Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825715

ABSTRACT

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Subject(s)
Arabidopsis , Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Plants, Genetically Modified , Plants, Genetically Modified/genetics , Arabidopsis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Animals , Endotoxins/genetics , Promoter Regions, Genetic/genetics , Bacillus thuringiensis/genetics , Moths/genetics , Brassica/genetics , Pest Control, Biological/methods , Insecticides/pharmacology
2.
Appl Environ Microbiol ; 90(4): e0177823, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38470126

ABSTRACT

The Bacillus cereus sensu stricto (s.s.) species comprises strains of biovar Thuringiensis (Bt) known for their bioinsecticidal activity, as well as strains with foodborne pathogenic potential. Bt strains are identified (i) based on the production of insecticidal crystal proteins, also known as Bt toxins, or (ii) based on the presence of cry, cyt, and vip genes, which encode Bt toxins. Multiple bioinformatics tools have been developed for the detection of crystal protein-encoding genes based on whole-genome sequencing (WGS) data. However, the performance of these tools is yet to be evaluated using phenotypic data. Thus, the goal of this study was to assess the performance of four bioinformatics tools for the detection of crystal protein-encoding genes. The accuracy of sequence-based identification of Bt was determined in reference to phenotypic microscope-based screening for the production of crystal proteins. A total of 58 diverse B. cereus sensu lato strains isolated from clinical, food, environmental, and commercial biopesticide products underwent WGS. Isolates were examined for crystal protein production using phase contrast microscopy. Crystal protein-encoding genes were detected using BtToxin_Digger, BTyper3, IDOPS (identification of pesticidal sequences), and Cry_processor. Out of 58 isolates, the phenotypic production of crystal proteins was confirmed for 18 isolates. Specificity and sensitivity of Bt identification based on sequences were 0.85 and 0.94 for BtToxin_Digger, 0.97 and 0.89 for BTyper3, 0.95 and 0.94 for IDOPS, and 0.88 and 1.00 for Cry_processor, respectively. Cry_processor predicted crystal protein production with the highest specificity, and BtToxin_Digger and IDOPS predicted crystal protein production with the highest sensitivity. Three out of four tested bioinformatics tools performed well overall, with IDOPS achieving high sensitivity and specificity (>0.90).IMPORTANCEStrains of Bacillus cereus sensu stricto (s.s.) biovar Thuringiensis (Bt) are used as organic biopesticides. Bt is differentiated from the foodborne pathogen Bacillus cereus s.s. by the production of insecticidal crystal proteins. Thus, reliable genomic identification of biovar Thuringiensis is necessary to ensure food safety and facilitate risk assessment. This study assessed the accuracy of whole-genome sequencing (WGS)-based identification of Bt compared to phenotypic microscopy-based screening for crystal protein production. Multiple bioinformatics tools were compared to assess their performance in predicting crystal protein production. Among them, identification of pesticidal sequences performed best overall at WGS-based Bt identification.


Subject(s)
Bacillus thuringiensis , Insecticides , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus cereus/genetics , Bacillus thuringiensis Toxins , Genome, Bacterial , Genomics , Insecticides/metabolism , Bacterial Proteins/chemistry
3.
Toxicol Res (Camb) ; 13(2): tfae043, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525247

ABSTRACT

Introduction: Genetic engineering has revolutionized agriculture by transforming biotic and abiotic stress-resistance genes in plants. The biosafety of GM crops is a major concern for consumers and regulatory authorities. Methodology: A 14-week biosafety and toxicity analysis of transgenic cotton, containing 5 transgenes ((Cry1Ac, Cry2A, CP4 EPSPS, VIP3Aa, and ASAL)), was conducted on albino mice. Thirty mice were divided into three groups (Conventional, Non-transgenic, without Bt, and transgenic, containing targeted crop) according to the feed given, with 10 mice in each group, with 5 male and 5 female mice in each group. Results: During the study, no biologically significant changes were observed in the non-transgenic and transgenic groups compared to the control group in any of the study's parameters i.e. increase in weight of mice, physiological, pathological, and molecular analysis, irrespective of the gender of the mice. However, a statistically significant change was observed in the hematological parameters of the male mice, while no such change was observed in the female study group mice. The expression analysis, however, of the TNF gene increases many folds in the transgenic group as compared to the non-transgenic and conventional groups. Conclusion: Overall, no physiological, pathological, or molecular toxicity was observed in the mice fed with transgenic feed. Therefore, it can be speculated that the targeted transgenic crop is biologically safe. However, more study is required to confirm the biosafety of the product on the animal by expression profiling.

4.
Front Plant Sci ; 15: 1328759, 2024.
Article in English | MEDLINE | ID: mdl-38510447

ABSTRACT

Introduction: Excessive application of nitrogen fertilizer in cotton field causes soil and water pollution as well as significant increase of aphid population. Reasonable fertilization is an important approach to improve agricultural production efficiency and reduce agriculture-derived pollutions. This study was aimed to explore the effects of nitrogen fertilizer on the Bt cotton physiological characteristics and the growth and development of A. gossypii, a sap-sucking cotton pest. Methods: Five different levels of Ca(NO3)2 (0.0 g/kg, 0.3 g/kg, 0.9 g/kg, 2.7 g/kg and 8.1 g/kg) were applied into vermiculite as nitrogen fertilizer in order to explore the effects of nitrogen fertilizer on the growth and development of Bt cotton and aphids. Results: The results showed that the medium level of nitrogen fertilizer (0.9 g/kg) effectively facilitated the growth of Bt cotton plant and suppressed the population expansion of aphids, whereas high and extremely high nitrogen application (2.7 and 8.1 g/kg) significantly increased the population size of aphids. Both high and low nitrogen application benefited aphid growth in multiple aspects such as prolonging nymph period and adult lifespan, enhancing fecundity, and improving adult survival rate by elevating soluble sugar content in host Bt cotton plants. Cotton leaf Bt toxin content in medium nitrogen group (0.9 g/kg) was significantly higher than that in high (2.7 and 8.1 g/kg) and low (0.3 g/kg) nitrogen groups, but Bt toxin content in aphids was very low in all the nitrogen treatment groups, suggesting that medium level (0.9 g/kg) might be the optimal nitrogen fertilizer treatment level for promoting cotton seedling growth and inhibiting aphids. Discussion: Overall, this study provides insight into trophic interaction among nitrogen fertilizer levels, Bt cotton, and cotton aphid, and reveals the multiple effects of nitrogen fertilizer levels on growth and development of cotton and aphids. Our findings will contribute to the optimization of the integrated management of Bt cotton and cotton aphids under nitrogen fertilization.

5.
Toxicon ; 238: 107588, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38147939

ABSTRACT

Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.


Subject(s)
Arthropod Venoms , Bacillus thuringiensis , Insecticides , Moths , Neonicotinoids , Nitro Compounds , Toxins, Biological , Humans , Infant, Newborn , Animals , Insecticides/toxicity , Glycine max , Helicoverpa armigera , Bacillus thuringiensis Toxins/pharmacology , Larva , Insecta , Toxins, Biological/pharmacology , Arthropod Venoms/pharmacology , Biological Assay , Plant Leaves , Bacterial Proteins/pharmacology , Hemolysin Proteins/toxicity , Endotoxins , Pest Control, Biological , Insecticide Resistance
6.
Life (Basel) ; 13(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38004335

ABSTRACT

About 10% of angiosperms, an estimated 20,000 species, produce latex from ubiquitous isoprene precursors. Latex, an aqueous suspension of rubber particles and other compounds, functions as an antifeedant and herbivory deterrent. It is soluble in neutral to alkaline pH, and coagulates in acidic environments. Here, I propose that foregut-fermenting herbivores such as ruminants, kangaroos, sloths, insect larvae, and tadpoles have adapted to latex in forage with the evolution of alkaline anterior digestive chamber(s). However, they consequently become susceptible to the action of Bacillus thuringiensis (Bt) δ-endotoxin and related bioinsecticides which are activated in alkaline environments. By contrast, hindgut-fermenting herbivores, such as horses and rabbits, have acidic anterior digestive chambers, in which latex coagulates and may cause gut blockage, but in which Bt is not activated. The latex-adapted foregut herbivore vs. latex-maladapted hindgut herbivore hypothesis developed in this paper has implications for hindgut-fermenting livestock and zoo animals which may be provided with latex-containing forage that is detrimental to their gut health. Further, ruminants and herbivorous tadpoles with alkaline anterior chambers are at risk of damage by the supposedly "environmentally friendly" Bt bioinsecticide, which is widely disseminated or engineered into crops which may enter animal feed streams.

7.
Insects ; 14(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37754704

ABSTRACT

Target pests of genetically engineered crops producing both defensive allelochemicals and Bacillus thuringiensis (Bt) toxins often sequentially or simultaneously uptake allelochemicals, Bt toxins, and/or insecticides. How the three types of toxins interact to kill pests remains underexplored. Here we investigated the interactions of Bt toxin Vip3A, plant allelochemical flavone, and insecticide emamectin benzoate in Spodoptera frugiperda. Simultaneous administration of flavone LC25 + Vip3A LC25, emamectin benzoate LC25 + Vip3A LC25, and flavone LC15 + emamectin benzoate LC15 + Vip3A LC15 but not flavone LC25 + emamectin LC25 yielded a mortality significantly higher than their expected additive mortality (EAM). One-day pre-exposure to one toxin at LC5 followed by six-day exposure to the same toxin at LC5 plus another toxin at LC50 showed that the mortality of flavone LC5 + Vip3A LC50, emamectin benzoate LC5 + Vip3A LC50, and Vip3A LC5 + emamectin benzoate LC50 were significantly higher than their EAM, while that of flavone LC5 + emamectin benzoate LC50 was significantly lower than their EAM. No significant difference existed among the mortalities of Vip3A LC5 + flavone LC50, emamectin benzoate LC5 + flavone LC50, and their EAMs. The results suggest that the interactions of the three toxins are largely synergistic (inductive) or additive, depending on their combinations and doses.

8.
J Econ Entomol ; 116(5): 1830-1837, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37738568

ABSTRACT

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a cosmopolitan pest that exploits more than 350 host plants, including economically important crops such as corn, cotton and rice. Control of S. frugiperda largely relies on transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) and spraying synthetic insecticides. Here, we established the susceptibility and diagnostic concentration for 2 Bt toxins and 5 newer insecticides in invasive populations of S. frugiperda from southeastern China. Concentrations causing 50% mortality (LC50) in ten field populations sampled in 2022 ranged from 2.13 to 19.29 and 22.43 to 71.12 ng/cm2 for Cry1Fa and Vip3Aa, and 0.83 to 5.30, 2.83 to 9.94, 0.04 to 0.23, 4.59 to 8.40, and 1.49 to 6.79 mg/liter for chlorantraniliprole, chlorfenapyr, emamectin benzoate, indoxacarb, and spinosad, respectively. Relative to the susceptible strain YJ-19, the largest resistance ratio in the field populations was 5.1, 1.6, 6.2, 3.9, 4.6, 2.2, and 3.6 for Cry1Fa, Vip3Aa, chlorantraniliprole, chlorfenapyr, emamectin benzoate, indoxacarb, and spinosad, respectively, indicating that the field populations were generally susceptible to these Bt toxins and insecticides. Based on the pooled response of the field populations, the diagnostic concentration for resistance monitoring, estimated as ca. twice the LC99, was 400 and 1,500 ng/cm2 for Cry1Fa and Vip3Aa, and 2, 40, 60, 60, and 100 mg/liter for emamectin benzoate, chlorantraniliprole, chlorfenapyr, spinosad, and indoxacarb, respectively. These results provide useful information for monitoring resistance to key Bt toxins and insecticides for the control of S. frugiperda in China.

9.
Toxins (Basel) ; 15(5)2023 05 07.
Article in English | MEDLINE | ID: mdl-37235357

ABSTRACT

Bacillus thuringiensis (Bt) three-domain Cry toxins are highly successful biological pesticides; however, the mechanism through which they cause death to targeted larval midgut cells is not fully understood. Herein, we challenged transgenic Bt-susceptible Drosophila melanogaster larvae with moderate doses of activated Cry1Ac toxin and assessed the midgut tissues after one, three, and five hours using transmission electron microscopy and transcriptome sequencing. Larvae treated with Cry1Ac showed dramatic changes to their midgut morphology, including shortened microvilli, enlarged vacuoles, thickened peritrophic membranes, and swelling of the basal labyrinth, suggesting water influx. Transcriptome analysis showed that innate immune responses were repressed, genes involved with cell death pathways were largely unchanged, and mitochondria-related genes were strongly upregulated following toxin exposure. Defective mitochondria produced after toxin exposure were likely to contribute to significant levels of oxidative stress, which represent a common physiological response to a range of toxic chemicals. Significant reductions in both mitochondrial aconitase activity and ATP levels in the midgut tissue supported a rapid increase in reactive oxygen species (ROS) following exposure to Cry1Ac. Overall, these findings support the role of water influx, midgut cell swelling, and ROS activity in response to moderate concentrations of Cry1Ac.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Larva/metabolism , Insecticides/toxicity , Insecticides/metabolism , Moths/genetics , Reactive Oxygen Species/metabolism , Drosophila melanogaster/metabolism , Endotoxins/toxicity , Endotoxins/metabolism , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins/metabolism , Oxidative Stress , Hemolysin Proteins/genetics , Hemolysin Proteins/toxicity , Hemolysin Proteins/metabolism , Bacterial Proteins/metabolism , Insecticide Resistance/genetics
10.
Pestic Biochem Physiol ; 192: 105385, 2023 May.
Article in English | MEDLINE | ID: mdl-37105627

ABSTRACT

MIR162, a maize event that expresses Vip3Aa20 (Vip3A) approved for commercial cultivation around 2010, has been excellent for control of major Lepidopteran pests. However, development of fall armyworm (FAW) resistance to Vip3A is a serious concern. Resistant colonies selected in the laboratory can serve as valuable tools not only for better understanding of Vip3A's mode of action (MOA) and mechanism of resistance (MOR) but also for screening novel leads of new MOA that will help control FAW in case resistance to Vip3A in the field becomes a reality. We selected a Vip3A-resistant FAW strain, FAWVip3AR, by subjecting a FAW founder population containing field genetics to Vip3A exposure. FAWVip3AR had >9800-fold resistance to Vip3A by diet surface overlay bioassays and resistance was stable. Feeding bioassays using detached leaf tissues or whole plants indicated that FAWVip3AR larvae readily fed and completed the full life cycle on Vip3A-expressing MIR162 maize plants and leaf tissues that killed 100% of susceptible larvae. Yet, FAWVip3AR faced at least two challenges. First, FAWVip3AR suffered an apparent disadvantage (incomplete resistance) when feeding on MIR162 in comparison to FAWVip3AR feeding on Vip3A-free isoline AX5707 maize; and second, FAWVip3AR showed a fitness costs in comparison to a Vip3A-susceptible strain when both fed on AX5707. We also demonstrated that, >10 years after commercialization, MIR162 and Vip3A remain highly efficacious against field populations of three major Lepidopteran pests from different geographic locations and FAW strains resistant to other Bacillus thuringiensis (Bt) toxins that are currently on the market.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/genetics , Zea mays/genetics , Plants, Genetically Modified , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Larva/genetics , Bacillus thuringiensis Toxins , Endotoxins/pharmacology , Insecticide Resistance/genetics , Hemolysin Proteins/pharmacology
11.
Bull Environ Contam Toxicol ; 110(1): 35, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36592218

ABSTRACT

Genetically modified organisms are used extensively in agriculture. To assess potential side effects of genetically modified (GM) plant material on aquatic ecosystems, only a very small number of higher-tier studies have been performed. At the same time, these studies are particularly important for comprehensive risk assessment covering complex ecological relationships. Here we evaluate the methods of experimental higher-tier effect studies with GM plant material (or Bt toxin) in comparison to those well-established for pesticides. A major difference is that nominal test concentrations and thus dose-response relationships cannot easily be produced with GM plant material. Another important difference, particularly to non-systemic pesticides, is that aquatic organisms are exposed to GM plant material primarily through their feed. These and further differences in test requirements, compared with pesticides, call for a standardisation for GM-specific higher-tier study designs to assess their potentially complex effects in the aquatic ecosystems comprehensively.


Subject(s)
Ecosystem , Pesticides , Plants, Genetically Modified/toxicity , Agriculture , Risk Assessment/methods
12.
Front Insect Sci ; 3: 1125987, 2023.
Article in English | MEDLINE | ID: mdl-38469526

ABSTRACT

The Asian citrus psyllid, Diaphorina citri, vectors the bacterial causative agent of citrus greening disease, which has severely impacted citrus production on a global scale. As the current repeated application of chemical insecticides is unsustainable for management of this insect and subsequent protection of groves, we investigated the potential use of the bacteria-derived pesticidal protein, Cry1Ba1, when delivered via transgenic citrus plants. Having demonstrated transformation of the Indian curry leaf tree, Bergera koenigii, for Cry1Ba1 expression for use as a trap plant, we produced transgenic plants of Duncan grapefruit, Citrus paridisi, Valencia sweet orange, Citrus sinensis, and Carrizo citrange, C. sinensis x Poncirus trifoliata, for expression of Cry1Ba1. The presence of the cry1ba1 gene, and cry1ba1 transcription were confirmed. Western blot detection of Cry1Ba1 was confirmed in most cases. When compared to those from wild-type plants, leaf discs from transgenic Duncan and Valencia expressing Cry1Ba1 exhibited a "delayed senescence" phenotype, similar to observations made for transgenic B. koenigii. In bioassays, significant reductions in the survival of adult psyllids were noted on transgenic B. koenigii and Valencia sweet orange plants expressing Cry1Ba1, but not on transgenic Duncan grapefruit or Carrizo citrange. In contrast to psyllids fed on wild type plants, the gut epithelium of psyllids fed on transgenic plants was damaged, consistent with the mode of action of Cry1Ba1. These results indicate that the transgenic expression of a bacterial pesticidal protein in B. koenigii and Valencia sweet orange offers a viable option for management of D. citri, that may contribute to solutions that counter citrus greening disease.

13.
Front Plant Sci ; 13: 899624, 2022.
Article in English | MEDLINE | ID: mdl-35685021

ABSTRACT

The curry leaf tree, Bergera koenigii, is highly attractive to the Asian citrus psyllid, Diaphorina citri, which vectors the bacterial causative agent of citrus greening or huanglongbing disease. This disease has decimated citrus production in Florida and in other citrus-producing countries. As D. citri exhibits high affinity for feeding on young leaves of B. koenigii, transgenic B. koenigii expressing bacteria-derived pesticidal proteins such as Cry1Ba1 have potential for D. citri management when planted in or adjacent to citrus groves. Importantly, the plant pathogenic bacterium that causes citrus greening does not replicate in B. koenigii. Transgenic plants of B. koenigii were produced by insertion of the gene encoding the active core of the pesticidal protein Cry1Ba1 derived from Bacillus thuringiensis. The transformation success rate was low relative to that of other citrus, at 0.89%. T-DNA integration into the genome and cry1ba1 transcription in transgenic plants were confirmed. Transgenic plants expressing Cry1Ba1 differed from wild-type plants, differed in photosynthesis parameters and hormone levels in some instances, and a marked delay in wilting of detached leaves. The gut epithelium of D. citri fed on transgenic plants was severely damaged, consistent with Cry1Ba1-mediated pore formation, confirming expression of the pesticidal protein by transgenic B. koenigii. These results demonstrate that transgenic B. koenigii expressing bacteria-derived pesticidal proteins can be produced for potential use as trap plants for suppression of D. citri populations toward protection of citrus groves from citrus greening.

14.
Ecotoxicol Environ Saf ; 236: 113452, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35366565

ABSTRACT

Bt cotton successfully controlled major devastating pests in cotton,such as Helicoverpa armigera and Spodoptera exigua, and led to a drastic decrease in insecticide use in cotton fields, and it has been grown commercially worldwide. However, Bt cotton cultivation left Bt toxin residues in the soil, resulting in a response by its microbiome that caused potential environmental risks. In this research, the metagenomics analysis was performed to investigate the structure and functions of the soil bacterial community in the Bt cotton field from the Binzhou, Shandong province of China, where the Bt cotton has been cultivated for over fifteen years. Analysis of the function genes proved that the receptors of Bt toxins were absent in the soil bacteria and Bt toxins failed to target the soil bacteria. The microbiome structure and function were highly influenced by Bt cotton cultivation, however, no significant change in the total abundance of the bacteria was observed. Proteobacteria was the largest taxonomic group in the soil bacterial (42-52%) and its abundance was significantly increased after Bt cotton cultivation. The increase of Proteobacteria abundance resulted in an increase in ABC transporters gene abundance, indicating the improved ability of detoxification metabolism over Bt cotton cultivation. Xanthomonadales could be a biomarker of the Bt cotton group, whose abundance was significantly increased to contribute to the increase of the genes abundance in ABC transporters. The abundance of apoptosis genes was significantly decreased, and it might be related to the increase of Proteobacteria abundance by Bt cotton cultivation. In addition, Myxococcales was responsible for carotenoid biosynthesis, whoes genes abundance was significantly decreased due to the decrease of Myxococcales abundance by Bt cotton cultivation. These changes in soil bacterial community structure and functions indicate the influence by Bt cotton cultivation, leading to an understanding of the bacteria colonization patterns due to successive years of Bt cotton cultivation. These research results should be significant for the rational risk assessment of Bt cotton cultivation.


Subject(s)
Bacillus thuringiensis Toxins , Moths , ATP-Binding Cassette Transporters/genetics , Animals , Bacteria/genetics , Bacterial Proteins/genetics , Endotoxins/genetics , Gossypium/genetics , Hemolysin Proteins/genetics , Insecticide Resistance , Metagenomics , Moths/physiology , Plants, Genetically Modified/genetics , Soil
15.
Genes (Basel) ; 12(10)2021 09 28.
Article in English | MEDLINE | ID: mdl-34680917

ABSTRACT

Members of the insect ATP binding cassette transporter subfamily C2 (ABCC2) in several moth species are known as receptors for the Cry1Ac insecticidal protein from Bacillus thuringiensis (Bt). Mutations that abolish the functional domains of ABCC2 are known to cause resistance to Cry1Ac, although the reported levels of resistance vary widely depending on insect species. In this study, the function of the ABCC2 gene as a putative Cry1Ac receptor in Helicoverpa zea, a major pest of over 300 crops, was evaluated using CRISPR/Cas9 to progressively eliminate different functional ABCC2 domains. Results from bioassays with edited insect lines support that mutations in ABCC2 were associated with Cry1Ac resistance ratios (RR) ranging from 7.3- to 39.8-fold. No significant differences in susceptibility to Cry1Ac were detected between H. zea with partial or complete ABCC2 knockout, although the highest levels of tolerance were observed when knocking out half of ABCC2. Based on >500-1000-fold RRs reported in similar studies for closely related moth species, the low RRs observed in H. zea knockouts support that ABCC2 is not a major Cry1Ac receptor in this insect.


Subject(s)
Bacillus thuringiensis Toxins/toxicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Insect Proteins/genetics , Insecticide Resistance , Lepidoptera/metabolism , Multidrug Resistance-Associated Proteins/genetics , Animals , Gene Deletion , Insect Proteins/metabolism , Lepidoptera/drug effects , Lepidoptera/genetics , Multidrug Resistance-Associated Proteins/metabolism
16.
Front Plant Sci ; 12: 660226, 2021.
Article in English | MEDLINE | ID: mdl-34122482

ABSTRACT

Bacillus thuringiensis (Bt) insecticidal protein genes are important tools in efforts to develop insect resistance in poplar. In this study, the Cry1Ac and Cry3A Bt toxin genes were simultaneously transformed into the poplar variety Populus × euramericana 'Neva' by Agrobacterium-mediated transformation to explore the exogenous gene expression and insect resistance, and to examine the effects of Bt toxin on the growth and development of Anoplophora glabripennis larvae after feeding on the transgenic plant. Integration and expression of the transgenes were determined by molecular analyses and the insect resistance of transgenic lines was evaluated in feeding experiments. Sixteen transgenic dual Bt toxin genes Populus × euramericana 'Neva' lines were obtained. The dual Bt toxin genes were expressed at both the transcriptional and translational levels; however, Cry3A protein levels were much higher than those of Cry1Ac. Some of the transgenic lines exhibited high resistance to the first instar larvae of Hyphantria cunea and Micromelalopha troglodyta, and the first and second instar larvae and adults of Plagiodera versicolora. Six transgenic lines inhibited the growth and development of A. glabripennis larvae. The differences in the transcriptomes of A. glabripennis larvae fed transgenic lines or non-transgenic control by RNA-seq analyses were determined to reveal the mechanism by which Bt toxin regulates the growth and development of longicorn beetle larvae. The expression of genes related to Bt prototoxin activation, digestive enzymes, binding receptors, and detoxification and protective enzymes showed significant changes in A. glabripennis larvae fed Bt toxin, indicating that the larvae responded by regulating the expression of genes related to their growth and development. This study lay a theoretical foundation for developing resistance to A. glabripennis in poplar, and provide a foundation for exploring the mechanism of Bt toxin action on Cerambycidae insects.

17.
Arch Insect Biochem Physiol ; 107(3): e21794, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33948968

ABSTRACT

Bombyx mori as a representative in Lepidoptera is an important economic insect in agriculture production. Bacillus thuringiensis (Bt) is a bacterial pathogen in silkworm production. Understanding how silkworm respond to Bt-toxin can provide guidance to cultivate resistant silkworm strains. Cry1Ac is one type of Bt-toxin. In current research, Dazao, a susceptible B. mori strain to Bt-toxin, was treated by Cry1Ac toxin and compared its transcriptome with untreated samples. This analysis detected 1234 differentially expressed genes (DEGs). Gene Ontology, KEGG, and UniProt keyword enrichment analysis showed that DEGs include ATP-binding cassette (ABC) transporter, stress response, cuticle, and protein synthesis, and folding process. Five ABC genes were upregulated after Cry1Ac treatment including ABCA2, ABCA3, and ABCC4. They are also known as the transporters of Bt-toxin in lepidopteran insect. Expression of cuticle proteins was significantly increased at 6 h after Cry1Ac treatment. Sex-specific storage-proteins and heat shock protein were also upregulated in Cry1Ac treated samples. Our data provide an expression profile about the response of Cry1Ac toxin in susceptible B. mori strain.


Subject(s)
Bacillus thuringiensis Toxins/pharmacology , Bombyx/drug effects , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Transcriptome/drug effects , ATP-Binding Cassette Transporters/metabolism , Animals , Bombyx/metabolism , Heat-Shock Proteins/metabolism , Insect Proteins/metabolism
18.
J Econ Entomol ; 114(1): 307-319, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33274391

ABSTRACT

As part of an insect resistance management plan to preserve Bt transgenic technology, annual monitoring of target pests is mandated to detect susceptibility changes to Bt toxins. Currently Helicoverpa zea (Boddie) monitoring involves investigating unexpected injury in Bt crop fields and collecting larvae from non-Bt host plants for laboratory diet bioassays to determine mortality responses to diagnostic concentrations of Bt toxins. To date, this monitoring approach has not detected any significant change from the known range of baseline susceptibility to Bt toxins, yet practical field-evolved resistance in H. zea populations and numerous occurrences of unexpected injury occur in Bt crops. In this study, we implemented a network of 73 sentinel sweet corn trials, spanning 16 U.S. states and 4 Canadian provinces, for monitoring changes in H. zea susceptibility to Cry and Vip3A toxins by measuring differences in ear damage and larval infestations between isogenic pairs of non-Bt and Bt hybrids over three years. This approach can monitor susceptibility changes and regional differences in other ear-feeding lepidopteran pests. Temporal changes in the field efficacy of each toxin were evidenced by comparing our current results with earlier published studies, including baseline data for each Bt trait when first commercialized. Changes in amount of ear damage showed significant increases in H. zea resistance to Cry toxins and possibly lower susceptibility to Vip3a. Our findings demonstrate that the sentinel plot approach as an in-field screen can effectively monitor phenotypic resistance and document field-evolved resistance in target pest populations, improving resistance monitoring for Bt crops.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Canada , Endotoxins , Hemolysin Proteins/genetics , Insecticide Resistance , Pest Control, Biological , Plants, Genetically Modified/genetics , Zea mays/genetics
19.
GM Crops Food ; 12(1): 115-124, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33084486

ABSTRACT

Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are effective tools for controlling lepidopteran pests. However, the degree of susceptibility to Bt toxins differs among various pest species due to relatively narrow spectrum and high selectivity of such toxins. Bt corn hybrids for Chinese market were designed to target Asian corn borer Ostrinia furnacalis (Guenée), while their efficacy against other lepidopteran pests are not well defined, such as Conogethes punctiferalis (Guenée), Helicoverpa armigera (Hübner), Agrotis ypsilon (Rottemberg), and Mythimna separata (Walker), which are also important lepidopteran pests on corn in the Huang-Huai-Hai Summer Corn Region of China. To determine what type of Bt corn is suitable for this region, the efficacy of five Bt toxins, i.e., Cry1Ab, Cry1Ac, Cry1F, Cry2Ab, and Vip3A, to these five lepidopteran species was evaluated in laboratory. Both O. furnacalis and C. punctiferalis showed similar high susceptibility to all five Bt toxins. A. ypsilon and M. separate were less sensitive to Cry1Ab and Cry1Ac than the other species. H. armigera, A. ypsilon and M. separate were less sensitive to Cry1F than O. furnacalis and C. punctiferalis. H. armigera was more sensitive to Cry2Ab than other tested species. All five species were equally sensitive to Vip3A, though their LC50s were all relatively higher. These findings suggest that the first generation Bt corn expressing single Cry1 toxin should not be the first choice because of the potential risk of control failure or less efficacy against H. armigera, A. ypsilon or M. separate. The second-generation Bt corn expressing Cry1 and Cry2 toxins, or the third generation Bt corn expressing Cry1, Cry2 and Vip3A toxins might produce better protection of corn in the Huang-Huai-Hai Summer Corn Region of China.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/genetics , China , Crops, Agricultural , Transcription Factors , Zea mays/genetics
20.
Insect Biochem Mol Biol ; 125: 103456, 2020 10.
Article in English | MEDLINE | ID: mdl-32814147

ABSTRACT

The peritrophic membrane (or peritrophic matrix) (PM) in insects is formed by binding of PM proteins with multiple chitin binding domains (CBDs) to chitin fibrils. Multi-CBD chitin binding proteins (CBPs) and the insect intestinal mucin (IIM) are major PM structural proteins. To understand the biochemical and physiological role of IIM in structural formation and physiological function of the PM, Trichoplusia ni mutant strains lacking IIM were generated by CRISPR/Cas9 mutagenesis. The mutant T. ni larvae were confirmed to lack IIM, but PM formation was observed as in wild type larvae and lacking IIM in the PM did not result in changes of protease activities in the larval midgut. Larval growth and development of the mutant strains were similar to the wild type strain on artificial diet and cabbage leaves, but had a decreased survival in the 5th instar. The larvae of the mutant strains with the PM formed without IIM did not have a change of susceptibility to the infection of the baculovirus AcMNPV and the Bacillus thuringiensis (Bt) formulation Dipel, to the toxicity of the Bt toxins Cry1Ac and Cry2Ab and the chemical insecticide sodium aluminofluoride. Treatment of the mutant T. ni larvae with Calcofluor reduced the larval susceptibility to the toxicity of Bt Cry1Ac, as similarly observed in the wild type larvae. Overall, in the mutant T. ni larvae, the PM was formed without IIM and the lacking of IIM in the PM did not drastically impact the performance of larvae on diet or cabbage leaves under the laboratory conditions.


Subject(s)
Digestive System/metabolism , Moths/metabolism , Mucins , Animals , Bacillus thuringiensis Toxins/toxicity , CRISPR-Cas Systems , Chitin/metabolism , Gene Silencing , Genes, Insect , Insect Proteins/metabolism , Insecticides/toxicity , Larva/metabolism , Mucins/drug effects , Mucins/genetics , Mucins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL