Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
Sci Total Environ ; 952: 175942, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218113

ABSTRACT

Numerous studies have reported in situ monitoring and source analysis in the Tibetan Plateau (TP), a region crucial for climate systems. However, a gap remains in understanding the comprehensive distribution of atmospheric pollutants in the TP and their transboundary pollution transport. Here, we analyzed the high-resolution satellite TROPOMI observations from 2018 to 2023 in Tibet and its surrounding areas. Our result reveals that, contrary to the results from in situ surface CO monitoring, Tibet exhibits a distinct seasonality in atmospheric carbon monoxide total column average mixing ratio (XCO), with higher levels in summer and lower levels in winter. This distinctive seasonal pattern may be related to the TP's 'air pump' effect and the Asia summer monsoon. Before 2022, the annual growth rate of XCO in Tibet was 1.63 %·year-1; however, it declined by 6.88 % in 2022. Source analysis and satellite observations suggest that CO from South Asia may enter Tibet either by crossing the Himalayas or through the Yarlung Zangbo Grand Canyon. We discovered that spring outbreaks of open biomass burning (OBB) in South and Southeast Asia led to an 11.57-27.98 % increase in XCO over Tibet. Favorable wind pattern and unique topography of the canyon promote the high concentrations CO transport to Tibet. Our greater concern is whether the TP will experience more severe transboundary pollution in the future.

2.
J Hazard Mater ; 479: 135754, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39243541

ABSTRACT

The deposition of biomass-burning smoke water-soluble organic matter (BBS-WSOM) significantly affects the environmental behavior of heavy metals in aqueous environments. However, the interactions between BBS-WSOM and heavy metals at the molecular level remain unknown. This study combined FT-ICR-MS, fluorescence spectrum, FTIR, and two-dimensional correlation spectroscopy to anatomize the molecular characteristics of BBS-WSOM binding with Cd(II). The results show that CHO and CHOP compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225 nm and 275 nm/Em: 325 nm, and abundant proteins or CHON compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225-250 nm/Em: 350-450 nm and Ex: 300-350 nm/Em: 350-450 nm, which was very different from the fluorescence molecules in natural organic matters. Fluorescence change after Cd(II) addition indicated that CHOP and CHOS compounds enhanced BBS-WSOM binding with Cd(II). Differently, the CHON compounds could weaken the binding of other compounds with Cd(II). Different compounds binding with Cd(II) generally followed the order: CHON/CHOS compounds>CHOP compounds>CHO compounds, and the chemical groups binding with Cd(II) generally followed the prioritization: -COO-> -NH/SO>P = O/P-O>aromatic ring>CO>C-OH of phenol/alcohol>C-O-C. This study provides a profound insight into the interaction between BBS-WSOM and Cd(II) at the molecular level.

3.
Environ Monit Assess ; 196(10): 895, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230792

ABSTRACT

This study investigated seasonal fluctuations in particulate matter (PM) concentrations, including carbon and polycyclic aromatic hydrocarbon (PAH) components, in Phnom Penh, Cambodia, focusing on ultrafine particles (UFPs or ≤ 100 nm). UFP levels were notably higher during the dry season, averaging 23.73 ± 3.7 µg/m3 compared to 19.64 ± 3.4 µg/m3 in the wet season, attributed to increased emissions from vehicles and agricultural burning. In contrast, lower concentrations during the wet season were due to scavenging effect of rain. When compared to other Southeast Asian cities, UFP levels in Phnom Penh were significantly higher during the dry season, surpassing those in cities like Bangkok and Kuala Lumpur. Seasonal variations in carbonaceous components showed higher elemental carbon (EC) and total carbon (TC) during the dry season, with EC/TC ratios suggesting substantial influence from vehicular emissions and biomass burning. PAH analysis revealed seasonal disparities, with higher concentrations of benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF) during the wet season, whereas fluoranthene (Flu) and pyrene (Pyr) were consistently present, indicating diverse PAH sources. The Flu/(Flu + Pyr) ratios, indicative of biomass burning, were higher in the dry season. Correlations between PAHs and carbon components confirmed combustion as a significant source of PAHs, aligning with global trends. This emphasizes the need to address distinct PM sources during various season in Phnom Penh.


Subject(s)
Air Pollutants , Carbon , Environmental Monitoring , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Cambodia , Particulate Matter/analysis , Air Pollutants/analysis , Carbon/analysis , Vehicle Emissions/analysis , Seasons , Air Pollution/statistics & numerical data , Particle Size , Cities
4.
Sci Total Environ ; 952: 175932, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218091

ABSTRACT

Organic aerosols (OA) are a significant component of fine particulate matter in the ambient air and are formed through primary and secondary processes. Primary organic aerosols (POA) are directly released from sources, while secondary organic aerosols (SOA) are formed through the oligomerization and/or oxidation of volatile organic compounds (VOCs) in the atmosphere. Recently, there has an increasing attention on the SOA budgets, their formation pathways, and photochemical evolution due to their impacts on climate and human health. Biomass burning (BB) is a significant source of OA, contributing around 5-30 % to the SOA burden globally. Agricultural residue burning (ARB) is a type of BB that contributes ∼10 % of total atmospheric OA mass worldwide, whereas it contributes higher in Asian regions like China and India. ARB emits a significant amount of air pollutants, including VOCs, into the atmosphere. However, there is inadequate information on the transformation of ARB emissions to SOA due to limited laboratory studies. The present review focuses on the formation mechanism of SOA from ARB emissions, summarizing the current state of the art about ARB precursors and their oxidation products from chamber-based studies, including measurement methods and analytical instrumentation. The review also discusses the role of different types of oxidants in OA mass enhancement, factors affecting the overall SOA yield, and the uncertainties involved in the process.

5.
Chemosphere ; : 143290, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245216

ABSTRACT

The environmental effect of biomass burning smoke-derived dissolved organic matter (BBS-DOM) has attracted growing attention due to the increasing wildfire globally. BBS-DOM eventually deposits on the water and soil environments, thus altering the environmental behaviors of pollutants (e.g., heavy metals) in the surface environments of the wildfire region. However, presently, the binding characters between heavy metals and BBS-DOM remains unknown. In this study, alfalfa, pinewood, and corn straw were burned at 300 °C and 600 °C to produce BBS-DOMs and their binding characters with Cu(II) were investigated using fluorescence excitation-emission matrix spectra coupled with parallel factor (EEM-PARAFAC), synchronous fluorescence spectra combined with two-dimensional correlation spectroscopy (2D-SFS-COS) and FTIR combined with two-dimensional correlation spectroscopy (2D-FTIR-COS). The fluorescence quenching/enhancing results after Cu(II) addition suggested that the binding capacities with Cu(II) of various organic components in BBS-DOMs followed an order of polyphenols-like matters (Ex/Em: 220 nm/310 nm) > aromatic protein-like matters (Ex/Em: 275 nm/310 nm) ≈ small humic-like matters (Ex/Em: 300 nm/380 nm) > large humic-like matters (Ex/Em: 330 nm /410 nm). Interestingly, the quenching effect of Cu(II) addition on the fluorescence intensities of polyphenols-like matters and humic-like matters decreased with their increasing abundances, which possibly depended on the proportion of organic ligands of these components. Furthermore, 2D-FTIR-COS demonstrated that the binding sequence of different functional groups followed deprotonated -COOH→deprotonated phenol-OH→-C=O of aldehydes, ketones, and lactones/aromatic rings/-NH→C-O-C/C-OH of ethers and alcohols. Another novelty was that Cu(II) binding could increase the molecular size and humification of BBS-DOMs, due to the bridge effect of Cu(II). This work provides an importantly theoretical basis for deeply understanding the mechanism of BBS-DOM binding with Cu(II) at the molecular level, which is a key for reasonably predicting the multimedia-crossing effects of BBS-DOM and the environmental behavior of heavy metals in the wildfire region.

