Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Cardiovasc Res ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365752

ABSTRACT

AIMS: Accruing evidence illustrates an emerging paradigm of dynamic vascular smooth muscle cell (SMC) transdifferentiation during atherosclerosis progression. However, the molecular regulators that govern SMC phenotype diversification remain poorly defined. This study aims to elucidate the functional role and underlying mechanisms of cellular communication network factor 2 (CCN2), a matricellular protein, in regulating SMC plasticity in the context of atherosclerosis. METHODS AND RESULTS: In both human and murine atherosclerosis, an up-regulation of CCN2 is observed in transdifferentiated SMCs. Using an inducible murine SMC CCN2 deletion model, we demonstrate that SMC-specific CCN2 knockout mice are hypersusceptible to atherosclerosis development as evidenced by a profound increase in lipid-rich plaques along the entire aorta. Single-cell RNA sequencing studies reveal that SMC deficiency of CCN2 positively regulates machinery involved in endoplasmic reticulum stress, endocytosis, and lipid accumulation in transdifferentiated macrophage-like SMCs during the progression of atherosclerosis, findings recapitulated in CCN2-deficient human aortic SMCs. CONCLUSION: Our studies illuminate an unanticipated protective role of SMC-CCN2 against atherosclerosis. Disruption of vascular wall homeostasis resulting from vascular SMC CCN2 deficiency predisposes mice to atherosclerosis development and progression.

2.
Cell Biochem Biophys ; 82(3): 2157-2170, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837011

ABSTRACT

The CCN family is a group of matricellular proteins associated with the extracellular matrix. This study aims to explore the role of the CCN family in glioma development and its implications in the tumor microenvironment. Through analysis of bulk RNA-seq cohorts, correlations between CCN family expression and glioma subtypes, patient survival, and bioactive pathway enrichment were investigated. Additionally, single-cell datasets were employed to identify novel cell subgroups, followed by analyses of cell communication and transcription factors. Spatial transcriptomic analysis was utilized to validate the CCN family's involvement in glioma. Results indicate overexpression of CYR61,CTGF, and WISP1 in glioma, associated with unfavorable subtypes and reduced survival. Enrichment analyses revealed associations with oncogenic pathways, while CTGF and WISP1 expression correlated with increased infiltration of regulatory T cells and M2 macrophages. Single-cell analysis identified MES-like cells as the highest CCN expression. Moreover, intercellular signal transduction analysis demonstrated active pathways, including SPP1-CD44, in cell subgroups with elevated CYR61 and CTGF expression. Spatial transcriptomic analysis confirmed co-localization of CYR61,CTGF and SPP1-CD44 with high oncogenic pathway activity. These findings suggest that CCN family members may serve as potential prognostic biomarkers and therapeutic targets for glioma.


Subject(s)
CCN Intercellular Signaling Proteins , Extracellular Matrix , Glioma , Humans , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Prognosis , Extracellular Matrix/metabolism , CCN Intercellular Signaling Proteins/metabolism , CCN Intercellular Signaling Proteins/genetics , Tumor Microenvironment , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Single-Cell Analysis , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Tumor Escape , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Signal Transduction , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Multiomics
3.
Article in English | MEDLINE | ID: mdl-38925474

ABSTRACT

OBJECTIVE: Mammalian somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) via the forced expression of Yamanaka reprogramming factors. However, only a limited population of the cells that pass through a particular pathway can metamorphose into iPSCs, while the others do not. This study aimed to clarify the pathways that chondrocytes follow during the reprogramming process. DESIGN: The fate of human articular chondrocytes under reprogramming was investigated through a time-coursed single-cell transcriptomic analysis, which we termed an inverse genetic approach. The iPS interference technique was also employed to verify that chondrocytes inversely return to pluripotency following the proper differentiation pathway. RESULTS: We confirmed that human chondrocytes could be converted into cells with an iPSC phenotype. Moreover, it was clarified that a limited population that underwent the silencing of SOX9, a master gene for chondrogenesis, at a specific point during the proper transcriptome transition pathway, could eventually become iPSCs. Interestingly, the other cells, which failed to be reprogrammed, followed a distinct pathway toward cells with a surface zone chondrocyte phenotype. The critical involvement of cellular communication network factors (CCNs) in this process was indicated. The idea that chondrocytes, when reprogrammed into iPSCs, follow the differentiation pathway backward was supported by the successful iPS interference using SOX9. CONCLUSIONS: This inverse genetic strategy may be useful for seeking candidates for the master genes for the differentiation of various somatic cells. The utility of CCNs in articular cartilage regeneration is also supported.

4.
J Cell Commun Signal ; 17(4): 1219-1227, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37378812

ABSTRACT

The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.

5.
J Cell Commun Signal ; 17(2): 353-359, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36745317

ABSTRACT

Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.

6.
Genetics ; 223(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36602539

ABSTRACT

Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.


Subject(s)
CCN Intercellular Signaling Proteins , Drosophila , Animals , Female , Drosophila/metabolism , CCN Intercellular Signaling Proteins/chemistry , CCN Intercellular Signaling Proteins/metabolism , Synaptic Transmission/genetics , Fertility/genetics , Fibrinogen
7.
Methods Mol Biol ; 2582: 1-10, 2023.
Article in English | MEDLINE | ID: mdl-36370338

ABSTRACT

I herein report the general structures and functions of CCN proteins and possible molecular mechanisms involved in the unique biological actions of this family of intercellular signaling regulators, which are considered matricellular proteins and were once referred to as "signal conductors" but have recently been renamed "Cellular Communication Network Factors." Their repertoire of functions beyond their role as matricellular proteins is also described to aid in future studies. Advanced research concerning their relevance to pathology is briefly introduced as well. The information provided in this chapter is expected to be useful for readers of subsequent chapters.


Subject(s)
CCN Intercellular Signaling Proteins , Cell Communication , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Signal Transduction , Extracellular Matrix Proteins/metabolism
8.
Methods Mol Biol ; 2582: 39-57, 2023.
Article in English | MEDLINE | ID: mdl-36370343

ABSTRACT

Cellular Communication Network (CCN) proteins are growth factors that play key roles in many pathophysiological events, including bone formation, wound healing, and cancer. CCN factors and fragments generated by metalloproteinases-dependent cleavage are often associated with extracellular matrix (ECM) or small extracellular vesicles (sEVs) such as exosomes or matrix-coated vesicles. We provide reliable methods and protocols for Western blotting to analyze CCN factors and fragments in cells, sEVs, and vesicle-free fractions.


Subject(s)
Exosomes , Extracellular Vesicles , Exosomes/metabolism , CCN Intercellular Signaling Proteins/metabolism , Cell Communication , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , Blotting, Western
9.
Methods Mol Biol ; 2582: 87-101, 2023.
Article in English | MEDLINE | ID: mdl-36370346

ABSTRACT

The function of CCN family proteins is determined by their interactions with multiple cofactors that are present in the microenvironment. Therefore, determining these cofactors is critically important in understanding the molecular function of CCN family members. For this objective, a bacteriophage random peptide display library is a suitable tool. In this library, each filamentous bacteriophage is designed to display an oligopeptide of 7-20 random amino acid residues on its surface. Bacteriophage clones that possess peptides that bind to a CCN family protein are selected through several cycles of a process called biopanning or affinity selection. By determining the nucleotide sequence of the DNA that encodes the displayed peptide, the oligopeptides that specifically bind to the CCN family member can be specified. The obtained peptide sequences can be utilized to design peptide aptamers for CCN family proteins, or as a key sequence to determine new CCN family cofactor candidates in silico. Instead of a random peptide cDNA library, an antibody cDNA library from naïve lymphocytes or from B cells immunized by a CCN family protein can be used in order to obtain a highly specific CCN family detection or functional modulation tool.


Subject(s)
Bacteriophages , CCN Intercellular Signaling Proteins , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Peptide Library , Peptides/chemistry , Amino Acid Sequence , Bacteriophages/genetics , Oligopeptides/metabolism , Protein Binding
10.
Methods Mol Biol ; 2582: 169-187, 2023.
Article in English | MEDLINE | ID: mdl-36370350

ABSTRACT

Classically, scientific research has been driven by hypotheses based on personal inspiration and intuition against the background of personal knowledge. In contrast, scientists have recently proposed that scientific research should basically be driven by data, meaning big data yielded by preliminary omic analyses in this context. A genuine hypothesis-driven strategy is usually exciting but occasionally ends up with negative conclusions, whereas a data-driven approach is less exciting and cost-consuming but produces significant outcomes in most cases. Here, we should be aware that a number of bioscientific resources provide a variety of big data free of charge. Therefore, one of the most effective research strategies is to construct a research question based on comprehensive knowledge derived not only from inside information, but also from the analysis of data available to everybody. However, a classical scientist without a sufficient bioinformatic background may hesitate in dealing with information supplied through the Internet. This chapter is aimed at CCN family researchers who do not possess specific bioinformatic knowledge and/or huge grants-in-aid, in order to assist them in developing their research by taking advantage of the scientific treasury open to the public.


Subject(s)
Computational Biology , Proteins , Databases, Chemical , Research Design , Family
11.
Acta Pharm Sin B ; 12(4): 1740-1760, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35847511

ABSTRACT

Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.

12.
J Cell Commun Signal ; 15(4): 533-543, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34125392

ABSTRACT

Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.

13.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919365

ABSTRACT

The CCN family of matricellular proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3/CCN4-5-6) are essential players in the key pathophysiological processes of angiogenesis, wound healing and inflammation. These proteins are well recognized for their important roles in many cellular processes, including cell proliferation, adhesion, migration and differentiation, as well as the regulation of extracellular matrix differentiation. Substantial evidence implicates four of the proteins (CCN1, CCN2, CCN3 and CCN4) in the inflammatory pathologies of rheumatoid arthritis (RA) and osteoarthritis (OA). A smaller evidence base supports the involvement of CCN5 and CCN6 in the development of these diseases. This review focuses on evidence providing insights into the involvement of the CCN family in RA and OA, as well as the potential of the CCN proteins as therapeutic targets in these diseases.


Subject(s)
Arthritis, Rheumatoid/physiopathology , CCN Intercellular Signaling Proteins/metabolism , Osteoarthritis/physiopathology , Animals , Arthritis, Rheumatoid/metabolism , Humans , Osteoarthritis/metabolism
14.
Organ Transplantation ; (6): 403-2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-881524

ABSTRACT

Objective To evaluate the effect and mechanism of cysteine rich protein 61, namely CCN family member 1(CCN1) on the survival of adipose tissues in rats after autologous fat grafting. Methods At 1 week after the establishment of autologous fat grafting rat models, all animals were randomly divided into the CCN1 group (n=20) and control group (n=20). The survival of fat grafts, the morphology of fat graft tissues, the proportion of active adipocytes and the number of new blood vessels of rats were statistically compared between two groups. The levels of differential expressed messenger ribonucleic acid (mRNA) in the fat graft tissues of rats were compared between two groups by high-throughput sequencing and subsequently subject to cluster analysis. The expression levels of related proinflammatory cytokines of fat graft tissues of rats were statistically compared between two groups. Results The weight retention rate of adipose tissues in the CCN1 group was significantly higher than that in the control group (P < 0.05). In the CCN1 group, the integrity of adipocytes was considerably higher, the degree of vesiculation and vacuolation, the degree of inflammatory cell aggregation and the degree of fibrosis were significantly lower than those in the control group (all P < 0.000 1). Immunofluorescence staining demonstrated that the proportion of active adipocytes with uniform morphology was higher in the CCN1 group, whereas the proportion of active adipocytes was lower and the cells were observed in different sizes accompanied by vesiculation in the control group. Compared with the control group, the quantity of new blood vessels was significantly higher, and the expression levels of platelet derived growth factor (PDGF) and fibroblast growth factor (FGF) mRNA were remarkably higher in the CCN1 group (all P < 0.05). High-throughput sequencing analysis showed that the data at the transcriptome levels significantly differed between two groups. In the CCN1 group, the gene expression levels of cell surface markers, inflammatory cytokines and chemokines related to M1 macrophages tended to decline. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) revealed that the mRNA expression levels of interleukin (IL)-8, IL-1 and Toll-like receptor (TLR) 2 in the CCN1 group were significantly lower than those in the control group (P < 0.01-0.05). Conclusions During autologous fat grafting, supplement of exogenous CCN1 may effectively promote the neovascularization of adipose tissues and improve the survival rate of fat graft probably by mediating the transformation of macrophages into M2 phenotype via down-regulating the TLR2 expression level.

15.
J Cell Commun Signal ; 14(3): 355-356, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32705539

ABSTRACT

The CCN family of matricellular proteins are recognized bona fide targets for therapeutically targeting so-called chronic inflammatory diseases, including fibrosis and cancers. The majority of the work supporting this contention has been derived from examining CCN2, formerly, and unhelpfully, termed "connective tissue growth factor." Both CCN2, and its related protein, CCN1, formerly termed "cysteine-rich protein 61", are positively regulated by not only TGFbeta, but also by the hippo/YAP/TAZ mechanotransduction pathway that appears to drive these pathologies. Indeed, increasing evidence indicates that CCN1 also contributes to these fibrosis and cancers and, consequently, targeting both CCN2 and CCN1 simultaneously could be of therapeutic value. This commentary focuses on a recent, exciting paper (Ju et al., 2020, Scientific Reports, 10, 3201) suggesting that CCN1 is a target for non-alcoholic steatohepatitis (NASH).

16.
J Cell Biochem ; 121(12): 4724-4740, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32065439

ABSTRACT

Adipocyte differentiation is regulated by several transcription factors such as the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-γ (PPARγ). Here, we demonstrate that low-intensity pulsed ultrasound (LIPUS) suppressed differentiation into mature adipocytes via multiple signaling pathways. When C3H10T1/2, a mesenchymal stem cell line, was treated with LIPUS (3.0 MHz, 60 mW/cm2 ) for 20 minutes once a day for 4 days during adipogenesis, and both the number of lipid droplets and the gene expression of PPARγ and C/EBPα were significantly decreased. Furthermore, LIPUS treatment decreased the phosphorylation of the insulin receptor and also that of Akt and ERK1/2, which are located downstream of this receptor. Next, we showed that LIPUS suppressed the gene expression of angiotensinogen (AGT), which is an adipokine produced by mature adipocytes, as well as that of angiotensin-converting enzyme 1 (ACE1) and angiotensin receptor type 1 (AT1 R) during adipogenesis of pre-adipogenic 3T3-L1 cells. Next, the translocation of Yes-associated protein (YAP) into the nucleus of 3T3-L1 cells was promoted by LIPUS, leading to upregulation of CCN family protein 2 (CCN2), a cellular communication network factor. Moreover, forced expression of CCN2 in 3T3-L1 cells decreased PPARγ gene expression, but it did not increase alkaline phosphatase and osterix gene expression. Finally, gene silencing of CCN2 in C3H10T1/2 cells diminished the effect of LIPUS on the gene expression of PPARγ and C/EBPα. These findings suggest that LIPUS suppressed adipogenesis through inhibition of insulin signaling and decreased PPARγ expression via increased CCN2 production, resulting in a possible decrease of mature adipocytes.

17.
Semin Cell Dev Biol ; 101: 111-114, 2020 05.
Article in English | MEDLINE | ID: mdl-31708414

ABSTRACT

Although cancer cells are located within a microenvironment consisting of immune cells, endothelial cells, fibroblasts and extracellular matrix (ECM), the role of the cancer-associated fibroblasts (CAFs) in driving tumorigenesis is relatively underinvestigated. Recent data suggest that a stiff ECM, generated by CAFs, and associated integrin-dependent signaling underlies the development of drug resistance to BRAF inhibitors in melanoma. Drugs targeting the matricellular protein CCN2 (centralized communication network 2, formerly termed connective tissue growth factor), are in clinical development for cancers; for example, FG-3019, an antibody targeting CCN2 has recently entered Phase III trials for pancreatic cancer. Recent data show that fibroblast-specific production of CCN2, which signals through integrins and whose overexpression in human melanomas is independent of BRAF mutational status, is essential for neovascularization, including vasculogenic mimicry, in melanoma. In clinical melanoma samples, a FAP/ITGA11/COL1A1/CCN2-expressing CAF population negatively correlates with disease-free survival. These data emphasize the essential role for a CCN2-expressing subset of CAFs in cancer progression and suggest that targeting the CAFs in the tumor microenvironment, for example by blocking the action of CCN2, may be useful in combination therapies to treat cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Cancer-Associated Fibroblasts/drug effects , Cell Communication/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Humans , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment/drug effects
18.
Matrix Biol Plus ; 3: 100009, 2019 Aug.
Article in English | MEDLINE | ID: mdl-33543008

ABSTRACT

The microenvironment contributes to the excessive connective tissue deposition that characterizes fibrosis. Members of the CCN family of matricellular proteins are secreted by fibroblasts into the fibrotic microenvironment; however, the role of endogenous CCN1 in skin fibrosis is unknown. Mice harboring a fibroblast-specific deletion for CCN1 were used to assess if CCN1 contributes to dermal homeostasis, wound healing, and skin fibrosis. Mice with a fibroblast-specific CCN1 deletion showed progressive skin thinning and reduced accumulation of type I collagen; however, the overall mechanical property of skin (Young's modulus) was not significantly reduced. Real time-polymerase chain reaction analysis revealed that CCN1-deficient skin displayed reduced expression of mRNAs encoding enzymes that promote collagen stability (including prolyl-4-hydroxylase and PLOD2), although expression of COL1A1 mRNA was unaltered. CCN1-deficent skin showed reduced hydroxyproline levels. Electron microscopy revealed that collagen fibers were disorganized in CCN1-deficient skin. CCN1-deficient mice were resistant to bleomycin-induced skin fibrosis, as visualized by reduced collagen accumulation and skin thickness suggesting that deposition/accumulation of collagen is impaired in the absence of CCN1. Conversely, CCN1-deficient mice showed unaltered wound closure kinetics, suggesting de novo collagen production in response to injury did not require CCN1. In response to either wounding or bleomycin, induction of α-smooth muscle actin-positive myofibroblasts was unaffected by loss of CCN1. CCN1 protein was overexpressed by dermal fibroblasts isolated from lesional (i.e., fibrotic) areas of patients with early onset diffuse scleroderma. Thus, CCN1 expression by fibroblasts, being essential for skin fibrosis, is a viable anti-fibrotic target.

19.
Biochem Biophys Res Commun ; 505(4): 966-972, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30361094

ABSTRACT

Re-epithelialization is an essential part of wound healing and has a prominent influence on the prognosis. CCN family member 1 (CCN1 or Cysteine-rich 61, CYR61), a matricellular protein, has a potential role in the wound healing process. However, its role in re-epithelialization remains unclear. The aim of this study was to determine the expression of CCN1 in the epidermis and its effect on keratinocytes during re-epithelialization. CCN1 expression in the wounded skin was analyzed using microarray data from GEO database and detected by immunofluorescence. The results showed upregulated CCN1 during the early stages of wound healing. Human primary keratinocytes were treated with recombinant human CCN1. The results showed that CCN1 promoted keratinocyte migration and proliferation. Moreover, a full-thickness mouse skin wound model and a superficial second-degree burn mouse model treated intracutaneously with CCN1 were used for in vivo studies. Topical treatment with CCN1 protein accelerated wound closure and re-epithelialization. Additionally, longer newly-formed epithelium tongue and elevated expression of PCNA and Ki67 were detected in the CCN1-treated group 4 days post-burn. These results indicate that CCN1 accelerates re-epithelialization by promoting keratinocyte migration and proliferation, and may serve as a novel target to promote re-epithelialization.


Subject(s)
Cell Movement , Cysteine-Rich Protein 61/metabolism , Keratinocytes/cytology , Skin/metabolism , Wound Healing , Animals , Cell Proliferation , Humans , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Re-Epithelialization , Skin/injuries , Skin/pathology
20.
Comput Struct Biotechnol J ; 16: 279-287, 2018.
Article in English | MEDLINE | ID: mdl-30128085

ABSTRACT

The role of tumor microenvironment in cancer progression is gaining significant attention. It is realized that cancer cells and the corresponding stroma co-evolve with time. Cancer cells recruit and transform the stromal cells, which in turn remodel the extra cellular matrix of the stroma. This complex interaction between the stroma and the cancer cells results in a dynamic feed-forward/feed-back loop with biochemical and biophysical cues that assist metastatic transition of the cancer cells. Although biochemistry has long been studied for the understanding of cancer progression, biophysical signaling is emerging as a critical paradigm determining cancer metastasis. In this mini review, we discuss the role of one of the biophysical cues, mostly the mechanical stiffness of tumor microenvironment, in cancer progression and its clinical implications.

SELECTION OF CITATIONS
SEARCH DETAIL