure, in addition to an upregulation of SOD, CAT, HSP70 and CYP expression during the first 24 h. In contrast, MXD-100™ led to a downregulation of CAT transcription between 24 and 48 h. In static conditions, NaDCC causes lethal damage after 72 h of exposure, and that exposure needs to be continuous to achieve the control of the species. Meanwhile, the MXD-100™ treatment presented several effects during the first 24 h, showing acute toxicity in a shorter period of time.

6.
Environ Sci Pollut Res Int ; 30(22): 61888-61903, 2023 May.
Article in English | MEDLINE | ID: mdl-36934191

ABSTRACT

Organotin-based (OTs: TBT and TPT) antifouling paints have been banned worldwide, but recent inputs have been detected in tropical coastal areas. However, there is a lack of studies evaluating the toxicity of both legacy and their substitute antifouling booster biocides (e.g., Irgarol and diuron) on neotropical species. Therefore, the acute toxicity of four antifouling biocides (TBT, TPT, Irgarol, and diuron) was investigated using the marine planktonic organisms Acartia tonsa and Mysidopsis juniae, the estuarine tanaid Monokalliapseudes schubarti (water exposure), and the burrowing amphipod Tiburonella viscana (spiked sediment exposure). Results confirmed the high toxicity of the OTs, especially to planktonic species, being about two orders of magnitude higher than Irgarol and diuron. Toxic effects of antifouling compounds were observed at levels currently found in tropical coastal zones, representing a threat to planktonic and benthic invertebrates. Furthermore, deterministic PNECmarine sediment values suggest that environmental hazards in tropical regions may be higher due to the higher sensitivity of tropical organisms. Since regulations on antifouling biocides are still restricted to a few countries, more ecotoxicological studies are needed to derivate environmental quality standards based on realistic scenarios. The present study brings essential contributions regarding the ecological risks of these substances in tropical and subtropical zones.


Subject(s)
Amphipoda , Biofouling , Disinfectants , Water Pollutants, Chemical , Animals , Diuron/toxicity , Diuron/analysis , Plankton , Disinfectants/toxicity , Disinfectants/analysis , Biofouling/prevention & control , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Aquatic Organisms , Environmental Monitoring , Triazines/analysis
7.
Lett Appl Microbiol ; 75(2): 261-270, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35441723

ABSTRACT

The concern regarding the harm caused by biocides to human health has been increasing over the years, making the natural products an alternative to less toxic and more efficient biocides. Therefore, this paper reports the investigation of the disinfectant potential of extracts and isolated compounds from Baccharis dracunculifolia. For this purpose, extracts of aerial parts (BD-C), tricomial wash (BD-L) and roots (BD-R) of B. dracunculifolia were obtained by maceration. The extracts were submitted to different chromatographic techniques, including high-speedy countercurrent chromatography (HSCCC) furnishing nine isolated compounds. The extracts and isolated compounds were evaluated regarding their antimicrobial activity by the broth microdilution method, according to the Clinical and Laboratory Standards Institute, and regarding their sanitizing activity according to Standard Operating Procedure No. 65·3210·007 (INCQS, 2011), developed by the National Institute for Quality Control in Health (INCQS) - Oswaldo Cruz Foundation (FIOCRUZ). In the antimicrobial evaluation the BD-C extract showed minimum inhibitory concentration (MIC) values of 200 and 100 µg/ml against Staphylococcus aureus and Tricophyton mentagrophytes, respectively. BD-L extract showed MIC value of 200 µg/ml against S. aureus. The isolated compounds caffeic acid (MBC 2·22 µmol l-1 ), ferulic acid (MBC 2·06 µmol l-1 ) and baccharin (MBC 0·27 µmol l-1 ) showed significant inhibitory activity against S. aureus. All B. dracunculifolia isolated compounds were active with exception of aromadrendin-4´-O-methyl-ether for T. mentagrophytes. Additionally, isosakuranetin was active against Salmonella choleraesuis (MIC 1·4 µmol l-1 ). Regarding the sanitizing activity, the hydroalcoholic solution containing 0·2% of B. dracunculifolia extract in 40°GL ethanol was effective in eliminating the microbial contamination on all carrier cylinders and against all microorganisms evaluated in the recommended exposure time of 10 min. Therefore, B. dracunculifolia has potential for the development of sanitizing agents to be used in hospitals, food manufactures and homes.


Subject(s)
Anti-Infective Agents , Baccharis , Disinfectants , Anti-Infective Agents/pharmacology , Baccharis/chemistry , Disinfectants/pharmacology , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Staphylococcus aureus
8.
Sci Total Environ ; 815: 152944, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35007601

ABSTRACT

Natural pH values in coastal waters vary largely among locations, ecosystems, and time periods; still, there is an ongoing acidification trend. In this scenario, more acidic pH values can alter bioavailability of organic contaminants, to organisms. Despite this, interactive effects between pH and chemical substances are not usually considered in Ecological Risk Assessment protocols. This study investigated the effects of pH on the toxicity of a hydrophobic organic compound on a benthic community using a microcosm experiment setup to assess the response of nematode assemblages exposed to environmentally relevant concentrations of Irgarol at two natural pH conditions. Estuarine nematode assemblages were exposed to two concentrations of Irgarol at pH 7.0 and 8.0 for periods of 7 and 35 days. Lower diversity of nematode genera was observed at the highest tested Irgarol concentration (1281 ± 65 ng.g-1). The results showed that the effects of Irgarol contamination were independent of pH variation, indicating no influence of acidification within this range on the toxicity of Irgarol to benthic meiofauna. However, the results showed that estuarine nematode assemblages are impacted by long-term exposure to low (but naturally occurring) pHs. This indicates that estuarine organisms may be under naturally high physiological pressure and that permanent changes in the ecosystem's environmental factors, such as future coastal ocean acidification, may drive organisms closer to the edges of their tolerance windows.


Subject(s)
Nematoda , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Hydrogen-Ion Concentration , Seawater , Triazines/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Environ Sci Pollut Res Int ; 29(20): 30090-30101, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34997484

ABSTRACT

Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several nontarget organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environmental occurrence and toxicity of biocides currently used in antifouling paints, the specific active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations, and safety data sheets from paint manufacturers around the world. The results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT, and cuprous thiocyanate were the most frequent ones, with mean relative concentrations of 35.9 ± 12.8%, 2.9 ± 1.6%, 4.0 ± 5.3%, 5.4 ± 2.0%, 1.9 ± 1.9%, and 18.1 ± 8.0% (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as an active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.


Subject(s)
Disinfectants , Paint , Biofouling/prevention & control , Disinfectants/toxicity , Ecosystem , Paint/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Ecotoxicology ; 30(6): 1161-1169, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33973134

ABSTRACT

Antifouling paint particles (APPs) originate from vessel maintenance and cleaning activities and their potentially toxic components are found at high concentrations in nearby soils, yet no studies have investigated their toxicity to soil organisms. We investigated the effects of exposure to soils containing APPs on the mortality, biomass, and reproductive performance of the earthworm Eisenia andrei. Earthworms were exposed to contaminated soil from a boatyard and non-contaminated soils treated with different concentrations of APPs (0.01, 0.14 and 1.50%, w/w) for 56 days. An ecological risk assessment using a Hazard Quotient (HQ) was also carried out. Exposure to contaminated soils reduced worm survival, biomass, and reproductive performance and these effects were concentration-dependent. The HQ was high in soil samples with APPs in both acute and chronic tests, and copper contributed the most to the HQ. Copper, zinc, and lead had the highest concentrations and exceeded the Brazilian legal limits. A principal component analysis (PCA) was performed and showed that biomass and number of juveniles parameters was associated with the metals Cu, Sn and Zn, while the mortality parameter had no association with any analyzed metal. These findings highlighted that the synergistic effects of compounds present in the APPs, such as the booster biocides DCOIT, and metal mixtures should not be overlooked. We conclude that soils contaminated with APPs are toxic to earthworms. This reveals that the ecological impact of APPs goes beyond effects on aquatic environments, compromising key organisms of edaphic ecological processes.


Subject(s)
Biofouling , Oligochaeta , Soil Pollutants , Animals , Biofouling/prevention & control , Brazil , Paint/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
11.
Chemosphere ; 276: 130155, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33743422

ABSTRACT

Although booster biocides (Irgarol, diuron, chlorothalonil, dichlofluanid, and DCOIT) have been detected in sediments along the Brazilian coastal areas, the risk associated to their occurrence and levels is still unknown. Thus, the ecological risk of booster biocides to sediment-dwelling organisms from the Brazilian coast was assessed using a risk characterization approach through the Risk Quotient (Measured environmental concentration (MEC)/Predicted no effect concentrations (PNECs)). Sedimentary PNECs for Irgarol, diuron, chlorothalonil and DCOIT were derived based on published ecotoxicological data from both freshwater and marine studies, while a NORMAN methodology was used to derived it for dichlofluanid. Results showed that DCOIT, diuron, Irgarol, chlorothalonil, and dichlofluanid can pose high risk on 47%, 35%, 15%, 1% and 1%, respectively, of the 113 Brazilian sites appraised. Considering the trend of expansion of navigation/maritime activities, DCOIT may worsen its impact over the coastal areas of Brazil, especially ports, but also ship/boatyards, marinas, and maritime traffic zones. The present study is an important contribution to support advance on policy formulation concerning booster biocides worldwide, particularly considering the lack of regulation on the use of antifouling biocides in Brazil.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Brazil , Disinfectants/analysis , Disinfectants/toxicity , Diuron/analysis , Diuron/toxicity , Environmental Monitoring , Geologic Sediments , Risk Assessment , Triazines/analysis , Triazines/toxicity , Water Pollutants, Chemical/analysis
12.
Mar Pollut Bull ; 166: 112255, 2021 May.
Article in English | MEDLINE | ID: mdl-33744804

ABSTRACT

The contamination by antifouling biocide residues (booster biocides - diuron, Irgarol, chlorothalonil, dichlofluanid and DCOIT; butyltin compounds-BTs (TBT, DBT and MBT); and antifouling paint particles-APPs) was appraised in sediments of Vitoria Estuarine System (VES). Even at its historical lower (ΣBTs ≤113 ng Sn g-1 dry wt), the current environmental levels of BTs in areas with a predominance of boatyards still pose a risk to the local biota and human population. DCOIT, among booster biocides, was the most frequently detected, especially in boatyards (≤40 ng g-1 dry wt) and Vitoria Port (64 ng g-1 dry wt), while APPs were also detected mainly in sediments of boatyards (≤5,969 µg g-1 dry wt). Since levels of diuron and DCOIT in APPs were as high as 1,670,000 and 899,000 ng g-1 dry wt, respectively, they are acting as secondary sources of these antifouling biocides. Therefore, VES is threatened by antifouling biocide residues due to the multiple diffuse sources of contamination, showing the need for more efforts on public policies (including temporal trend monitoring studies).


Subject(s)
Disinfectants , Water Pollutants, Chemical , Brazil , Disinfectants/analysis , Environmental Monitoring , Geologic Sediments , Humans , Paint , Water Pollutants, Chemical/analysis
13.
Arch Microbiol ; 203(5): 1863-1880, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33625540

ABSTRACT

Corynebacterium striatum is part of microbiota of skin and nasal mucosa of humans and has been increasingly reported as the etiologic agent of community-acquired and nosocomial diseases. Antimicrobial multidrug-resistant (MDR) C. striatum strains have been increasingly related to various nosocomial diseases and/or outbreaks worldwide, including fatal invasive infections in immunosuppressed and immunocompetent patients. Although cases of infections by C. striatum still neglected in some countries, the improvement of microbiological techniques and studies led to the increase of survival of patients with C. striatum nosocomial infections at different levels of magnitude. Biofilm formation on abiotic surfaces contributes for the persistence of virulent C. striatum and dissemination of antimicrobial resistance in hospital environment. Besides that, empirical antibiotic therapy can select multi-resistant strains and transfer intra and interspecies genes horizontally. In this study, a worldwide survey of C. striatum human infections and nosocomial outbreaks was accomplished by the analysis of clinical-epidemiological and microbiological features of reported cases from varied countries, during a 44-year period (1976-2020).


Subject(s)
Anti-Bacterial Agents/pharmacology , Corynebacterium Infections/microbiology , Corynebacterium/pathogenicity , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial , Biofilms/drug effects , Biofilms/growth & development , Corynebacterium/drug effects , Corynebacterium Infections/epidemiology , Cross Infection/epidemiology , Disease Outbreaks/statistics & numerical data , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Humans , Virulence
14.
Chemosphere ; 267: 129085, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33321282

ABSTRACT

Currently, there are many contaminants of concern that need to be accurately determined to help assess their potential environmental hazard. Despite their increasing interest, yet few environmental occurrence data exist, likely because they are present at low levels and in very complex matrices. Therefore, multiresidue analytical methods for their determination need to be highly sensitive, selective, and robust. Particularly, due to the trace levels of these chemicals in the environment, an extensive extraction procedure is required before determination. This work details the development of a fast and cheap vortex-assisted matrix solid-phase dispersion-high performance liquid chromatography tandem-mass spectrometry (VA-MSPD-HPLC-MS/MS) method for multiresidue determination of 59 contaminants of emerging concern (CECs) including pharmaceuticals, personal care products, and booster biocides, in sediment. The validated method provided high sensitivity (0.42-36.8 ngg-1 dw quantification limits), wide and good linearity (r2 > 0.999), satisfactory accuracy (60-140%), and precision below 20% for most target analytes. In comparison with previous methods, relying on traditional techniques, the proposed method demonstrated to be more environmentally friendly, cheaper, simpler, and faster. The method was applied to monitor the occurrence of these compounds in sediments collected in Brazil, using only 2 g dw sediment samples, free-solid support, and 5 mL methanol as extraction solvent. The UV filter avobenzone, the UV stabilizer and antifreeze methylbenzotriazole, the preservative methylparaben, the fluoroquinolone antibiotic ciprofloxacin, and the biocides irgarol and 4,5-dichloro-2-octyl-4-isothiazolin-3-one were determined at concentrations in the range 1.44-69.7 ngg-1 dw.


Subject(s)
Cosmetics , Disinfectants , Brazil , Chromatography, High Pressure Liquid , Cosmetics/analysis , Cost-Benefit Analysis , Disinfectants/analysis , Geologic Sediments , Solid Phase Extraction , Tandem Mass Spectrometry
15.
J Hazard Mater ; 398: 122937, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32768825

ABSTRACT

In the present study, levels of booster biocides (diuron, Irgarol, chlorothalonil, dichlofluanid and DCOIT), butyltin compounds (TBT, DBT and MBT) and antifouling paint particles (APPs) were assessed in sediments of areas under the influence of the largest Latin American port, marinas, boat traffic and ship/boat maintenance facilities located within Santos-São Vicente Estuarine System (SSES). Contamination profile was directly related to local maritime activities, where sediments from the main navigation channel (MNC) presented low levels of antifouling residues while adjacent areas (AA), characterized by the presence of boats and boatyards, showed higher contamination considering all analyzed residues. Moreover, areas under the influence of fishing boats/yards presented relevant levels of butyltins (ΣBTs > 300 ng g-1) and APPs (>100 µg g-1), while marinas dominated by recreational boats showed higher booster biocides occurrence. Sites located nearby shipyards in the MNC and boatyards in the AA presented expressive amounts of APPs (>200 µg g-1). These APPs represent an important long-term source of biocides to the SSES. Thus, the profile of maritime activities in association to local oceanographic conditions drive the spatial distribution of antifouling residues within SESS, which in some case presented levels above sediment guidelines for TBT, DCOIT and diuron.

16.
Mol Ecol ; 29(10): 1919-1935, 2020 05.
Article in English | MEDLINE | ID: mdl-32335957

ABSTRACT

Critical priority pathogens have globally disseminated beyond clinical settings, thereby threatening wildlife. Andean Condors (Vultur gryphus) are essential for ecosystem health and functioning, but their populations are globally near threatened and declining due to anthropogenic activities. During a microbiological and genomic surveillance study of critical priority antibiotic-resistant pathogens, we identified pandemic lineages of multidrug-resistant extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli colonizing Andean Condors admitted at two wildlife rehabilitation centres in South America. Genomic analysis revealed the presence of genes encoding resistance to hospital and healthcare agents among international E. coli clones belonging to sequence types (STs) ST162, ST602, ST1196 and ST1485. In this regard, the resistome included genes conferring resistance to clinically important cephalosporins (i.e., CTX-M-14, CTX-M-55 and CTX-M-65 ESBL genes), heavy metals (arsenic, mercury, lead, cadmium, copper, silver), pesticides (glyphosate) and domestic/hospital disinfectants, suggesting a link with anthropogenic environmental pollution. On the other hand, the presence of virulence factors, including the astA gene associated with outbreak of childhood diarrhoea and extra-intestinal disease in animals, was identified, whereas virulent behaviour was confirmed using the Galleria mellonella infection model. E. coli ST162, ST602, ST1196 and ST1485 have been previously identified in humans and food-producing animals worldwide, indicating that a wide resistome could contribute to rapid adaptation and dissemination of these clones at the human-animal-environment interface. Therefore, these results highlight that Andean Condors have been colonized by critical priority pathogens, becoming potential environmental reservoirs and/or vectors for dissemination of virulent and antimicrobial-resistant bacteria and/or their genes, in associated ecosystems and wildlife.


Subject(s)
Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Ecosystem , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Genomics , South America , beta-Lactamases/genetics
17.
Microb Drug Resist ; 26(12): 1429-1436, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31770073

ABSTRACT

In the last 15 years, Acinetobacter baumannii has received special attention, mainly due to several resistance mechanisms and high rates of morbimortality. The ability to form biofilms contributes to the persistence of this microorganism in the hospital environment and facilitates the occurrence of nosocomial infections. Several studies have highlighted the pharmacological relevance of pyridines in the treatment and control of infectious diseases and others have related the anti-A. baumannii potential of hydrazine derivatives. Considering this scenario, we aimed to evaluate the antimicrobial and antibiofilm activity of 10 pyridinylhydrazone compounds against A. baumannii. The minimum inhibitory concentration of the compounds was determined by broth microdilution method and the antibiofilm activity was evaluated by inhibition and destruction biofilm assays. In addition, the cytotoxicity of the compounds in the J774A.1 cell line was also evaluated, and the selectivity index was calculated. Among the 10 pyridine compounds, the compounds B and D were able to inhibit the formation of biofilms and destroy bacterial biofilms even in a concentration of 12.5 µg/mL. Thus, the pyridine compounds evaluated can be a scaffold for the development of new substances with antimicrobial and antibiofilm activity.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pyridones/pharmacology , Microbial Sensitivity Tests
18.
Germs ; 9(2): 81-88, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31341835

ABSTRACT

INTRODUCTION: Salmonella is a common bacterial cause of foodborne diarrhea worldwide. The purpose of this study was to characterize antimicrobial resistance and susceptibility to biocides in Salmonella enterica serotypes isolated from raw chicken meat, as well as to study the genetic relationship between strains and virulence profiles. METHODS: Nine Salmonella enterica strains (5 S. Heidelberg; 2 S. Enteritidis; 1 S. Typhimurium and 1 S. Meleagridis) recovered from raw chicken meat marketed in the urban area of Mérida, Venezuela, were studied. Phenotypic characterization was based on antimicrobial susceptibility testing as well as detection of extended-spectrum ß-lactamases (ESBLs) by double-disc synergy. The susceptibility to biocides was determined using the dilution-neutralization methods. The detection of quinolone resistance-determining regions of gyrA, gyrB, and parC genes, bla ESBLs genes, plasmid-mediated quinolone resistance determinants and virulence genes (invA and spvC) was carried out by PCR. All strains were typed using PFGE. RESULTS: Multidrug-resistance was evident in 6 of 9 strains studied. However, all Salmonella serotypes were susceptible to the tested biocides. Genotypic characterization determined that 5 strains harbored the bla CTXM-2, 4 bla TEM-1 and 3 qnrB19 genes. All strains were positive for the invA gene. The spvC gene was detected in 4 of them. PFGE grouped Salmonella strains into 4 different patterns that represented individual serotypes. CONCLUSIONS: This study provides valuable information on antibiotic resistance, biocide susceptibility profiles, virulence gene content and genetic diversity of Salmonella enterica serotypes isolated from raw chicken meat marketed in Venezuela, and evidenced a health risk for consumers.

19.
Viruses ; 11(5)2019 05 25.
Article in English | MEDLINE | ID: mdl-31130656

ABSTRACT

This article provides information on the characteristics of diverse phages of lactic acid bacteria and highlights the incidence of their presence in different dairy fermentations. As it is known, thermal treatments on raw milk and use of sanitizers in the disinfection of surfaces and equipment are strategies usually applied in dairy to prevent bacteriophage infections. In this sense, this review mainly focuses on the existing data about the resistance against thermal treatments and sanitizers usually used in the dairy industry worldwide, and the differences found among bacteriophages of diverse genera are remarked upon. Also, we provide information concerning the problems that have arisen as a consequence of the potential presence of bacteriophages in cheese whey powder and derivatives when they are added in fermented dairy product manufacturing. Finally, some important conclusions on each topic are marked and checkpoints to be considered are suggested.


Subject(s)
Bacteriophages/drug effects , Bacteriophages/physiology , Dairy Products/virology , Disinfectants/pharmacology , Food Microbiology , Hot Temperature , Virus Inactivation/drug effects , Streptococcus thermophilus/virology , Virus Inactivation/radiation effects
20.
Rev. cuba. invest. bioméd ; 37(3): 1-17, jul.-set. 2018. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1093346

ABSTRACT

La constante aparición de microorganismos que incrementan su tolerancia a sustancias utilizadas para su control como los biocidas está generando atención en salud pública y debe ser estudiado, teniendo en cuenta los diversos riesgos que se pueden enfrentar principalmente en pacientes con alta susceptibilidad a las infecciones asociadas a la atención en salud, dado que estos biocidas son utilizados cotidianamente lo que ha generado mecanismos bacterianos como lo son la formación de biopelículas y aquellos que incrementan su tolerancia como la generación de bombas de flujo. Esta respuesta bacteriana a la presión de los biocidas se potencia por la aparición de microorganismos resistentes a los antimicrobianos de uso en el tratamiento y control de las infecciones lo que hace difícil el control de estos. Se realizó una revisión de literatura disponible en las bases de datos Proquest, ovid, Science direct, PubMed, donde se encontraron un total de 103 artículos y se seleccionaron 73, de acuerdo con el año de publicación en los idiomas español e inglés, que incluyeron estudios descriptivos y de revisión. El objetivo de este artículo fue realizar una revisión acerca de los principales mecanismos de acción de biocidas y la respuesta de tolerancia que presentan los microorganismos frente a estos; lo que conlleva a la reflexión sobre las implicaciones del uso de estas sustancias sobre la salud humana.


The constant appearance of microorganisms that increase their tolerance to substances used for their control such as biocides is generating attention in public health and should be studied, taking into account the various risks that can be faced mainly in patients with high susceptibility to infections associated with health care, given that these biocides are used on a daily basis, which has generated bacterial mechanisms such as the formation of biofilms and those that increase their tolerance, such as the generation of flow pumps. This bacterial response to the pressure of the biocides is enhanced by the appearance of microorganism's resistant to the antimicrobials used in the treatment and control of infections, which makes their control difficult. A literature review was made available in the databases Proquest, ovid, Science direct, PubMed, where a total of 103 articles were found and 73 were selected, according to the year of publication in the Spanish and English languages, which included Descriptive and review studies. The objective of this article is to carry out a review about the main action mechanisms of biocides and the tolerance response presented by microorganisms against them; which leads to reflection on the implications of the use of these substances on human health.

SELECTION OF CITATIONS
SEARCH DETAIL