Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Regen Ther ; 26: 366-381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39050552

ABSTRACT

The current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone. This study investigated the biocompatibility and osteogenic potential of a novel, sustainably grown Pocillopora scaffold with human bone marrow-derived mesenchymal stromal cells (MSCs). The coral-derived scaffold displays a highly textured topography, with concavities of uniform size and a high calcium carbonate content. Large scaffold samples exhibit compressive and diametral tensile strengths in the range of trabecular bone, with strengths likely increasing for smaller particulate samples. Following the in vitro seeding of MSCs adjacent to the scaffold, the MSCs remained viable, continued proliferating and metabolising, demonstrating biocompatibility. The seeded MSCs densely covered the coral scaffold with organized, aligned cultures with a fibroblastic morphology. In vivo coral scaffolds with MSCs supported earlier bone and blood vessel formation as compared to control constructs containing TCP-HA and MSCs. This work characterized a novel, sustainably grown coral scaffold that was biocompatible with MSCs and supports their in vivo osteogenic differentiation, advancing the current repertoire of biomaterials for bone grafting.

2.
Eur J Trauma Emerg Surg ; 50(1): 315-326, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37646799

ABSTRACT

PURPOSE: Recently, a surgical suction filter device was introduced which aims at generating a suction filter-derived bone grafting substitute (SF-BGS). The osteogenic capacity of this grafting material, however, is unclear. MicroRNAs (miRNAs) and osteogenic mRNAs may influence these processes. The aim of this study was therefore to investigate the quality of the SF-BGS by determining the expression of miRNAs and osteogenic mRNAs. METHODS: Samples were collected during non-union surgery. Upon exposure of the intramedullary canal, the surgical vacuum system was fitted with the suction filter device containing collagen complex and synthetic ß-TCP: (Ca3(PO4)2, granule size 5-8 mm, total volume 10 mL (Cerasorb Foam®, Curasan AG, Kleinostheim, Germany). As a control, venous blood was used as in current clinical practice. Samples were snap-frozen and mechanically disrupted. MiRNAs and mRNAs were isolated, transcribed, and pooled for qPCR analysis. Lastly, mRNA targets were determined through in silico target analyses. RESULTS: The study population consisted of seven patients with a posttraumatic long bone non-union (4♀; mean age 54 ± 16 years). From the array data, distinct differences in miRNA expression were found between the SF-BGS and control samples. Osteogenic marker genes were overall upregulated in the SF-BGS. Qiagen IPA software identified 1168 mRNA targets for 43 of the overall deregulated miRNAs. CONCLUSION: This study revealed distinctly deregulated and exclusively expressed osteogenic miRNAs in SF-BGS, as well as overall enhanced osteogenic marker gene expression, as compared to the venous blood control group. These expression profiles were not seen in control samples, indicating that the derived material displays an osteogenic profile. It may therefore be a promising tool to generate a BGS or graft extender when needed.


Subject(s)
Bone Substitutes , MicroRNAs , Humans , Adult , Middle Aged , Aged , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Bone Transplantation , Suction , Bone and Bones , Bone Substitutes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL