Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1233939, 2023.
Article in English | MEDLINE | ID: mdl-37675404

ABSTRACT

This work consists of analyzing the impact of geometrical features (thickness and curvature) on the estimation of circumferential residual stresses in arteries. For this purpose, a specific sample of lamb abdominal artery is chosen for analysis and, through computational tools based on Python libraries, the stress-free geometry is captured after the ring opening test. Numerical simulations are then used to reconstruct the sample in order to estimate the circumferential residual stresses. Then, four stress-free geometry models are analyzed: an ideal geometry, i.e., constant curvature and thickness; a constant curvature and variable thickness geometry; a variable curvature and constant thickness geometry; and a variable curvature and thickness geometry. The numerical results show that models perform well from a geometric point of view, where the most different feature was the closed outer perimeter that differs about 14% from the closed real sample. As far as residual stress is concerned, differences up to 198% were found in more realistic models taking a constant curvature and thickness model as reference. Thus, the analysis of a realistic geometry with highly variable curvature and thickness can introduce, compared to an idealized geometry, significant differences in the estimation of residual stresses. This could indicate that the characterization of arterial residual stresses is not sufficient when considering only the opening angle and, therefore, it is also necessary to incorporate more geometrical variables.

2.
J Mech Behav Biomed Mater ; 88: 92-101, 2018 12.
Article in English | MEDLINE | ID: mdl-30142566

ABSTRACT

Fetal growth restriction (FGR) is a perinatal condition associated with a low birth weight that results mainly from maternal and placental constrains. Newborns affected by this condition are more likely to develop in the long term cardiovascular diseases whose origins would be in an altered vascular structure and function defined during fetal development. Thus, this study presents the modeling and numerical simulation of systemic vessels from guinea pig fetuses affected by FGR. We aimed to characterize the biomechanical properties of the arterial wall of FGR-derived the aorta, carotid, and femoral arteries by performing ring tensile and ring opening tests and, based on these data, to simulate the biomechanical behavior of FGR vessels under physiological conditions. The material parameters were first obtained from the experimental data of the ring tensile test. Then, the residual stresses were determined from the ring opening test and taken as initial stresses in the simulation of the ring tensile test. These two coupled steps are iteratively considered in a nonlinear least-squares algorithm to obtain the final material parameters. Then, the stress distribution changes along the arterial wall under physiological pressure were quantified using the adjusted material parameters. Overall, the obtained results provide a realistic approximation of the residual stresses and the changes in the mechanical behavior under physiological conditions.


Subject(s)
Arteries , Fetal Growth Retardation , Mechanical Phenomena , Animals , Biomechanical Phenomena , Female , Guinea Pigs , Male , Materials Testing , Pressure , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL