Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Immunol ; 15: 1344761, 2024.
Article in English | MEDLINE | ID: mdl-38487529

ABSTRACT

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Subject(s)
Neutrophils , src-Family Kinases , Humans , Neutrophils/metabolism , src-Family Kinases/metabolism , Fibronectins/metabolism , CD18 Antigens/metabolism , Cell Adhesion , Actins/metabolism , Phosphoproteins/metabolism , Macrophage-1 Antigen/metabolism
2.
FASEB J ; 36(3): e22173, 2022 03.
Article in English | MEDLINE | ID: mdl-35104001

ABSTRACT

Dysregulated chronic inflammation plays a crucial role in the pathophysiology of atherosclerosis and may be a result of impaired resolution. Thus, restoring levels of specialized pro-resolving mediators (SPMs) to promote the resolution of inflammation has been proposed as a therapeutic strategy for patients with atherosclerosis, in addition to standard clinical care. Herein, we evaluated the effects of the SPM lipids, lipoxin A4 (LXA4 ) and lipoxin B4 (LXB4 ), on neutrophils isolated from patients with atherosclerosis compared with healthy controls. Patients displayed altered endogenous SPM production, and we demonstrated that lipoxin treatment in whole blood from atherosclerosis patients attenuates neutrophil oxidative burst, a key contributor to atherosclerotic development. We found the opposite effect in neutrophils from healthy controls, indicating a potential mechanism whereby lipoxins aid the endogenous neutrophil function in health but reduce its excessive activation in disease. We also demonstrated that lipoxins attenuated upregulation of the high-affinity conformation of the CD11b/CD18 integrin, which plays a central role in clot activation and atherosclerosis. Finally, LXB4 enhanced lymphatic transmigration of human neutrophils isolated from patients with atherosclerosis. This finding is noteworthy, as impaired lymphatic function is now recognized as an important contributor to atherosclerosis. Although both lipoxins modulated neutrophil function, LXB4 displayed more potent effects than LXA4 in humans. This study highlights the therapeutic potential of lipoxins in atherosclerotic disease and demonstrates that the effect of these SPMs may be specifically tailored to the need of the individual.


Subject(s)
Atherosclerosis/metabolism , Integrins/metabolism , Lipoxins/metabolism , Neutrophils/metabolism , Respiratory Burst/physiology , Aged , Female , Humans , Inflammation/metabolism , Male , Middle Aged
3.
Cells ; 10(12)2021 11 28.
Article in English | MEDLINE | ID: mdl-34943852

ABSTRACT

Depression is an independent risk factor for cardiovascular disease (CVD). We have previously shown that repeated social defeat (RSD) exaggerates atherosclerosis development by enhancing neutrophil extracellular trap (NET) formation. In this study, we investigated the impact of RSD on arterial thrombosis. Eight-week-old male wild-type mice (C57BL/6J) were exposed to RSD by housing with larger CD-1 mice in a shared home cage. They were subjected to vigorous physical contact daily for 10 consecutive days. After confirming depression-like behaviors, mice underwent FeCl3-induced carotid arterial injury and were analyzed after 3 h. Although the volume of thrombi was comparable between the two groups, fibrin(ogen)-positive areas were significantly increased in defeated mice, in which Ly-6G-positive cells were appreciably co-localized with Cit-H3-positive staining. Treatment with DNase I completely diminished exaggerated fibrin-rich clot formation in defeated mice. Flow cytometric analysis showed that neutrophil CD11b expression before FeCl3 application was significantly higher in defeated mice than in control mice. In vitro NET formation induced by activated platelets was significantly augmented in defeated mice, which was substantially inhibited by anti-CD11b antibody treatment. Our findings demonstrate that RSD enhances fibrin-rich clot formation after arterial injury by enhancing NET formation, suggesting that NET can be a new therapeutic target in depression-related CVD.


Subject(s)
Blood Coagulation , Blood Platelets/metabolism , Cell Communication , Extracellular Traps/metabolism , Fibrin/metabolism , Neutrophils/metabolism , Social Defeat , Animals , Antibodies/pharmacology , Blood Coagulation/drug effects , Blood Platelets/drug effects , CD11b Antigen/metabolism , Cell Communication/drug effects , Chlorides/pharmacology , Deoxyribonuclease I/metabolism , Extracellular Traps/drug effects , Ferric Compounds/pharmacology , Male , Mice, Inbred C57BL , Neutrophils/drug effects , P-Selectin/metabolism , Platelet Aggregation/drug effects , Thrombosis/pathology
4.
J Biol Chem ; 297(1): 100833, 2021 07.
Article in English | MEDLINE | ID: mdl-34051233

ABSTRACT

The whooping cough agent Bordetella pertussis secretes an adenylate cyclase toxin (CyaA) that through its large carboxy-proximal Repeat-in-ToXin (RTX) domain binds the complement receptor 3 (CR3). The RTX domain consists of five blocks (I-V) of characteristic glycine and aspartate-rich nonapeptides that fold into five Ca2+-loaded parallel ß-rolls. Previous work indicated that the CR3-binding structure comprises the interface of ß-rolls II and III. To test if further portions of the RTX domain contribute to CR3 binding, we generated a construct with the RTX block II/III interface (CyaA residues 1132-1294) linked directly to the C-terminal block V fragment bearing the folding scaffold (CyaA residues 1562-1681). Despite deletion of 267 internal residues of the RTX domain, the Ca2+-driven folding of the hybrid block III/V ß-roll still supported formation of the CR3-binding structure at the interface of ß-rolls II and III. Moreover, upon stabilization by N- and C-terminal flanking segments, the block III/V hybrid-comprising constructs competed with CyaA for CR3 binding and induced formation of CyaA toxin-neutralizing antibodies in mice. Finally, a truncated CyaAΔ1295-1561 toxin bound and penetrated erythrocytes and CR3-expressing cells, showing that the deleted portions of RTX blocks III, IV, and V (residues 1295-1561) were dispensable for CR3 binding and for toxin translocation across the target cell membrane. This suggests that almost a half of the RTX domain of CyaA is not involved in target cell interaction and rather serves the purpose of toxin secretion.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/pathogenicity , Macrophage-1 Antigen/chemistry , Macrophage-1 Antigen/metabolism , Acylation , Amino Acid Sequence , Animals , Antibodies, Neutralizing/metabolism , CHO Cells , Calcium/metabolism , Cricetulus , Epitopes/metabolism , Humans , Protein Binding , Protein Domains , Protein Folding , Structure-Activity Relationship , THP-1 Cells
5.
Front Immunol ; 11: 570963, 2020.
Article in English | MEDLINE | ID: mdl-33162986

ABSTRACT

The inhibitory immunoreceptor SIRPα is expressed on myeloid and neuronal cells and interacts with the broadly expressed CD47. CD47-SIRPα interactions form an innate immune checkpoint and its targeting has shown promising results in cancer patients. Here, we report expression of SIRPα on B1 lymphocytes, a subpopulation of murine B cells responsible for the production of natural antibodies. Mice defective in SIRPα signaling (SIRPαΔCYT mice) displayed an enhanced CD11b/CD18 integrin-dependent B1 cell migration from the peritoneal cavity to the spleen, local B1 cell accumulation, and enhanced circulating natural antibody levels, which was further amplified upon immunization with T-independent type 2 antigen. As natural antibodies are atheroprotective, we investigated the involvement of SIRPα signaling in atherosclerosis development. Bone marrow (SIRPαΔCYT>LDLR-/-) chimaeric mice developed reduced atherosclerosis accompanied by increased natural antibody production. Collectively, our data identify SIRPα as a unique B1 cell inhibitory receptor acting to control B1 cell migration, and imply SIRPα as a potential therapeutic target in atherosclerosis.


Subject(s)
Atherosclerosis/immunology , B-Lymphocytes/immunology , CD47 Antigen/metabolism , Lymphoid Tissue/immunology , Receptors, Immunologic/metabolism , Animals , Antibody Formation , Autoantibodies/metabolism , Cell Movement , Cells, Cultured , Cytokines/metabolism , Immunomodulation , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Immunologic/genetics , Receptors, LDL/genetics , Th1 Cells/immunology , Transplantation Chimera
6.
Front Immunol ; 11: 619925, 2020.
Article in English | MEDLINE | ID: mdl-33679708

ABSTRACT

Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of ß2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of ß2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two ß2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting ß2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.


Subject(s)
CD18 Antigens/physiology , Neutrophil Activation/physiology , Neutrophils/metabolism , Signal Transduction , Animals , Anti-Inflammatory Agents/pharmacology , Antibody-Dependent Cell Cytotoxicity/physiology , CD11a Antigen/chemistry , CD11a Antigen/physiology , CD11b Antigen/chemistry , CD11b Antigen/physiology , CD18 Antigens/chemistry , Cell Adhesion/physiology , Chemokines/pharmacology , Chemokines/physiology , Chemotaxis, Leukocyte/physiology , Cytoskeletal Proteins/metabolism , Dimerization , Humans , Inflammation , Mice , Neutrophil Activation/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Phagocytosis/physiology , Protein Binding , Protein Conformation , Protein Domains , Selectins/physiology , Species Specificity , Talin/metabolism , Transendothelial and Transepithelial Migration/physiology
7.
Toxins (Basel) ; 10(7)2018 07 20.
Article in English | MEDLINE | ID: mdl-30037010

ABSTRACT

The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells where, upon activation by endogenous calmodulin, it synthesizes massive amounts of cAMP that alters cellular physiology. The CyaA toxin is a 1706 residues-long bifunctional protein: the catalytic domain is located in the 400 amino-proximal residues, whereas the carboxy-terminal 1306 residues are implicated in toxin binding to the cellular receptor, the αMß2 (CD11b/CD18) integrin, and subsequently in the translocation of the catalytic domain across the cytoplasmic membrane of the target cells. Indeed, this protein is endowed with the unique capability of delivering its N-terminal catalytic domain directly across the plasma membrane of eukaryotic target cells. These properties have been exploited to engineer the CyaA toxin as a potent non-replicating vector able to deliver antigens into antigen presenting cells and elicit specific cell-mediated immune responses. Antigens of interest can be inserted into the CyaA protein to yield recombinant molecules that are targeted in vivo to dendritic cells, where the antigens are processed and presented by the major class I and class II histocompatibility complexes (MHC-I and II). CyaA turned out to be a remarkably effective and versatile vaccine vector capable of inducing all the components of the immune response (T-CD4, T-CD8, and antibody). In this chapter, we summarize the basic knowledge on the adenylate cyclase toxin and then describe the application of CyaA in vaccinology, including some recent results of clinical trials of immunotherapy using a recombinant CyaA vaccine.


Subject(s)
Adenylate Cyclase Toxin , Antigens/administration & dosage , Bordetella pertussis , Immunotherapy , Animals , Bioengineering , Humans
SELECTION OF CITATIONS
SEARCH DETAIL