6.
Proc Natl Acad Sci U S A ; 121(33): e2402868121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102536

ABSTRACT

Biomass burning plays an important role in climate-forcing and atmospheric chemistry. The drivers of fire activity over the past two centuries, however, are hotly debated and fueled by poor constraints on the magnitude and trends of preindustrial fire regimes. As a powerful tracer of biomass burning, reconstructions of paleoatmospheric carbon monoxide (CO) can provide valuable information on the evolution of fire activity across the preindustrial to industrial transition. Here too, however, significant disagreements between existing CO records currently allow for opposing fire histories. In this study, we reconstruct a continuous record of Antarctic ice core CO between 1821 and 1995 CE to overlap with direct atmospheric observations. Our record indicates that the Southern Hemisphere CO burden ([CO]) increased by 50% from a preindustrial mixing ratio of ca. 35 ppb to ca. 53 ppb by 1995 CE with more variability than allowed for by state-of-the-art chemistry-climate models, suggesting that historic CO dynamics have been not fully accounted for. Using a 6-troposphere box model, a 40 to 50% decrease in Southern Hemisphere biomass-burning emissions, coincident with unprecedented rates of early 20th century anthropogenic land-use change, is identified as a strong candidate for this mismatch.

7.
Article in English | MEDLINE | ID: mdl-39127830

ABSTRACT

BACKGROUND: Influenza healthcare encounters in adults associated with specific sources of PM2.5 is an area of active research. OBJECTIVE: Following 2017 legislation requiring reductions in emissions from light-duty vehicles, we hypothesized a reduced rate of influenza healthcare encounters would be associated with concentrations of PM2.5 from traffic sources in the early implementation period of this regulation (2017-2019). METHODS: We used the Statewide Planning and Research Cooperative System (SPARCS) to study adult patients hospitalized (N = 5328) or treated in the emergency department (N = 18,247) for influenza in New York State. Using a modified case-crossover design, we estimated the excess rate (ER) of influenza hospitalizations and emergency department visits associated with interquartile range increases in source-specific PM2.5 concentrations (e.g., spark-ignition emissions [GAS], biomass burning [BB], diesel [DIE]) in lag day(s) 0, 0-3 and 0-6. We then evaluated whether ERs differed after Tier 3 implementation (2017-2019) compared to the period prior to implementation (2014-2016). RESULTS: Each interquartile range increase in DIE in lag days 0-6 was associated with a 21.3% increased rate of influenza hospitalization (95% CI: 6.9, 37.6) in the 2014-2016 period, and a 6.3% decreased rate (95% CI: -12.7, 0.5) in the 2017-2019 period. The GAS/influenza excess rates were larger in the 2017-2019 period than the 2014-2016 period for emergency department visits. We also observed a larger ER associated with increased BB in the 2017-2019 period compared to the 2014-2016 period. IMPACT STATEMENT: We present an accountability study on the impact of the early implementation period of the Tier 3 vehicle emission standards on the association between specific sources of PM2.5 air pollution on influenza healthcare encounters in New York State. We found that the association between gasoline emissions and influenza healthcare encounters did not lessen in magnitude between periods, possibly because the emissions standards were not yet fully implemented. The reduction in the rates of influenza healthcare encounters associated with diesel emissions may be reflective of past policies to reduce the toxicity of diesel emissions. Accountability studies can help policy makers and environmental scientists better understand the timing of pollution changes and associated health effects.

8.
Front Immunol ; 15: 1411408, 2024.
Article in English | MEDLINE | ID: mdl-39139567

ABSTRACT

Introduction: Chronic obstructive pulmonary disease (COPD) is associated with tobacco smoking and biomass-burning smoke exposure. Toll-like receptor 4 (TLR4) single-nucleotide polymorphisms (SNPs) may contribute to its pathogenesis. The study aimed to assess the association of rs4986790 and rs4986791 in the TLR4 gene in a Mexican mestizo population with COPD secondary to tobacco smoking (COPD-TS) and biomass-burning smoke (COPD-BBS) and to evaluate whether the genotypes of risk affect cytokine serum levels. Materials and methods: We enrolled 2,092 participants and divided them into two comparisons according to their environmental exposure. SNPs were genotyped using TaqMan probes. Serum cytokine levels (IL-4, IL-5, IL-6, IL-10, and INF-γ) were quantified by ELISA. Results: The rs4986790 AA genotype in COPD-TS was associated with a higher COPD risk (OR = 3.53). Haplotype analysis confirmed this association, identifying a block containing the rs4986790 allele (A-C, OR = 3.11). COPD-TS exhibited elevated IL-6, IL-4, and IL-5 levels compared with smokers without COPD (SWOC), whereas COPD-BBS displayed higher IFN-γ, IL-6, and IL-10 levels. The AA carriers in the COPD-TS group had elevated IL-4, IL-5, and IFN-γ compared with carriers of AG or GG. Conclusion: The rs4986790 common allele and the A-C haplotype (rs4986790-rs4986791) were associated with a higher COPD risk in smokers; COPD patients carrying the AA genotype showed increased pro-inflammatory cytokines.


Subject(s)
Genotype , Interferon-gamma , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Toll-Like Receptor 4 , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/etiology , Male , Female , Toll-Like Receptor 4/genetics , Middle Aged , Interferon-gamma/genetics , Interferon-gamma/blood , Aged , Interleukin-4/genetics , Interleukin-4/blood , Biomass , Genetic Predisposition to Disease , Interleukin-5/genetics , Interleukin-5/blood , Smoke/adverse effects , Mexico , Adult , Smokers , Smoking/adverse effects
9.
Environ Sci Technol ; 58(32): 14293-14305, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39093591

ABSTRACT

Environmentally persistent free radicals (EPFRs) play an important role in aerosol effects on air quality and public health, but their atmospheric abundance and sources are poorly understood. We measured EPFRs contained in PM2.5 collected in Fairbanks, Alaska, in winter 2022. We find that EPFR concentrations were enhanced during surface-based inversion and correlate strongly with incomplete combustion markers, including carbon monoxide and elemental carbon (R2 > 0.75). EPFRs exhibit moderately good correlations with PAHs, biomass burning organic aerosols, and potassium (R2 > 0.4). We also observe strong correlations of EPFRs with hydrocarbon-like organic aerosols, Fe and Ti (R2 > 0.6), and single-particle mass spectrometry measurements reveal internal mixing of PAHs, with potassium and iron. These results suggest that residential wood burning and vehicle tailpipes are major sources of EPFRs and nontailpipe emissions, such as brake wear and road dust, may contribute to the stabilization of EPFRs. Exposure to the observed EPFR concentrations (18 ± 12 pmol m-3) would be equivalent to smoking ∼0.4-1 cigarette daily. Very strong correlations (R2 > 0.8) of EPFR with hydroxyl radical formation in surrogate lung fluid indicate that exposure to EPFRs may induce oxidative stress in the human respiratory tract.


Subject(s)
Air Pollutants , Vehicle Emissions , Wood , Wood/chemistry , Alaska , Free Radicals , Particulate Matter , Environmental Monitoring , Aerosols , Polycyclic Aromatic Hydrocarbons/analysis
10.
Chemosphere ; 364: 143095, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39146995

ABSTRACT

The presence of organic compounds on the particulate matter (PM) or aerosols can arise from the condensation of gaseous organic compounds on the existing aerosols, or from organic precursors to form secondary organic aerosols (SOA) through photochemistry. The objective of this study is to characterize organic constituents on aerosols relevant to their emission sources and the key compounds revealing the evolution of aerosols with the use of a novel analytical technique. A time-of-flight mass spectrometry (TOFMS) coupled with comprehensive two-dimensional gas chromatography (GC×GC) was developed using a flow type of modulator instead of a thermal type as a prelude to field applications without the need for cryogen. The methodology of GC×GC-TOFMS is discussed in this study in detail. Since the coarse PM (PM10-2.5) may exhibit with a relatively high OC content compared to PM2.5, the GC×GC results have been obtained by analyzing PM10 samples collected in parallel with OC/EC analysis of PM2.5 samples at the Lulin Atmospheric Background Station (LABS, 23.47°N, 120.87°E, 2862 m ASL) as the high-mountain background site in East Asia. We found that the organic analytes were in a majority in the range of 12-30 carbon numbers falling in the category of semi-volatile organic compounds (SVOCs) with 43 compounds of alcohol, aldehyde, ketone, and ester varieties if excluding alkanes. Intriguingly, trace amounts of plasticizers and phosphorus flame retardants such as phthalates (PAEs) and triphenyl phosphate (TPP) were also found, likely originating from regions involved in open burning of household solid waste in Southeast Asia or e-waste recycling in southern China and along the long-range transport route. Compounds such as these are unique to the specific sources, demonstrating the wide spread of these hazardous compounds in the environment.

11.
Sci Total Environ ; 951: 175788, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39187087

ABSTRACT

Biomass burning in Peninsular Southeast Asia (BB-PSEA) affects the climate in downwind regions, especially precipitation (PRE) in southern China. However, the impact of BB-PSEA on the meteorological drought in Southwest China (SWC), where closes to PSEA and often occurs seasonal drought, have not been clear yet. We selected a severe drought event in SWC from January to April 2010 and conducted sensitivity simulations using WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) to evaluate the impact of BB-PSEA on the meteorological drought in SWC. Comparisons with observations revealed that the model performed well in simulating the spatiotemporal evolution of the drought in SWC. BB-PSEA increased the drought severity by 0.01-0.75 levels, enlarged drought areas by about 10%, and prolonged the drought duration mainly by one month in SWC. The impact of BB-PSEA on the drought in SWC in March/April was almost tenfold that in January/February, due to the higher emissions of BB-PSEA in March/April. The mechanism that BB-PSEA influenced drought predominantly involved the reduction of PRE, potential evapotranspiration (PET), and moisture fluxes in SWC. BB-PSEA aerosols warmed the air at 600-800 hPa and cooled the air near the surface in SWC, which stabilized the atmosphere and suppressed PRE and reduced PET in SWC. BB-PSEA aerosols also increased the sea surface temperature in South China Sea and the geopotential heights in the north of the Bay of Bengal, where the moisture sources of SWC originated from. This perturbation reduced the moisture fluxes across the west and south boundaries of SWC, resulting in the reduction of the water vapor content and PRE in SWC. Through elucidating the impact of BB-PSEA on the drought in SWC, this study clarified how BB-PSEA affected the climate in the downwind region and provided new understanding for drought prediction in SWC.

12.
Sci Total Environ ; 951: 175430, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39128524

ABSTRACT

Biomass burning is a primary source of atmospheric nitrogen oxide (NOx), however, the lack of isotopic fingerprints from biomass burning limits their use in tracing atmospheric nitrate (NO3-) and NOx. A total of 25 biomass fuels from 10 provinces and regions in China were collected, and the δ15N values of biomass fuels (δ15N-biomass) and δ15N-NOx values of biomass burning (δ15N-NOx values of BB, open burning, and rural cooking stove burning) were determined. The δ15N-NOx values of open burning and rural cooking stove burning ranged from -0.8 ‰ to 11.6 ‰ and 0.8 ‰ to 9.5 ‰, respectively, indicating a significant linear relation with δ15N-biomass. Based on the measured δ15N-NOx values of BB and biomass burning emission inventory data, the δ15N-NOx values of BB in different provinces and regions of China were calculated using the δ15N-NOx model, with a mean value of 5.0 ± 1.8 ‰. The spatial variations in the estimated δ15N-NOx values of BB in China were mainly controlled by the differences in the δ15N-NOx values and the proportions of NOx emissions from various straw burning activities in provinces and regions of China. Furthermore, by using the combined local emissions of biomass burning with regional transportations of NOx based on air-mass backward trajectories, we established an improved δ15N-NOx model and obtained more accurate δ15N-NOx values of BB in regions (2.3 ‰ to 8.4 ‰). By utilising the reported δ15N-NOx values of precipitation and particulate matter from 21 cities in China and the more accurate δ15N-NOx values of BB, the NOx contributions from four sources (mobile sources, coal combustion, biomass burning, and microbial N cycle) at the national scale were estimated using a Bayesian model. The significant contributions of biomass burning (20.9 % to 44.3 %) to NOx emissions were revealed, which is vital for controlling NOx emissions in China.

13.
Sci Total Environ ; 951: 175416, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39142411

ABSTRACT

Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.


Subject(s)
Air Pollutants , Cities , Environmental Monitoring , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Particulate Matter/analysis , Air Pollutants/analysis , Greece , Risk Assessment , Humans , Air Pollution/statistics & numerical data
14.
Sci Total Environ ; 951: 175518, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39151635

ABSTRACT

Powerful wildfires occurring in Siberia each summer emit large amounts of smoke aerosol that, according to studies of the environmental impacts of biomass burning (BB) aerosol in different regions of the world, can affect precipitation and other weather parameters and induce feedback on fires. However, the knowledge of smoke-weather interactions and fire-weather feedback in Siberia is presently limited. To advance this knowledge, we performed coupled-meteorology-chemistry simulations of aerosols and weather in a Siberian region covering taiga and tundra using the CHIMERE chemistry-transport model and the WRF meteorological model. We addressed a monthly period of July 2016 and considered several modeling scenarios in which aerosol-radiation interaction (ARI) and aerosol-cloud interaction (ACI) were taken into account jointly or separately. The simulation results were combined with emission and precipitation data retrieved from satellite observations. The joint analysis of the simulated precipitation fields and satellite-observation-based data revealed that in the taiga, the inhibiting effect of Siberian smoke on precipitation induced a significant positive feedback on BB aerosol emissions that, according to our estimates, enhanced by 27 (±7) % respective to a hypothetical situation in which smoke-weather interactions were absent. At the same time, an increase of precipitation over active fire spots due to ACI and ARI in tundra led to the formation of a negative feedback loop between fire emissions and BB smoke, resulting in a reduction of BB aerosol emissions there by 14 (±6) %. Hence, this study revealed evidence for significant feedback of smoke-induced precipitation changes on fire emissions in Siberia. Given the global importance of Siberia as a major carbon sink, this feedback needs to be studied further and accurately taken into account in projections of climate change both on regional and global scales.

15.
Sci Total Environ ; 952: 175840, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39214360

ABSTRACT

Residential wood combustion (RWC) remains a significant global source of particulate matter (PM) emissions with adverse impacts on regional air quality, climate, and human health. The lung-deposited surface area (LDSA) and equivalent black carbon (eBC) concentrations have emerged as important metrics to assess particulate pollution. In this study we estimated combustion phase-dependent emission factors of LDSA for alveolar, tracheobronchial, and head-airway regions of human lungs and explored the relationships between eBC and LDSA in fresh and photochemically aged RWC emissions. Photochemical aging was simulated in an oxidative flow reactor at OH• exposures equivalent to 1.4 or 3.4 days in the atmosphere. Further, the efficiency of a small-scale electrostatic precipitator (ESP) for reducing LDSA and eBC from the wood stove was determined. For fresh emission eBC correlated extremely well with LDSA, but the correlation decreased after aging. Soot-dominated flaming phase showed the highest eBC dependency of LDSA whereas for ignition and char burning phases non-BC particles contributed strongly the LDSA. Deposition to the alveolar region contributed around 60 % of the total lung-deposition. The ESP was found as an effective method to mitigate particulate mass, LDSA, as well as eBC emissions from wood stoves, as they were reduced on average by 72%, 71%, and 69%, respectively. The reduction efficiencies, however, consistently dropped over the span of an experiment, especially for eBC. Further, the ESP was found to increase the sub-30 nm ultrafine particle number emissions, with implications for LDSA. The results of this study can be used for assessing the contribution of RWC to LDSA concentrations in ambient air.

16.
Int J Epidemiol ; 53(4)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-39096096

ABSTRACT

BACKGROUND: Biomass burning (BB) is a major source of air pollution and particulate matter (PM) in Southeast Asia. However, the health effects of PM smaller than 10 µm (PM10) originating from BB may differ from those of other sources. This study aimed to estimate the short-term association of PM10 from BB with respiratory and cardiovascular hospital admissions in Peninsular Malaysia, a region often exposed to BB events. METHODS: We obtained and analyzed daily data on hospital admissions, PM10 levels and BB days from five districts from 2005 to 2015. We identified BB days by evaluating the BB hotspots and backward wind trajectories. We estimated PM10 attributable to BB from the excess of the moving average of PM10 during days without BB hotspots. We fitted time-series quasi-Poisson regression models for each district and pooled them using meta-analyses. We adjusted for potential confounders and examined the lagged effects up to 3 days, and potential effect modification by age and sex. RESULTS: We analyzed 210 960 respiratory and 178 952 cardiovascular admissions. Almost 50% of days were identified as BB days, with a mean PM10 level of 53.1 µg/m3 during BB days and 40.1 µg/m3 during normal days. A 10 µg/m3 increment in PM10 from BB was associated with a 0.44% (95% CI: 0.06, 0.82%) increase in respiratory admissions at lag 0-1, with a stronger association in adults aged 15-64 years and females. We did not see any significant associations for cardiovascular admissions. CONCLUSIONS: Our findings suggest that short-term exposure to PM10 from BB increased the risk of respiratory hospitalizations in Peninsular Malaysia.


Subject(s)
Air Pollutants , Air Pollution , Biomass , Cardiovascular Diseases , Hospitalization , Particulate Matter , Respiratory Tract Diseases , Humans , Particulate Matter/analysis , Particulate Matter/adverse effects , Malaysia/epidemiology , Female , Male , Adult , Middle Aged , Adolescent , Air Pollution/adverse effects , Air Pollution/analysis , Young Adult , Hospitalization/statistics & numerical data , Cardiovascular Diseases/epidemiology , Aged , Air Pollutants/analysis , Air Pollutants/adverse effects , Respiratory Tract Diseases/epidemiology , Child , Child, Preschool , Infant , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Infant, Newborn
17.
Environ Sci Technol ; 58(28): 12368-12378, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38963641

ABSTRACT

Air pollution, especially particulate matter (PM), is a significant environmental pollution worldwide. Studying the chemical, environmental, and life-related cellular physical characteristics of size-fractionated PMs is important because of their different degrees of harmful effects on human respiratory tracts and organ systems, causing severe diseases. This study evaluates the chemical components of size-fractionated PMs down to PM0.1 collected during a biomass-burning episode, including elemental/organic carbon and trace elements. Single particle sizes and distributions of PM0.1, PM0.5-0.1, PM1.0-0.5, and PM2.5-1.0 were analyzed by scanning electron microscopy and Zeta sizer. Two commonly used cell lines, e.g., HeLa and Cos7 cells, and two respiratory-related cell lines including lung cancer/normal cells were utilized for cell cytotoxicity experiments, revealing the key effects of particle sizes and concentrations. A high-speed scanning ion conductance microscope explored particle-stimulated subcellular physical characteristics for all cell lines in dynamics, including surface roughness (SR) and elastic modulus (E). The statistical results of SR showed distinct features among different particle sizes and cell types while a E reduction was universally found. This work provides a comprehensive understanding of the chemical, environmental, and cellular physical characteristics of size-fractionated PMs and sheds light on the necessity of controlling small-sized PM exposures.


Subject(s)
Particle Size , Particulate Matter , Humans , Animals , Chlorocebus aethiops , HeLa Cells , Air Pollutants , COS Cells
18.
Sci Total Environ ; 949: 175122, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084390

ABSTRACT

The aim was to study associations between dialkylphosphates (DAPs), organophosphate (OP) metabolites in urine, biomarkers of OP insecticide exposure, and respiratory symptoms among children in upper northern Thailand. We recruited junior high school children in randomly selected schools in four cities (N = 337), with repeated data collection in wet and dry seasons. Urine was collected and analyzed for six OP metabolites, with creatinine adjustment. Total DAP was expressed as sum of DAPs. Data on respiratory symptoms was collected by a standardized questionnaire. Associations were analyzed by multiple logistic regression. Totally 11.3 % lived in farm families. Total DAPs concentration was higher in dry season (p = 0.002) but did not differ between farm and non-farm children. Total DAPs in wet season was associated with current wheeze (p = 0.019), current asthma attacks (p = 0.012) and attacks of breathlessness in last 12 months (p = 0.021). Total DAPs in dry season was associated with current wheeze (p = 0.042), and associations between DAPs and respiratory symptoms were stronger for dimethylphosphate metabolites (DMPs) than for diethylphosphate metabolites (DEPs). DMPs are produced by certain OP pesticides. Biomass burning inside or outside the home, and dampness or mold at home, enhanced the association between total DAPs and attacks of breathlessness. In conclusion, OP pesticide exposure, measured as urinary DAPs, was higher in dry season and similar in farm and non-farm children. OPs exposure, especially to DMP related pesticides, can increase asthmatic symptoms, especially in wet season. Combined exposure to OP and smoke from biomass burning, or dampness and mold, can further increase the prevalence of attacks of breathlessness. There is a need to reduce OP insecticide and biomass smoke exposure among Thai children. Since different pesticides can be used in different seasons, studies on respiratory health effects of OPs pesticide exposure should be done in different seasons.


Subject(s)
Environmental Exposure , Insecticides , Organophosphates , Seasons , Humans , Thailand/epidemiology , Insecticides/urine , Organophosphates/urine , Male , Environmental Exposure/statistics & numerical data , Female , Child , Biomass , Adolescent , Air Pollutants/analysis , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/chemically induced , Respiratory Sounds
19.
Toxics ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39058114

ABSTRACT

Air pollution, particularly PM2.5, poses a significant environmental and public health concern, particularly in northern Thailand, where elevated PM2.5 levels are prevalent during the dry season (January-May). This study examines the influx and patterns of transboundary biomass burning PM2.5 (TB PM2.5) in this region during the 2019 dry season using the WRF-Chem model. The model's reliability was confirmed through substantial correlations between model outputs and observations from the Pollution Control Department (PCD) of Thailand at 10 monitoring stations. The findings indicate that TB PM2.5 significantly influences local PM2.5 levels, often surpassing contributions from local sources. The influx of TB PM2.5 began in January from southern directions, intensifying and shifting northward, peaking in March with the highest TB PM2.5 proportions. Elevated levels persisted through April and declined in May. Border provinces consistently exhibited higher TB PM2.5 concentrations, with Chiang Rai province showing the highest average proportion, reaching up to 45%. On days when PM2.5 levels were classified as 'Unhealthy for Sensitive Groups' or 'Unhealthy', TB PM2.5 contributed at least 50% to the total PM2.5 at all stations. Notably, stations in Chiang Rai and Nan showed detectable TB PM2.5 even at 'Very Unhealthy' levels, underscoring the significant impact of TB PM2.5 in the northern border areas. Effective mitigation of PM2.5-related health risks requires addressing PM2.5 sources both within and beyond Thailand's borders.

20.
Environ Pollut ; 358: 124496, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38964642

ABSTRACT

Biomass burning play a key role in the global carbon cycle by altering the atmospheric composition, and affect regional and global climate. Despite its importance, a very few high-resolution records are available worldwide, especially for recent climate change. This study analyzes levoglucosan, a specific tracer of biomass burning emissions, in a 38-year ice core retrieved from the Shulehe Glacier No. 4, northeastern Tibetan Plateau. The levoglucosan concentration in the Shulehe Glacier No. 4 ice core ranged from 0.1 to 55 ng mL-1, with an average concentration of 8 ± 8 ng mL-1. The concentrations showed a decreasing trend from 2002 to 2018. Meanwhile, regional wildfire activities in Central Asian also exhibited a declining trend during the same period, suggesting the potential correspondence between levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the fire activity of Central Asia. Furthermore, a positive correlation also exists between the levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the wildfire counts in Central Asia from 2002 to 2018. While backward air mass trajectory analysis and fire spots data showed a higher distribution of fire counts in South Asia compared to Central Asia, but the dominance of westerly circulation in the northern TP throughout the year. Therefore, the levoglucosan in the Shulehe Glacier No. 4 provides clear evidence of Central Asian wildfire influence on Tibetan Plateau glaciers through westerlies. This highlights a great importance of ice core data for wildfire history reconstruction in the Tibetan Plateau Glacier regions.


Subject(s)
Air Pollutants , Biomass , Environmental Monitoring , Ice Cover , Tibet , Ice Cover/chemistry , Environmental Monitoring/methods , Air Pollutants/analysis , Wildfires , Climate Change , Fires , Glucose/analogs & derivatives , Glucose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL