Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400396, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872421

ABSTRACT

Developing a process that performs the lignocellulosic biomass fractionation under milder conditions simultaneously with the depolymerization and/or the upgrading of all fractions is fundamental for the economic viability of future lignin-first biorefineries. The molten salt hydrates (MSH) with homogeneous or heterogeneous catalysts are a potential alternative to biomass pretreatment that promotes cellulose's dissolution and its conversion to different platform molecules while keeping the lignin reactivity. This review investigates the fractionation of lignocellulosic biomass using MSH to produce chemicals and fuels. First, the MSH properties and applications are discussed. In particular, the use of MSH in cellulose dissolution and hydrolysis for producing high-value chemicals and fuels is presented. Then, the biomass treatment with MSH is discussed. Different strategies for preventing sugar degradation, such as biphasic media, adsorbents, and precipitation, are contrasted. The potential for valorizing isolated lignin from the pretreatment with MSH is debated. Finally, challenges and limitations in utilizing MSH for biomass valorization are discussed, and future developments are presented. Cellulose Avicel®PH-101 ZnCl2 ⋅ 4H2O, ZnBr2 ⋅ 4H2O, LiCl ⋅ 8H2O, LiBr ⋅ 4H2O H2SO4, (0.2 M); H3PW12O40 (0.067 M); H4SiW12O40 (0.05 M) T (145-175 °C); Time (30-120 min) Organic solvent (MIBK) LA (94 %) and HMF (3.4 %) Dissolution time: ZnBr2 ⋅ 4H2O<>2O<>2 ⋅ 4H2O<>2O; The highest conversion of pretreated cellulose and yield of glucose were obtained with ZnBr2 ⋅ 4H2O (88 % and 80 %, respectively).

2.
Bioresour Technol ; 399: 130635, 2024 May.
Article in English | MEDLINE | ID: mdl-38552860

ABSTRACT

Deep eutectic solvents (DESs) offer a potential opportunity in biomass utilization industries. This work emphasized the impact of hydrogen bond donors (HBD) and acceptors (HBA) on deconstruction and valorization of rice straw. Acidity, alkyl chain length, hydrogen bonding ability and functional groups of HBD and HBA appeared to be important factors affecting the fractionated pulps and lignins, which further influenced ethanol fermentation. Among the candidate DESs, lactic acid/guanidine hydrochloride (LGH) was proved to be the most suitable one due to the excellent delignification and xylan removal. For the downstream fermentation process, 0.47 g g-1 of bioethanol with 0.55 g/L h-1 of productivity can be obtained from the LGH pulp's hydrolysate. Mass balance showed 302.8 g bioethanol and 119.0 g technical lignin can be co-generated from 1 kg dried rice straw. This "green" valorization strategy offers a promising scheme in biorefinery of lignocelluloses.


Subject(s)
Lignin , Oryza , Lignin/chemistry , Deep Eutectic Solvents , Solvents/chemistry , Biomass , Hydrolysis
3.
Bioresour Technol ; 394: 130231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142909

ABSTRACT

In this study, a surfactant-assisted diluted ethylenediamine (EDA) fractionation process was investigated for co-generation of technical lignin and biobutanol from corn stover. The results showed that the addition of PEG 8000 significantly enhanced cellulose recovery (88.9 %) and lignin removal (68.9 %) in the solid fraction. Moreover, the pulp achieved 86.5 % glucose yield and 82.6 % xylose yield in enzymatic hydrolysis. Structural characterization confirmed that the fractionation process promoted the preservation of active ß-O-4 bonds (35.8/100R) in isolated lignin and functionalized the lignin through structural modification using EDA and surfactant grafting. The enzymatic hydrolysate of the pulps yielded a sugar solution for acetone-butanol-ethanol (ABE) fermentation, resulting in an ABE concentration of 15.4 g/L and an overall yield of 137.2 g/Kg of dried corn stalk. Thus, the surfactant-assisted diluted EDA fractionation has the potential to enhance the overall economic feasibility of second-generation biofuels production within the framework of biorefinery.


Subject(s)
Lignin , Zea mays , Lignin/chemistry , Zea mays/metabolism , Surface-Active Agents , Cellulose/metabolism , Butanols/chemistry , 1-Butanol , Ethylenediamines , Hydrolysis , Fermentation
4.
Chimia (Aarau) ; 77(12): 848-857, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131409

ABSTRACT

All three natural polymers of biomass and the monomer platforms derived from them present multiple avenues to develop products from specialty to bulk markets, which could serve as entry points into the industry for bio based sustainable materials. However, several roadblocks still exist in the pathway of technology development of these materials due to challenges related to cost-competitiveness, scalability, performance and sustainability. This review outlines these major technical challenges as four key checkpoints (cost-competitive, scalability, sustainability, performance) to be addressed for successful market entry of a new sustainable material.

5.
Molecules ; 28(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005319

ABSTRACT

Arctic brown algae are considered a promising industrial-scale source of bioactive sub-stances as polysaccharides, polyphenols, and low-molecular secondary metabolites. Conventional technologies for their processing are focused mainly on the isolation of polysaccharides and involve the use of hazardous solvents. In the present study a "green" approach to the fractionation of brown algae biomass based on the dissolution in ionic liquids (ILs) with 1-butil-3-methylimidazolium (bmim) cation with further sequential precipitation of polysaccharides and polyphenols with acetone and water, respectively, is proposed. The effects of IL cation nature, temperature, and treatment duration on the dissolution of bladderwrack (Fucus vesiculosus), yields of the fractions, and their chemical composition were studied involving FTIR and NMR spectroscopy, as well as size-exclusion chromatography and monosaccharide analysis. It was shown that the use of bmim acetate ensures almost complete dissolution of plant material after 24 h treatment at 150 °C and separate isolation of the polysaccharide mixture (alginates, cellulose, and fucoidan) and polyphenols (phlorotannins) with the yields of ~40 and ~10%, respectively. The near-quantitative extraction of polyphenolic fraction with the weight-average molecular mass of 10-20 kDa can be achieved even under mild conditions (80-100 °C). Efficient isolation of polysaccharides requires harsh conditions. Higher temperatures contribute to an increase in fucoidan content in the polysaccharide fraction.


Subject(s)
Fucus , Ionic Liquids , Phaeophyceae , Fucus/chemistry , Biomass , Phaeophyceae/chemistry , Polysaccharides/chemistry , Polyphenols/analysis , Cations
6.
Bioresour Technol ; 386: 129552, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499927

ABSTRACT

Lignocellulosic biomass (LCB) is the promising feedstock for value-added products, which would contribute to the bioeconomy and sustainable development. The efficient pretreatment is still required in the biorefinery of LCB. To make a simultaneous utilization of carbohydrates and lignin, a novel easy-recycled ethylenediamine (EDA) pretreatment was designed and evaluated in the present study. The results highlighted that this pretreatment yielded 96% glucose and 70% xylose in enzymatic hydrolysis. It simultaneously promoted the depolymerization of lignin into small molecules and functionalized the yielded lignin with Schiff base and amide structures. These animated-lignins showed a pH-responsive behavior and the excellent flocculation capacity by reducing more than 90% turbidity of kaolin suspensions. Therefore, easy-recycled EDA pretreatment hold the promise to simultaneously enhance the enzymatic hydrolysis of carbohydrates and endowed the new functionality of lignin toward downstream valorization, which improved the process feasibility and potentially enable the sustainability of LCB utilization.


Subject(s)
Carbohydrates , Lignin , Lignin/chemistry , Hydrolysis , Glucose/chemistry , Biomass , Ethylenediamines
7.
Heliyon ; 9(6): e17134, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37332905

ABSTRACT

In sugar production, polyacrylamide-based anionic flocculants are added for juice treatment, the main objective being to remove impurities that affect the quality of the sugar. However, if they remain in the final product, those polymers can present carcinogenic and neurotoxic actions besides contaminating the soils where the waste is discharged. To overcome this problem, the present study proposes, for the first time, natural flocculants based on cellulose obtained from sugarcane bagasse (residue from sugarcane processing) as substitutes for the flocculants based on polyacrylamide, normally used in sugar cane juice purification. Additionally, cellulose-based flocculants obtained from Acacia wood, developed in a previous study, have also been tested for sugar juice treatment. Acacia wood and sugarcane bagasse were first treated with a choline chloride/levulinic acid solution in a molar ratio of 1:2, at 160 °C, for 4 h. Subsequently, the cellulose-rich samples were modified by a two-stage process (oxidation with sodium periodate followed by reaction with sodium metabisulfite), and polyelectrolytes with different characteristics were produced. The final products obtained were characterized, and their performance in the treatment of sugarcane juice, at different concentrations (10, 50, 100, 250, and 500 mg kg-1), was evaluated and compared to the synthetic commercial flocculant (Flonex, based on polyacrylamide) usually used by the sugarcane industry in Brazil. The substitution of petrol-based flocculants by natural-based ones, obtained from sugarcane residues, is presented for the first time in this study, with very relevant performance of the new flocculants. Overall, it was possible to produce anionic flocculants, modifying the cellulose obtained from different raw materials, which showed good results in the purification of sucrose, when compared with the commercial polyacrylamide normally used. It is also important to stress that, for the first time, a residue from sugarcane industry could be used with success in the purification of the sugar juice itself, which constitutes a major novelty.

8.
ChemSusChem ; 16(13): e202300076, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-36912587

ABSTRACT

Sub-micro organosolv lignin (OBs) isolated from beechwood biomass, comprising of sub-micro sized particles (570 nm) with low molecular weight and dispersity and relatively high total phenolic -OH content, is utilized for the production of bio-based epoxy polymer composites. OBs lignin is incorporated into the glassy epoxy system based on diglycidyl ether of bisphenol A (DGEBA) and aliphatic polyoxypropylene α,ω-diamine (Jeffamine D-230), being utilized both as a curing agent, partially replacing D-230, and as an additive, substituting part of both petroleum-derived components. Up to 12 wt % replacement of D-230 by OBs lignin is achieved, whereas approximately 17 wt % of OBs effectively replaces the conventional epoxy polymer. The incorporation of OBs lignin in the polymeric matrix is achieved without the use of any solvent or previous functionalization. Enhanced properties are obtained, with substantial increases in tensile strength, strain, stiffness, glass transition temperature, antioxidant activity, and resistance to solvents.


Subject(s)
Lignin , Polymers , Temperature , Tensile Strength , Solvents , Epoxy Resins
9.
ChemSusChem ; 16(7): e202202162, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36610014

ABSTRACT

Efficient fractionation and utilization of the whole biomass is particularly attractive but remains a great challenge, owing to the recalcitrance of biomass. In this study, a simple and efficient approach is developed to obtain high-purity cellulose with a delignification degree of 97.5 % in ϵ-caprolactone and water. FTIR spectroscopy reveals that ϵ-caprolactone and water act in synergy to remove lignin from raw biomass and afford cellulose with clear macrofibrils. A linear positive correlation between the contents of hemicellulose and lignin is observed for the separated cellulose pulp. This mixed solvent exhibits good performance for the removal of lignin from various agricultural and forestry wastes. Moreover, nearly complete transformation of the whole biomass constituents is achieved with Ni-Al catalyst.

10.
Bioresour Technol ; 367: 128297, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370941

ABSTRACT

Herein, a Na2S promoted deep eutectic solvent (DES) was established to reduce the natural recalcitrance of moso bamboo (MB) and improve the subsequent enzymatic saccharification. It was found that the addition of Na2S (Choline chloride/Ethylene glycol/Na2S) dramatically promoted the deconstructions of lignin with highest removal of 74.67 %, but at the same time preserved glucan and hemicellulose to the maximum extent. With the fractionation, the enzymatic saccharification yield of pretreated MB can reach 100 % under the pretreatment condition of 140 °C, and lignin could be readily recovered with a high yield of 81.47 %. The proposed DES is superior to normal alkaline DES in terms of the higher lignin removal and recovery yield, carbohydrate preservation and enzymatic digestibility, which indicated Na2S as a novel and powerful reinforcer enhancing the DES fractionation efficiency.


Subject(s)
Deep Eutectic Solvents , Lignin , Biomass , Alkalies , Solvents , Poaceae , Hydrolysis
11.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558011

ABSTRACT

In the present work, rice husks (RHs), which, worldwide, represent one of the most abundant agricultural wastes in terms of their quantity, have been treated and fractionated in order to allow for their complete valorization. RHs coming from the raw and parboiled rice production have been submitted at first to a hydrothermal pretreatment followed by a deep eutectic solvent fractionation, allowing for the separation of the different components by means of an environmentally friendly process. The lignins obtained from raw and parboiled RHs have been thoroughly characterized and showed similar physico-chemical characteristics, indicating that the parboiling process does not introduce obvious lignin alterations. In addition, a preliminary evaluation of the potentiality of such lignin fractions as precursors of cement water reducers has provided encouraging results. A fermentation-based optional preprocess has also been investigated. However, both raw and parboiled RHs demonstrated a poor performance as a microbiological growth substrate, even in submerged fermentation using cellulose-degrading fungi. The described methodology appears to be a promising strategy for the valorization of these important waste biomasses coming from the rice industry towards a circular economy perspective.


Subject(s)
Lignin , Oryza , Lignin/chemistry , Oryza/chemistry , Deep Eutectic Solvents , Cellulose , Solvents/chemistry , Biomass , Hydrolysis
12.
Bioresour Technol ; 360: 127602, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35835420

ABSTRACT

An inadequate lignocellulolytic capacity of a conventional anaerobic digester sludge (ADS) microbiota is the bottleneck for the maximal utilization of lignocellulose in anaerobic digestion. A well-constructed microbial consortium acclimatized to lignocellulose outperformed the ADS in terms of biogas productivity when fractionated biocomponents of rice straw were used to achieve a high methane bioconversion rate. A 33.3 % higher methane yield was obtained with the acclimatized consortium (AC) compared to that of ADS control. The dominant pair-wise link between Firmicutes (18.99-40.03 %), Bacteroidota (10.94-28.75 %), and archaeal Halobacteriota (3.59-20.57 %) phyla in the AC seed digesters indicated that the keystone members of these phyla were responsible for higher methane yield. A high abundance of syntrophic bacteria such as Proteiniphilum (1.22-5.19 %), Fermentimonas (0.71-5.31 %), Syntrophomonas (0.87-3.59 %), and their syntrophic partner Methanosarcina (4.26-18.80 %) maintained the digester stability and facilitated higher substrate-to-methane conversion in the AC seed digesters. The present combined strategy will help in boosting the 'biomass-to-methane" conversion.


Subject(s)
Methanosarcina , Microbiota , Anaerobiosis , Bacteria/genetics , Bacteria/metabolism , Bioreactors/microbiology , Carbohydrate Metabolism , Lignin , Methane/metabolism , Methanosarcina/metabolism , Sewage/microbiology
13.
Waste Manag ; 148: 98-105, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35667240

ABSTRACT

Pretreatment is the initial stage of lignocellulosic biorefinery process, but is limited by the time-consuming processes, harsh conditions and/or undesirable products. Herein, a mild (<60 °C) and highly efficient pretreatment strategy is developed. The novel mechanocatalytical reaction system driven by fluid shear force helps to exfoliate cellulose from lignocellulose, and the heat generated by the shear process can be used to precipitate and recover the dissolved cellulose from the precooled NaOH/urea solution. The regenerated cellulose shows satisfying crystal structure (cellulose II), significantly decreased crystallinity and nearly tripled enzymolysis glucose yield. Almost 90% of lignin and hemicellulose could be rapidly separated. The separated lignin shows a nearly native structure with 64% ß-O-4 linkage, which is even higher than the ball-milling lignin (60%). This research provides a theoretical guidance for the mild pretreatment of lignocellulosic biomass, which will push the application of mechanocatalytical reaction system in biorefinery processes on a large scale.


Subject(s)
Cellulose , Lignin , Biomass , Cellulose/chemistry , Hydrodynamics , Hydrolysis , Lignin/chemistry
14.
Bioresour Technol ; 351: 127034, 2022 May.
Article in English | MEDLINE | ID: mdl-35314307

ABSTRACT

Effective fractionation of lignocellulosic biocomponents of lignocellulosic biomass can increase its utilization in anaerobic digestion for high yield biomethane production. A hydrothermal process was optimized and integrated with a deep eutectic solvent (DES) pretreatment to preferentially fractionate hemicellulose, cellulose, and lignin in rice straw. The optimized hydrothermal process resulted in 96% hemicellulose solubilization at moderately low combined pretreatment severity (log S = 2.26), allowing increased hemicellulosic sugar recovery with minimal formation of inhibitory byproducts. Subsequent DES pretreatment resulted in highly bioaccessible cellulosic pulp, removing 81.3% of lignin that can be recovered and converted into value-added products. Anaerobic digestion of hemicellulosic fraction and cellulosic pulp using a microbial methanogenic consortium seed acclimatized to the lignocellulosic inhibitors resulted in a 33.4% higher yield of methane (467.84 mL g-1 VSinitial) than with anaerobic digester sludge seed. This integrated approach can facilitate and maximize the targeted utilization of different biocomponents through sustainable biorefining.


Subject(s)
Deep Eutectic Solvents , Lignin , Anaerobiosis , Biomass , Hydrolysis , Lignin/metabolism , Methane
15.
Bioresour Technol ; 344(Pt B): 126325, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34785329

ABSTRACT

Biorefineries are an essential step towards implementing a circular economy in the long term. They are based on renewable raw materials and must be designed holistically, recovering building blocks from being converted into several products. Lignocellulosic biomass is considered a critical pillar for a biologically based economy and a high value-added feedstock. The separation of the structural complexity that makes up the biomass allows the development of different product flows. Chemical, physical, and biological processes are evaluated for fractionation, hydrolysis, and fermentation processes in biorefineries; however, the volume of freshwater used affects water safety and increases the economic costs. Non-potable-resources-based technologies for biomass bioconversion are essential for biorefineries to become environmentally and economically sustainable systems. Studies are being carried out to substitute freshwater with seawater to reduce the water footprint. Accordingly, this review addresses a comprehensive discussion about seawater-based biorefineries focusing on lignocellulosic biomass conversion in biofuel and value-added products.


Subject(s)
Lignin , Water , Biofuels , Biomass , Seawater
16.
Polymers (Basel) ; 13(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808135

ABSTRACT

Lignocellulosic biomass fractionation is typically performed using methods that are somehow harsh to the environment, such as in the case of kraft pulping. In recent years, the development of new sustainable and environmentally friendly alternatives has grown significantly. Among the developed systems, bio-based solvents emerge as promising alternatives for biomass processing. Therefore, in the present work, the bio-based and renewable chemicals, levulinic acid (LA) and formic acid (FA), were combined to fractionate lignocellulosic waste (i.e., maritime pine sawdust) and isolate lignin. Different parameters, such as LA:FA ratio, temperature, and extraction time, were optimized to boost the yield and purity of extracted lignin. The LA:FA ratio was found to be crucial regarding the superior lignin extraction from the waste biomass. Moreover, the increase in temperature and extraction time enhances the amount of extracted residue but compromises the lignin purity and reduces its molecular weight. The electron microscopy images revealed that biomass samples suffer significant structural and morphological changes, which further suggests the suitability of the newly developed bio-fractionation process. The same was concluded by the FTIR analysis, in which no remaining lignin was detected in the cellulose-rich fraction. Overall, the novel combination of bio-sourced FA and LA has shown to be a very promising system for lignin extraction with high purity from biomass waste, thus contributing to extend the opportunities of lignin manipulation and valorization into novel added-value biomaterials.

17.
Bioresour Technol ; 329: 124891, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33676355

ABSTRACT

The aim of this work was to study the production and characterization of tall oil lignin (TOL) from tall oil soap (TOS) of the kraft pulping process following a new process (i.e., LignoTall). Also, the properties of the TOL and kraft lignin (KL) produced via LignoForce technology were compared. Although TOL and KL were generated from the same black liquor and softwood species, they had remarkably different characteristics, confirming the impact of the production methods on the physicochemical properties of the isolated lignin. TOL had higher molecular weight, O/C elemental ratio, sulfur content, and carboxylate-OH content but lower methoxy group content than did KL. The high sulfur group content (7.3%) of TOL can be very useful for the vulcanization process. Moreover, the high carboxylate-OH content of TOL (0.56 mmol/g) is desirable for its utilization in epoxy resin production.


Subject(s)
Lignin , Plant Oils
18.
Int J Biol Macromol ; 177: 294-305, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33607141

ABSTRACT

Lignocellulosic biomass is a renewable and sustainable feedstock, mainly composed of cellulose, hemicellulose, and lignin. Lignin, as the most abundant natural aromatic polymer occurring on Earth, has great potential to produce value-added products. However, the isolation of highly pure lignin from biomass requires the use of efficient methods during lignocellulose fractionation. Therefore, in this work, novel acidic deep eutectic solvents (DESs) were prepared, characterized and screened for lignin extraction from maritime pine wood (Pinus pinaster Ait.) sawdust. The use of cosolvents and the development of new DES were also evaluated regarding their extraction and selectivity performance. The results show that an 1 h extraction process at 175 °C, using a novel DES composed of lactic acid, tartaric acid and choline chloride, named Lact:Tart:ChCl, in a molar ratio of 4:1:1, allows the recovery of 95 wt% of the total lignin present in pine biomass with a purity of 89 wt%. Such superior extraction of lignin with remarkable purity using a "green" solvent system makes this process highly appealing for future large-scale applications.


Subject(s)
Choline/chemistry , Lactic Acid/chemistry , Lignin/isolation & purification , Pinus/chemistry , Tartrates/chemistry , Wood/chemistry , Lignin/chemistry , Solvents/chemistry
19.
Bioresour Technol ; 281: 359-366, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30831515

ABSTRACT

In this study, acidic deep eutectic solvents (DES) synthesized from various organic carboxylic acid hydrogen bond donors were applied to lignocellulosic oil palm empty fruit bunch (EFB) pretreatment. The influence of functional group types on acid and their molar ratios with hydrogen bond acceptor on lignin extraction were evaluated. The result showed presence of hydroxyl group and short alkyl chain enhanced biomass fractionation and lignin extraction. Choline chloride:lactic acid (CC-LA) with the ratio of 1:15 and choline chloride:formic acid (CC-FA) with 1:2 ratio extracted more than 60 wt% of lignin. CC-LA DES-extracted lignin (DEEL) exhibited comparable reactivity with technical and commercial lignin based on its phenolic hydroxyl content (3.33-3.72 mmol/glignin). Also, the DES-pretreated EFB comprised of enriched glucan content after biopolymer fractionation. Both DES-pretreated EFB and DEEL can be potential feedstock for subsequent conversion processes. This study presented DES as an effective and facile pretreatment method for reactive lignin extraction.


Subject(s)
Lignin/chemistry , Biomass , Chemical Fractionation , Choline/chemistry , Lactic Acid/chemistry , Solvents/chemistry
20.
ChemSusChem ; 12(2): 404-408, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30485687

ABSTRACT

Herein, a catalytic reductive fractionation of lignocellulose is presented using a heterogeneous cobalt catalyst and formic acid or formate as a hydrogen donor. The catalytic reductive fractionation of untreated birch wood yields monophenolic compounds in up to 34 wt % yield of total lignin, which corresponds to 76 % of the theoretical maximum yield. Model compound studies revealed that the main role of the cobalt catalyst is to stabilize the reactive intermediates formed during the organosolv pulping by transfer hydrogenation and hydrogenolysis reactions. Additionally, the cobalt catalyst is responsible for depolymerization reactions of lignin fragments through transfer hydrogenolysis reactions, which target the ß-O-4' bond. The catalyst could be recycled three times with only negligible decrease in efficiency, showing the robustness of the system.

SELECTION OF CITATIONS
SEARCH DETAIL