Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.144
Filter
1.
Chembiochem ; : e202400514, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004943

ABSTRACT

The primary objective of this work is to develop a sustainable biocatalytic transesterification process for low-grade oils, aligning with EU green technology requirements for the shift to second generation biodiesel. Thus, we investigated the immobilization and subsequent application of the lipase Biolipasa-R on transesterification processes to produce fatty acid methyl esters (FAMEs) from both a sunflower oil and an acid oil which is a bioproduct of the biodiesel industry. The lipase was immobilized on biomaterials, such as diatomaceous earth, with a yield of 60%, and commercial carriers such as methacrylic resins with a yield of 100%. The enzyme demonstrated superior activity when immobilized on diatomaceous earth, particularly in reactions involving the acid oil, outperforming the benchmark enzyme Novozym® 435 (95.1% and 35% conversion respectively). This work highlights the potential of Biolipasa-R as a cost-effective and efficient biocatalyst for biodiesel production and emphasizes the environmental benefits of utilizing industrial byproducts and eco-friendly immobilization techniques. The findings suggest that Biolipasa-R is a promising candidate for industrial applications in biodiesel production, offering a sustainable solution for waste management and energy generation.

2.
Data Brief ; 55: 110615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006351

ABSTRACT

The dataset contains Fourier-transform infrared (FTIR) spectroscopic analysis of fuels in maritime cases and biodiesel-diesel blends B7 and B10 from Malaysia. Fuels in maritime cases were donated by Agensi Penguatkuasaan Maritim Malaysia (APMM) in March 2023. The crime-related oil samples originated from maritime crime scenes located within Terengganu and Johor, Malaysia. Meanwhile, B7(DE5) and B10(D0) samples were obtained from pump stations in 2021. They are fuels used in Malaysian transportation system. The FTIR analysis was acquired in the full regions of FTIR (6000-80 cm-1) which are near-infrared (NIR), mid-infrared (MIR), and far-infrared (FIR). The IR spectra were recorded using Bruker Invenio-R (Universiti Putra Malaysia) spectrometer equipped with attenuated total reflection (ATR) (2 mm) diamond with an accumulation of 64 scans at a spectral resolution of 4 cm-1. Spectral analysis was carried out by OPUS 8.7.41. The data highlights the potential of NIR, MIR, and FIR spectroscopy as a powerful tool for forensic analysis in maritime crime investigations. This includes the potential of utilizing the Hierarchical Clustering Analysis (HCA) to discriminate between type of fuels in forensic cases.

3.
Article in English | MEDLINE | ID: mdl-38987517

ABSTRACT

For the first time, an energy-efficient and eco-friendly technology for the conversion of abundantly available kitchen waste, specifically waste cooked rice water (WCRW) to drop-in- biofuels, namely, butyl levulinate (BL), has been explored. The synthesis of BL was accomplished employing butyl alcohol (BA) and WCRW in an energy-efficient UV (5W each UVA and UVB)-near-infrared (100W) irradiation assisted spinning (120 rpm) batch reactor (UVNIRSR) in the presence of TiO2-Amberlyst 15 (TA15) photo-acidic catalyst system (PACS). The optimal 95.81% yield of BL (YBL) could be achieved at 10 wt% catalyst concentration, 60 °C reaction temperature, 80 min time, and 1:10 WCRW: BA concentration as per Taguchi statistical design. Moreover, additional combination of different PACS such as TiO2-Amberlyst 16, TiO2-Amberlyst 36, and TiO2-Amberlite IRC120 H rendered 86.72% YBL, 90.04% YBL, and 93.47% YBL, respectively, proving superior efficacy compared to individual activity of the acidic catalysts and photocatalysts. The heterogeneous reaction kinetics study for TA15 PACS suggested Langmuir-Hinshelwood model to be the best fitted model. A significant 63.33% energy could be saved by UVNIRSR as compared to conventional heated reactor at the optimized experimental condition using PACS TA15. An overall alleviation in environmental pollution with 59.259% reduction in GWP, 15.254% decline in terrestrial ecotoxicity, 18.238% diminution in marine ecotoxicity, 17.25% decrease in ozone formation affecting human health, 5.865% reduction in human non-carcinogenic toxicity, 18.65% diminution in ozone formation affecting terrestrial ecosystem, 55.17% significant decrease in terrestrial acidification, and 25.619% mitigation in fresh water ecotoxicity could be observed. Furthermore, BL-biodiesel-diesel blends (3% BL, 7% biodiesel, and 90% diesel) exhibited significant reduction (25.45% and 36%, respectively, for CO and HC) in harmful engine exhaust emissions demonstrating environmental sustainability of the overall process.

4.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999119

ABSTRACT

This study aimed to investigate the liquid-liquid equilibrium (LLE) behavior of sesame fatty acid ethyl ester (FAEE) and methyl ester (FAME) in combination with glycerol and the co-solvents ethanol and methanol. FAEE and FAME were produced through the transesterification of mechanically extracted and purified sesame oil, using potassium hydroxide (KOH) as a homogeneous base catalyst. The reactions were conducted in ethanol and methanol to produce FAEE and FAME, respectively. Post-reaction, the products were separated and purified, followed by an analysis of the LLE behavior at 313.15 K and 323.15 K under atmospheric pressure (101.3 kPa). The experimental process for the miscibility analysis utilized a jacketed glass cell adapted for this study. Miscibility limits or binodal curves were determined using the turbidity-point method. Tie lines were constructed by preparing mixtures of known concentrations within the two-phase region, which allowed the phases to separate after agitation. Samples from both phases were analyzed to determine their composition. This study revealed that higher temperatures promoted greater phase separation and enhanced the biodiesel purification process. The NRTL model effectively correlated the activity coefficients with the experimental data, showing good agreement, with a root-mean-square deviation of 3.5%. Additionally, the data quality was validated using Marcilla's method, which yielded an R2 value close to 1. Attraction factors and distribution coefficients were also calculated to evaluate the efficiency of the co-solvents as extraction agents. The findings indicated higher selectivity for methanol than for ethanol, with varying degrees of distribution among the co-solvents. These results offer significant insights into enhancing biodiesel production processes by considering the effects of co-solvents on the LLE properties of mixtures, ultimately contributing to more efficient and cost-effective biodiesel production.

5.
Plants (Basel) ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999621

ABSTRACT

The Sapindus saponaria (soapberry) kernel is rich in oil that has antibacterial, anti-inflammatory, and antioxidant properties, promotes cell proliferation, cell migration, and stimulates skin wound-healing effects. S. saponaria oil has excellent lubricating properties and is a high-quality raw material for biodiesel and premium lubricants, showing great potential in industrial and medical applications. Metabolite and transcriptome analysis revealed patterns of oil accumulation and composition and differentially expressed genes (DEGs) during seed development. Morphological observations of soapberry fruits at different developmental stages were conducted, and the oil content and fatty acid composition of the kernels were determined. Transcriptome sequencing was performed on kernels at 70, 100, and 130 days after flowering (DAF). The oil content of soapberry kernels was lowest at 60 DAF (5%) and peaked at 130 DAF (31%). Following soapberry fruit-ripening, the primary fatty acids in the kernels were C18:1 (oleic acid) and C18:3 (linolenic acid), accounting for an average proportion of 62% and 18%, respectively. The average contents of unsaturated fatty acids and saturated fatty acids in the kernel were 86% and 14%, respectively. Through the dynamic changes in fatty acid composition and DEGs analysis of soapberry kernels, FATA, KCR1, ECR, FAD2 and FAD3 were identified as candidate genes contributing to a high proportion of C18:1 and C18:3, while DGAT3 emerged as a key candidate gene for TAG biosynthesis. The combined analysis of transcriptome and metabolism unveiled the molecular mechanism of oil accumulation, leading to the creation of a metabolic pathway pattern diagram for oil biosynthesis in S. saponaria kernels. The study of soapberry fruit development, kernel oil accumulation, and the molecular mechanism of oil biosynthesis holds great significance in increasing oil yield and improving oil quality.

6.
J Environ Manage ; 365: 121643, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968894

ABSTRACT

Phosphotungstic acid (HPW) and silicotungstic acid (HSiW) were tested as homogeneous and as heterogeneous catalysts (after immobilized on different supports as high surface area graphite -HSAG500-, montmorillonite -MMT- and alumina -Al2O3-) for the in situ transesterification of sewage sludge lipids. Both catalysts exhibited similar performance in homogeneous phase, with slightly higher biodiesel yield for HPW. When the different supports were tested with HPW, the maximum yield obtained follow the trend: MMT > HSAG500 > Al2O3, but a greater leaching of the heteropolyacid (HPA) was observed with MMT. Therefore, HSAG500 showed the best results with a good FAMEs profile. The percentage of active phase was optimized from 1 to 40%, reaching the optimum at 10%. A more heterogeneous surface is obtained with larger quantities, also favouring the HPA leaching. The reaction temperature and the use of sonication as pre-treatment were also optimized. The best results were obtained after sonication with HPW-HSAG500 (10%) as catalyst, catalyst/sludge ratio 1:2, MeOH/sludge ratio 33:1, 120 °C and 21 h of reaction time with a maximum biodiesel yield of 31.1 % (FAMEs/lipids). In view of the results obtained HPW supports on HSAG500 offers a novel alternative as heterogeneous acid catalyst for in situ transesterification using sewage sludge as raw material.

7.
ACS Appl Bio Mater ; 7(7): 4406-4416, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38866715

ABSTRACT

In this research, we utilized an efficient approach to synthesize superparamagnetic graphene oxide (SPGO) rapidly in a one-pot method using microwave irradiation of graphene oxide (GO), urea, and Fe(III) ion. Tannic acid (TA) was introduced to the surface of SPGO through a straightforward and eco-friendly process. Methods were devised to furnish GO nanosheets and modify their surfaces with TA in an environmentally friendly manner. Two series of nanosheets, namely, SPGO/TA-COOH and SPGO/TA-IM, were engineered on the surface and used for immobilizing lipase enzyme. Through various analytical tools, the unique biocatalysts SPGO/TA-COOH/L and SPGO/TA-IM/L were confirmed. These biocatalysts exhibited enhanced stability at high temperatures and pH levels compared with free lipase. They also demonstrated prolonged storage stability and reusability over four months and seven cycles, respectively. Furthermore, the catalytic activity of immobilized lipase showed minimal impairment based on kinetic behavior analysis. The kinetic constants of SPGO/TA-IM/L were determined as Vmax = 0.24 mM min-1, Km = 0.224 mM, and kcat = 0.8 s-1. Additionally, the efficiency of biocatalysts for biodiesel production from palmitic acid was studied, focusing on various reaction parameters, such as temperature, alcohol to palmitic acid molar ratio, water content, and lipase quantity. The esterification reaction of palmitic acid with methanol, ethanol, and isopropanol was tested in the presence of SPGO/TA-COOH/L and SPGO/TA-IM/L, and the corresponding esters were obtained with a yield of 30.6-91.6%.


Subject(s)
Biofuels , Enzymes, Immobilized , Graphite , Lipase , Surface Properties , Graphite/chemistry , Lipase/metabolism , Lipase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Materials Testing , Tannins/chemistry , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/metabolism , Nanostructures/chemistry
8.
Sci Rep ; 14(1): 14386, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909146

ABSTRACT

Burning fossil fuels causes toxic gas emissions to increase, therefore, scientists are trying to find alternative green fuels. One of the important alternative fuels is biodiesel. However, using eco-friendly primary materials is a main factor. Sustainable catalysts should have high performance, good activity, easy separation from reaction cells, and regenerability. In this study, to solve the mentioned problem NaOH@Graphene oxide-Fe3O4 as a magnetic catalyst was used for the first time to generate biodiesel from waste cooking oil. The crystal structure, functional groups, surface area and morphology of catalyst were studied by XRD, FTIR, BET, and FESEM techniques. The response surface methodology based central composite design (RSM-CCD) was used for biodiesel production via ultrasonic technique. The maximum biodiesel yield was 95.88% in the following operation: 10.52:1 molar ratio of methanol to oil, a catalyst weight of 3.76 wt%, a voltage of 49.58 kHz, and a time of 33.29 min. The physiochemical characterization of biodiesel was based to ASTM standard. The magnetic catalyst was high standstill to free fatty acid due to the five cycle's regeneration. The kinetic study results possess good agreement with first-order kinetics as well as the activation energy and Arrhenius constant are 49.2 kJ/min and 16.47 * 1010 min-1, respectively.

9.
Chempluschem ; : e202400165, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829273

ABSTRACT

Escalating biodiesel production led to a surplus of glycerol, prompting its exploration as a valuable resource in industrial applications. Electrochemical systems have been studied, specifically employing noble metal catalysts like palladium for glycerol electrooxidation. Despite numerous studies on Pd-based catalysts for glycerol electrooxidation, a comprehensive analysis addressing critical questions related to the economic feasibility, global sourcing of Pd, and the thematic cohesion of publications in this field is lacking. Moreover, a standardized framework for comparing the results of various studies is absent, hindering progress on glycerol technologies. This critical overview navigates the evolution of Pd-based catalysts for glycerol electrooxidation, examining catalytic activity, stability, and potential applications. It critically addresses the geographical sources of Pd, the motivation behind glycerol technology exploration, thematic coherence in existing publications, and the meaningful comparison of results. It correlates the use of Pd-based catalysts with the natural source of Pd and the origin of glycerol derived from biodiesel. The proposed standardized approach for comparing electrochemical parameters and establishing experimental protocols provides a foundation for meaningful study comparisons. This critical overview underscores the need to address fundamental questions to accelerate the transition of glycerol technologies from laboratories to practical applications.

10.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930818

ABSTRACT

This study prepared sulfonated Camellia oleifera shell biochar using Camellia oleifera shell agricultural waste as a carbon source, and evaluated its performance as a catalyst for preparing biodiesel. The biochar obtained from carbonizing Camellia oleifera shells at 500 °C for 2 h serves as the carbon skeleton, and then the biochar is sulfonated with chlorosulfonic acid. The sulfonic acid groups are mainly grafted onto the surface of Camellia oleifera shell biochar through covalent bonding to obtain sulfonic acid type biochar catalysts. The catalysts were characterized by Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Nitrogen adsorption-desorption Brunel-Emmett-Taylor Theory (BET), and Fourier-transform infrared spectroscopy (FT-IR). The acid density of the sulfonated Camellia oleifera fruit shell biochar catalyst is 2.86 mmol/g, and the specific surface area is 2.67 m2/g, indicating high catalytic activity. The optimal reaction conditions are 4 wt% catalyst with a 6:1 alcohol to oil ratio. After esterification at 70 °C for 2 h, the yield of biodiesel was 91.4%. Under the optimal reaction conditions, after four repeated uses of the catalyst, the yield of biodiesel still reached 90%. Therefore, sulfonated Camellia oleifera shell biochar is a low-cost, green, non-homogeneous catalyst with great potential for biodiesel production by esterification reaction in future development.


Subject(s)
Biofuels , Camellia , Charcoal , Camellia/chemistry , Charcoal/chemistry , Catalysis , Sulfonic Acids/chemistry , Spectroscopy, Fourier Transform Infrared , Esterification , X-Ray Diffraction
11.
Molecules ; 29(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930922

ABSTRACT

The impact of heterogeneous catalytic systems, which are based on rare earth metals, on the properties of biodiesel produced via the transesterification process in a stationary reactor (autoclave) was thoroughly investigated. The physicochemical attributes, including the specific surface area, were analyzed employing the Brunauer-Emmett-Teller (BET) method. The basicity and acidity levels of the catalytic systems were evaluated through temperature-programmed desorption of ammonia and carbon dioxide (TPD-NH3, TPD-CO2), respectively. Furthermore, High-Performance Liquid Chromatography (HPLC) analysis facilitated the assessment of triglyceride conversion and the determination of methyl ester (FAME) selectivity within these processes. Our findings indicate that catalytic systems augmented with lanthanum showcased superior performance. A significant correlation was discerned between the conversion and selectivity to methyl esters and both the specific surface area and the acidity and basicity properties of the catalytic systems under study. These results underscore the crucial role that the physicochemical characteristics of catalytic systems play in optimizing the transesterification process, thereby enhancing the quality of the produced biodiesel. This study contributes valuable insights into the development of more efficient and effective biodiesel production methodologies, highlighting the potential of rare earth metal-based catalysts in renewable energy technologies.

12.
Plants (Basel) ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931015

ABSTRACT

Raphanus sativus L. is a potential source of raw material for biodiesel fuel due to the high oil content in its grains. In Brazil, this species is cultivated in the low rainfall off-season, which limits the productivity of the crop. The present study investigated the effects of water restriction on the physiological and biochemical responses, production components, and oil quality of R. sativus at different development stages. The treatments consisted of 100% water replacement (control), 66%, and 33% of field capacity during the phenological stages of vegetative growth, flowering, and grain filling. We evaluated characteristics of water relations, gas exchange, chlorophyll a fluorescence, chloroplast pigment, proline, and sugar content. The production components and chemical properties of the oil were also determined at the end of the harvest cycle. Drought tolerance of R. sativus was found to be mediated primarily during the vegetative growth stage by changes in photosynthetic metabolism, stability of photochemical efficiency, increased proline concentrations, and maintenance of tissue hydration. Grain filling was most sensitive to water limitation and showed a reduction in yield and oil content. However, the chemical composition of the oil was not altered by the water deficit. Our data suggest that R. sativus is a drought-tolerant species.

13.
Environ Sci Pollut Res Int ; 31(30): 42875-42888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884931

ABSTRACT

The growth of microalgae under alkaline conditions ensures an ample supply of CO2 from the atmosphere, with a low risk of crashing due to contamination and predators. The present study investigated the mixotrophic cultivation of two alkaliphilic microalgae (Tetradesmus obliquus and Cyanothece sp.) using cheese whey as an organic carbon source. The variation in cheese whey concentration (0.5-4.5% (v/v)), culture pH (7-11), and NaNO3 concentrations (0-2 gL-1) was evaluated using central composite design in response to biomass productivity and the contents of lipids, total proteins, and soluble carbohydrates. Both investigated microalgae effectively utilized cheese whey as an organic carbon source. The optimum conditions for simultaneously maximizing biomass and lipid productivity in T. obliquus were 3.5% (v/v) whey, pH 10.0, and 0.5 g L-1 NaNO3. Under these conditions, the biomass, lipid, soluble carbohydrate, and protein productivities were 48.69, 20.64, 7.02, and 10.97 mg L-1 day-1, respectively. Meanwhile, Cyanothece produced 52.78, 11.42, 4.31, and 7.89 mg L-1 day-1 of biomass, lipid, carbohydrate, and protein, respectively, at 4.5% (v/v) whey, pH 9.0, and 1.0 g L-1 NaNO3. The lipids produced under these conditions were rich in saturated fatty acids (FAs) and monounsaturated FAs, with no polyunsaturated FAs in both microalgae. Moreover, several biodiesel characteristics were estimated, and results fell within the ranges specified by international standards. These findings indicate that the mixotrophic cultivation of alkaliphilic microalgae could open new avenues for promoting microalgae productivity through low-cost biofuel production.


Subject(s)
Biofuels , Biomass , Cheese , Microalgae , Whey , Microalgae/metabolism
14.
Environ Res ; 258: 119407, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897435

ABSTRACT

The aim of the work is to find the efficiency of solar power in biodiesel preparation from mackerel fish. The paper also focusses on the ability of MgO/graphene prepared by one-pot synthesis using combustion methodology. The physicochemical properties of the material were analysed by XRD, N2 sorption studies, BET sorption analysis and SEM. The adsorption studies revealed the porosity of the graphene is intact, and the morphology studies indicated that MgO is uniformly distributed on the graphene surface. The highest biodiesel yield of 98.95% was obtained using the solar-powered Fresnel solar concentrator at 12.30 p.m in 6 min reaction time using 3 wt% MgO/GO catalyst at 65 °C. Conventional heating produced only 75% biodiesel at the same reaction condition, consuming25 min to complete. The solar assisted biodiesel had better HHV of 37.81 MJ/Kg, viscosity of 4.3 mm2/s, pour point of -15 °C, and a density of 0.875 g/mL. The optimized catalyst showed a shelf life of 5 cycles. The results portray the efficacy of natural energy source in alternative liquid fuel production.

15.
Environ Res ; 258: 119474, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914253

ABSTRACT

In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.

16.
Environ Geochem Health ; 46(7): 225, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849628

ABSTRACT

In this study, the freshwater microalgae Selenastrum sp. was assessed for the effective degradation of pyrene and simultaneous production of biodiesel from pyrene-tolerant biomass. The growth of algae was determined based on the cell dry weight, cell density, chlorophyll content, and biomass productivity under different pyrene concentrations. Further, lipids from pyrene tolerant culture were converted into biodiesel by acid-catalyzed transesterification, which was characterized for the total fatty acid profile by gas chromatography. Increased pyrene concentration revealed less biomass yield and productivity after 20 days of treatment, indicating potent pyrene biodegradation by Selenastrum sp. Biomass yield was unaffected till the 20 mg/L pyrene. A 95% of pyrene bioremediation was observed at 20 days of culturing. Lipid accumulation of 22.14%, as evident from the estimation of the total lipid content, indicated a marginal increase in corroborating pyrene stress in the culture. Fatty acid methyl esters yield of 63.06% (% per 100 g lipids) was noticed from the pyrene tolerant culture. Moreover, fatty acid profile analysis of biodiesel produced under 10 mg/L and 20 mg/L pyrene condition showed escalated levels of desirable fatty acids in Selenastrum sp., compared to the control. Further, Selenastrum sp. and other freshwater microalgae are catalogued for sustainable development goals attainment by 2030, as per the UNSDG (United Nations Sustainable Development Goals) agenda. Critical applications for the Selenastrum sp. in bioremediation of pyrene, along with biodiesel production, are enumerated for sustainable and renewable energy production and resource management.


Subject(s)
Biodegradation, Environmental , Biofuels , Biomass , Fresh Water , Microalgae , Pyrenes , Pyrenes/metabolism , Microalgae/metabolism , Fatty Acids/metabolism , Water Pollutants, Chemical/metabolism , Chlorophyll/metabolism
17.
Bioresour Technol ; 406: 131017, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908761

ABSTRACT

Biodiesel production from microalgae presents an innovative solution for renewable energy. This study investigates biodiesel production using Tetradesmus obliquus ON506010.1 by optimizing substrates, selenium and gibberellic acid. Using 15 µg/L selenium, lipid content and biomass productivity reached 35.45 %±0.92 and 0.178 g/L/day ± 0.051. With 50 µM gibberellic acid, biomass productivity and lipid content peaked at 0.785 ± 0.101 g/L/day and 38.95 %±0.35, surpassing the control. Fatty acid composition, biodiesel properties, and mRNA expression of lipid synthesis enzymes (acetyl CoA carboxylase (ACC) and fatty acid desaturase (FAD)) correlated. Combining 10 µg/L selenium with 75 µM gibberellic acid with response surface methodology (RSM) increased lipid content (42.80 % ±0.11) and biomass productivity (0.964 g/L/day ± 0.128). ACC and FAD upregulation validated this enhancement, with a 4.4-fold increase in FAD expression. Fatty acid composition and most biodiesel properties met international standards demonstrating Tetradesmus obliquus ON506010.1's potential for sustainable biodiesel production with better cold flow property and oxidative stability.

18.
Heliyon ; 10(10): e31436, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831843

ABSTRACT

Alternative fuels can be produced from both non-edible feedstocks and edible crops. The higher production costs and contaminating nature of vegetable biofuels, which cause engine component failure, make it conceivable to encourage the synthesis of biodiesel from non-edible sources. One of the most widely utilized alternative fuels is Jatropha biofuel, which has performance levels comparable to diesel fuels and can be used with CI (Compression Ignition) engines without any modifications. However when it comes to oxidative stability properties that impact shelf life and commercialization, the majority of biodiesels-including Jatropha-are lacking. Therefore, the objective of this study was to enhance the oxidative stability and other physicochemical parameters, such performance and emission characteristics, of Jatropha biodiesel with diesel blends by adding additives like DEE (diethyl ether) and MA (moringa oleifera antioxidant). The seeds of jatropha and moringa were harvested by hand and then mechanically extracted with a screw press. A conical flask containing the precisely weighed amount of oil is filled with 50 mL of neutral alcohol. The combination is then heated for an hour using a water condenser over a bath. Using phenolphthalein indicator, the contents are titrated with KOH solution after cooling. Weight of oil taken (w)/volume of KOH used (mL) × normality of KOH is the formula used to determine the acidity value of jatropha oil. It is therefore below the minimum level set by ASTM D 675, which is 2.5 mg KOH/g. Methanol was used in the transesterification process to produce biodiesel, and potassium hydroxide (KOH) was used as a catalyst. Then, using 5 % DEE and 10 % MA additives, the physicochemical properties of jatropha biodiesel-such as density, kinematics viscosity, calorific value, and oxidative stability-were characterized. The percentage of improvement of the biodiesel's mentioned properties with these additives was 0.68 %, 2.8 %, 0.73 %, and 33.8 %, respectively. The brake thermal efficiency (BTE) of B40MA10DEE05D45 increased by 8.52 % whereas the brake specific fuel consumption (BSFC) of B50MA10DEE05D35, which is Made up of 44 % diesel, 50 % jatropha biodiesel, 5 % DEE, and 10 % MA fuels, declined by 5.14 %. As a result of these additions, the blended fuel's CO, HC, and NOx emissions were reduced by 3.51 %, 2.25 %, and 8.64 %, respectively. Therefore, a 20 % blend of Jatropha biodiesel and diesel containing antioxidants from Moringa can be used in compression ignition engines without the need for engine modifications and with high oxidation stability.

19.
Sci Rep ; 14(1): 12818, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834602

ABSTRACT

Recent years have seen an increase in research on biodiesel, an environmentally benign and renewable fuel alternative for traditional fossil fuels. Biodiesel might become more cost-effective and competitive with diesel if a solid heterogeneous catalyst is used in its production. One way to make biodiesel more affordable and competitive with diesel is to employ a solid heterogeneous catalyst in its manufacturing. Based on X-ray diffraction (XRD) and Fourier Transform infrared spectroscopy (FTIR), the researchers in this study proved their hypothesis that iron oxide core-shell nanoparticles were generated during the green synthesis of iron-based nanoparticles (FeNPs) from Camellia Sinensis leaves. The fabrication of spherical iron nanoparticles was successfully confirmed using scanning electron microscopy (SEM). As a heterogeneous catalyst, the synthesised catalyst has shown potential in facilitating the conversion of algae oil into biodiesel. With the optimal parameters (0.5 weight percent catalytic load, 1:6 oil-methanol ratio, 60 °C reaction temperature, and 1 h and 30 min reaction duration), a 93.33% yield was attained. This may be due to its acid-base property, chemical stability, stronger metal support interaction. Furthermore, the catalyst was employed for transesterification reactions five times after regeneration with n-hexane washing followed by calcination at 650 °C for 3 h.


Subject(s)
Biofuels , Camellia sinensis , Plant Leaves , Plant Leaves/chemistry , Catalysis , Camellia sinensis/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , X-Ray Diffraction , Esterification , Spectroscopy, Fourier Transform Infrared
20.
Environ Res ; : 119352, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876416

ABSTRACT

Renewable energy research is burgeoning with the anticipation of finding neat liquid fuel. Ultra sonification assisted biodiesel was derived from red algae Cyanidioschyzon merolae, with BD yield of 98.9%. The results of GC MS of the prepared biodiesel showed higher concentration of methyl palmitate, methyl oleate, and stearate. This composition is appreciable, as this plays significant in desirable pour & cloud point properties. NMR spectrum revealed the ester linkages, presence of olefins, and α methyl position in olefins. Mixture of 30wt% of biodiesel in diesel exhibited work efficiency at low pour point and, lower viscosity of biodiesel was observed. CeO2 and Fe2O3 nano particles were bio reduced, and were added as nano additive in biodiesel. 1:1 ratio of CeO2 and Fe2O3 added to biodiesel maximised the oxygen storage capacity of CeO2, and improved the combustion reactions of Fe2O3. Further, this combination produced a satisfactory Calorific value. Imbalanced ratios disrupted the catalytic and oxygen storage effects, reduced the overall energy release and calorific value of the biodiesel blend. Pour point and cetane number value of A/F/C-1 was around -7 oC and 53 respectively, and was better than other compositions. 1:1 mass ratio of NPS blended with 30wt% BD in diesel showed tremendous increase in BTE, torque, and power. HC, NOX, and SOX emissions were reduced by 42.8%, 19.3%, and 57% respectively. CeO2 favourably improved the oxygen storage capacity of the fuel, whereas Fe2O3 showed decrease in formation of gums and sediments in biodiesel.

SELECTION OF CITATIONS
SEARCH DETAIL
...