Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.311
Filter
1.
Front Oncol ; 14: 1397613, 2024.
Article in English | MEDLINE | ID: mdl-39099684

ABSTRACT

Chimeric Antigen Receptor T-cell (CAR-T) therapies are transforming the treatment of B-cell lymphoproliferative disorders and multiple myeloma, yet global access challenges and barriers for their implementation persist. Global access disparities persist, particularly for persons living in low and middle-income countries and for underserved populations in high income countries. In this review we address patient-related factors including age, comorbidities, fitness, race and ethnicity, and geographic location for CAR-T access. Also, we review disease-related and health system barriers like disease biology, potential for short and long-term toxicity, insurance access, referrals, supply and manufacturing, regulation, costs and treatment center capacity. Lastly, alternatives for overcoming these barriers exemplified by research efforts worldwide are discussed, emphasizing the need for a multifaceted approach from all stakeholders to improve global accessibility and ensure equitable access and improved outcomes for patients worldwide.

3.
Exp Hematol Oncol ; 13(1): 75, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103961

ABSTRACT

Chimeric antigen receptor (CAR) serves as the foundational element of CAR-T cells. Exogenous CAR molecules can exert functional effects on allogeneic T cells, leading to their activation and subsequent functional alterations. Here we show a new method based on this biological principle: the transfer of CAR molecules from exogenous cells to the membrane of receptor T cells. This process facilitates receptor T cell to recognize target antigens and induces their activation. These patches imbued normal T cells with enhanced tumor targeting capabilities and activated their inherent killing functions. This method's efficacy introduces an approach for constructing non-genetically manipulated CAR-T cells and holds potential for application to other immune cells.

4.
Best Pract Res Clin Haematol ; 37(2): 101557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39098799

ABSTRACT

The European society for Blood and Marrow Transplantation (EBMT) has a long-standing interest in the evaluation of hematopoietic cell transplantation. More than three decades ago, its members established a continental registry. Today, more than 700,000 patients have been registered, and information has been gathered on more than 800,000 transplants. This huge amount of information has allowed conducting multiple retrospective studies, evaluating changes in practices over time and for different categories of diseases, benchmarking outcome across EBMT affiliated centers, and increasingly serves to build synthetic comparators to evaluate the introduction of therapeutic innovations in the field of hematology. CAR-T cells therapies draw on human and technical resources that are also used to deliver HCT; they elicit side effects that require the implementation of risk mitigation plans; they are living drugs that persist in the body of the recipient and thus deserve prolonged follow-up; the introduction of CAR-T cells in the pharmacopeia is likely to significantly impact on the practice of BMT; for all these reasons and even before the first approvals of CAR-T Cells in Europe, EBMT engaged in a project aiming at complementing the EBMT Registry with a Cellular Therapy Form, with the objective to register CAR-T cells treated patients and collect information on their short-, middle- and long-term outcome. The goal is to provide EBMT investigators with a tool for primary analyses of the collected information and to support secondary use of data transferred at the individual level to Marketing Authorization Holders and other interested parties, to fulfill their obligations to health authorities and further evaluate the actual medical values of CAR-T Cells in different contexts and indications. The EBMT Registry received a positive opinion from the European Medicines agency in 2019, and five years later contains information on more than 9.000 treated patients. This article describes the journey to start this new activity, lessons to be drawn in view of improving the collection of real-world data, and what existing information tells us in terms of patient access.


Subject(s)
Immunotherapy, Adoptive , Registries , Humans , Immunotherapy, Adoptive/methods , Europe , Hematopoietic Stem Cell Transplantation , Receptors, Chimeric Antigen/therapeutic use
5.
MedComm (2020) ; 5(8): e682, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39105196

ABSTRACT

Deciphering the intricate cell-state transitions orchestrating immune adaptation over time stands as a cornerstone for advancing biological understanding. However, the lack of empirical in vivo genomic technologies capable of capturing cellular dynamics has posed a significant challenge. In response to this gap, a groundbreaking study introduces Zman-seq, a single-cell technology that records transcriptomic dynamics across time by incorporating time stamps into circulating immune cells, enabling their tracking in tissues for extended periods. The application of Zman-seq in glioblastoma research has successfully unraveled the cell state and molecular trajectories underlying the dysfunctional immune microenvironment. Understanding the temporal aspects of cell-state transitions during immune responses is pivotal for advancing our knowledge in biology. The emergence of Zman-seq addresses the current limitations in empirical in vivo genomic technologies, offering a revolutionary approach to studying the dynamics of immune cells over time. This highlight comprehensively explores the implications of Zman-seq in resolving cell-state transitions and molecular trajectories within the dysfunctional immune microenvironment in different types of immunotherapy. This technique has particular potential for chimeric antigen receptor T-cell therapy, overriding drug resistance, clinical medication optimization, and facilitating drug development. In particular, this article discusses potential strategies for improving the efficacy of clinical treatments.

6.
Heliyon ; 10(14): e34008, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39130478

ABSTRACT

OBJECTIVE: In gastric cancer cells, the influence of CAR T cells can be produced in the process of inhibiting the progression of gastric cancer, and the role of tyrosine phosphatase SHP2 can be explored in this study, along with its molecular mechanisms. METHODS: The research utilized subcutaneous tumor models in nude mice to assess gastric cancer progression. Protein expression was detected using Western blotting, while Q-PCR examined the expression levels of lncRNA SNHG18 and miR-211-5p in MGC-803 cells. The relationship between miR-211-5p and lncRNA SNHG18 can be analyzed by dual luciferase reporter genes. The migratory ability of MGC-803 cells was determined through wound healing and transwell experiments, and cell proliferation was evaluated using a CCK-8 assay. RESULTS: SHP2 was found to inhibit the cytotoxic effects of CAR-T cells on MGC-803 cells, and it suppressed the expression of proteins related to the ROS/JNK/NFAT4 signaling pathway in MGC-803 cells and the miR-211-5p/BRD4 axis in CAR-T cells. In addition, the proliferation, invasion and migration of MGC-803 cells were promoted, and the expression of miR-211-5p could be inhibited specifically by ncRNA SNHG18, as shown below:SHP2 in gastric cancer cells mediates the ROS/JNK/NFAT4 signaling pathway and induces lncRNA SNHG18, which, through the miR-211-5p/BRD4 axis in CAR-T cells, promotes gastric cancer growth and metastasis.

7.
Front Immunol ; 15: 1431211, 2024.
Article in English | MEDLINE | ID: mdl-39136031

ABSTRACT

Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy, Adoptive , Liver Neoplasms , T-Lymphocytes, Regulatory , Tumor Escape , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , T-Lymphocytes, Regulatory/immunology , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Tumor Escape/immunology , Immunotherapy, Adoptive/methods , Animals , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics
8.
Discov Oncol ; 15(1): 342, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127974

ABSTRACT

Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.

9.
Br J Pharmacol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129178

ABSTRACT

BACKGROUND AND PURPOSE: Although our previous data indicated that claudin 18 isoform 2 (CLDN18.2)-targeted chimeric antigen receptor (CAR) T cells displayed remarkable clinical efficacy in CLDN18.2-positive gastric cancer, their efficacy is limited in pancreatic ductal adenocarcinoma (PDAC). The tumour microenvironment (TME) is one of the main obstacles to the efficacy of CAR-T and remodelling the TME may be a possible way to overcome this obstacle. The TME of PDAC is characterized by abundant cancer-related fibroblasts (CAFs), which hinder the infiltration and function of CLDN18.2-targeted CAR-T cells. The expression of fibroblast activation protein alpha (FAP) is an important feature of active CAFs, providing potential targets for eliminating CAFs. EXPERIMENTAL APPROACH: In this study, we generated 10 FAP/CLDN 18.2 dual-targeted CAR-T cells and evaluated their anti-tumour ability in vitro and in vivo. KEY RESULTS: Compared with conventional CAR-T cells, some dual-targeted CAR-T cells showed improved therapeutic effects in mouse pancreatic cancers. Further, dual-targeted CAR-T cells with better anti-tumour effect could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) to improve the immunosuppressive TME, which contributes to the survival of CD8+ T cells. Moreover, dual-targeted CAR-T cells reduced the exhaustion of T cells in transforming TGF-ß dependent manner. CONCLUSION AND IMPLICATIONS: The dual-targeted CAR-T cells obtained enhancement of T effector function, inhibition of T cell exhaustion, and improvement of tumour microenvironment. Our findings provide a theoretical rationale for dual-targeted FAP/CLDN 18.2 CAR-T cells therapy in PDAC.

10.
Cell Mol Immunol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134804

ABSTRACT

In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.

11.
J Cancer Immunol (Wilmington) ; 6(1): 20-28, 2024.
Article in English | MEDLINE | ID: mdl-39119270

ABSTRACT

The emergence of chimeric antigen receptor T cell (CAR-T cell) therapy has revolutionized cancer treatment, particularly for hematologic malignancies. This commentary discusses developments in CAR-T cell therapy, focusing on the molecular mechanisms governing T cell fate and differentiation. Transcriptional and epigenetic factors play a pivotal role in determining the specificity, effectiveness, and durability of CAR-T cell therapy. Understanding these mechanisms is crucial to improve the efficacy and decrease the adverse events associated with CAR-T cell therapies, unlocking the full potential of these approaches. T cell differentiation in CAR-T cell product manufacturing plays an important role in clinical outcomes. A positive correlation exists between the clinical efficacy of CAR-T cell therapy and signatures of memory, whereas a negative correlation has been observed with signatures of effector function or exhaustion. The effectiveness of CAR-T cell products is likely influenced by T-cell frequency and by their ability to proliferate, which is closely linked to early T cell differentiation. The differentiation process involving distinct T memory cell subsets is initiated upon antigen elimination, indicating infection resolution. In chronic infections or cancer, T cells may undergo exhaustion, marked by continuous inhibitory receptor expression, decreased cytokine production, and diminished proliferative capacity. Other cell subsets, such as CD4+ T cells, innate-like T lymphocytes, NKT cells, and cord blood-derived hematopoietic stem cells, offer unique advantages in developing the next-generation CAR-T cell-based therapies. Future research should focus on optimizing T-cell-enhancing approaches and developing strategies to potentially cure patients with hematological diseases and solid tumors.

12.
Cells ; 13(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120313

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints. Although much remains unknown about the pathogenesis of RA, there is evidence that impaired immune tolerance and the development of RA are related. And it is precisely the restoration of immune tolerance at the site of the inflammation that is the ultimate goal of the treatment of RA. Over the past few decades, significant progress has been made in the treatment of RA, with higher rates of disease remission and improved long-term outcomes. Unfortunately, despite these successes, the proportion of patients with persistent, difficult-to-treat disease remains high, and the task of improving our understanding of the basic mechanisms of disease development and developing new ways to treat RA remains relevant. This review focuses on describing new treatments for RA, including cell therapies and gene editing technologies that have shown potential in preclinical and early clinical trials. In addition, we discuss the opportunities and limitations associated with the use of these new approaches in the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Cell- and Tissue-Based Therapy , Gene Editing , Humans , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/genetics , Gene Editing/methods , Cell- and Tissue-Based Therapy/methods , Animals
13.
Pediatr Rheumatol Online J ; 22(1): 72, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118067

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune condition that can affect multiple organ systems and is heterogenous in its presentation and response to therapy. When diagnosed in childhood, SLE is associated with increased morbidity and mortality compared to adult SLE, often requiring substantial immunosuppression with the risk of significant side effects. There remains a significant unmet need for new therapies that can improve disease control and reduce glucocorticoid and other toxic medication exposure for patients with severe or refractory disease. The pathogenesis of SLE involves B cell dysregulation and autoantibody production, which are a hallmark of the disease. Currently approved B cell directed therapies often result in incomplete B cell depletion and may not target long-lived plasma cells responsible for SLE autoantibodies. It is hypothesized that by persistently eliminating both B cells and plasmablasts, CAR T therapy can halt autoimmunity and prevent organ damage in patient's refractory to current B cell-depleting treatments. Herein we summarize the current preclinical and clinical data utilizing CAR T cells for SLE and discuss the future of this treatment modality for lupus.


Subject(s)
Immunotherapy, Adoptive , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/therapy , Child , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , B-Lymphocytes/immunology , T-Lymphocytes/immunology , Receptors, Chimeric Antigen/immunology
14.
Front Mol Med ; 4: 1310002, 2024.
Article in English | MEDLINE | ID: mdl-39086435

ABSTRACT

Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.

15.
Future Oncol ; : 1-12, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110421

ABSTRACT

WHAT IS THIS SUMMARY ABOUT?: This is a summary of a phase 3 clinical trial called CARTITUDE-4. This trial compared the anti-cancer therapy ciltacabtagene autoleucel (or cilta-cel) with standard therapies in people who have multiple myeloma, a cancer that affects specific kinds of blood cells called plasma cells. The people in the study had been treated with 1 to 3 previous treatments for multiple myeloma, including a common anti-myeloma treatment called lenalidomide, but their multiple myeloma did not get better. HOW WAS THE STUDY IN THIS SUMMARY CONDUCTED?: About half of the 419 participants in this study received cilta-cel, while the other half received standard therapies, or therapies that are commonly used to treat multiple myeloma. Participants who received cilta-cel had a type of immune cell called T cells collected from their blood and genetically modified to recognize a specific protein found on myeloma cells. These modified T cells, which comprise cilta-cel, were then infused back into the bloodstream. WHAT WERE THE RESULTS OF THE STUDY?: After approximately 1 year in the study, more participants were alive without their cancer getting worse in the cilta-cel group (76%) than in the standard therapies group (49%). The most common side effects in both groups were infections and low blood cell counts. Cytokine release syndrome (a potentially serious side effect caused by overactivation of the immune system) was common but mostly mild. Neurotoxicities (including immune effector cell-associated neurotoxicity syndrome, which can cause symptoms such as headaches, changes in consciousness, and difficulty with memory, attention, speaking, or understanding others) were less common and were reported in 20.5% of participants treated with cilta-cel. WHAT WERE THE MAIN CONCLUSIONS REPORTED BY THE RESEARCHERS?: In CARTITUDE-4, more participants treated with cilta-cel showed improvements and were alive with control of their disease 12 months after receiving cilta-cel compared with participants who received standard therapies.Clinical Trial Registration: NCT04181827 (CARTITUDE-4) (ClinicalTrials.gov).

16.
Expert Opin Pharmacother ; : 1-10, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39087712

ABSTRACT

INTRODUCTION: Chimeric antigen receptor (CAR) T-cells have revolutionized cancer treatment, showing significant success, including treatment of pediatric B-cell acute lymphoblastic leukemia (B-ALL). Despite their efficacy, cytokine release syndrome (CRS) emerges as a common early adverse effect that can be life threatening in severe cases, resulting from the immune system's targeted activation against tumors. AREAS COVERED: This review concentrates on CRS in children and young adults undergoing CAR T-cell therapy for B-ALL. It explores CRS pathophysiology, clinical presentation, and incidence, emphasizing the importance of a consensus definition and grading to homogenize the treatment according to the severity of symptoms. We will discuss the standard of care treatment of CRS but also novel approaches. We will highlight the importance of managing CRS without compromising the efficacy of immune cell activation against tumors. EXPERT OPINION: As CAR T-cell therapy in pediatric B-ALL become increasingly available and used, optimal management of CRS becomes increasingly important. Early recognition and timely management has improved. Further information will aid us to identify optimal timing of tocilizumab and corticosteroids. Continued bench research coupled with clinical studies and biomarker discovery will allow for valuable insights into CRS pathophysiology and patient and/or cell-targeted treatments.

18.
Article in English | MEDLINE | ID: mdl-39102166

ABSTRACT

OPINION STATEMENT: Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.

19.
Hum Vaccin Immunother ; 20(1): 2378543, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39104200

ABSTRACT

CAR-T cell therapy has established itself as a highly effective treatment for hematological malignancies. There are currently six commercial CAR-T products that have been FDA approved for diseases such as B-ALL, LBCL, MCL, FL, MM, and CLL/SLL. "Real-world" studies allow us to evaluate outcomes from the general population to determine their efficacy and safety compared to those who were included in the original trials. Based on several well conducted "Real-world" studies that represent diverse populations, we report that outcomes from the original trials that led to the approval of these therapies are comparable to those in practice.


Subject(s)
Hematologic Neoplasms , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Hematologic Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Treatment Outcome , T-Lymphocytes/immunology , Clinical Trials as Topic
20.
Clin Exp Med ; 24(1): 180, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105978

ABSTRACT

CAR T-cell therapy is a promising immunotherapy, providing successful results for cancer patients who are unresponsive to standard and traditional therapeutic approaches. However, there are limiting factors which create a hurdle in the therapy performing its role optimally. CAR T cells get exhausted, produce active antitumor responses, and might even produce toxic reactions. Specifically, in the case of solid tumors, chimeric antigen receptor T (CAR-T) cells fail to produce the desired outcomes. Then, the need to use supplementary agents such as immune system modifying immunomodulatory agents comes into play. A series of the literature was studied to evaluate the role of immunomodulators including a phytochemical, Food and Drug Administration (FDA)-approved targeted drugs, and ILs in support of their achievements in boosting the efficiency of CAR-T cell therapy. Some of the most promising out of them are reported in this article. It is expected that by using the right combinations of immunotherapy, immunomodulators, and traditional cancer treatments, the best possible cancer defying results may be produced in the future.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Immunologic Factors/therapeutic use , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/pharmacology , T-Lymphocytes/immunology , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL