Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.055
Filter
1.
Reprod Toxicol ; 128: 108657, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39002939

ABSTRACT

Air pollution (AP) is detrimental to pregnancies including increasing risk factors of gestational diabetes mellitus. We hypothesized that exposure to AP causes cardiovascular and metabolic disruption thereby altering placental gene expression, which in turn affects the placental phenotype and thereby embryonic/fetal development. To test this hypothesis, we investigated the impact of intra-nasal instilled AP upon gestational day 16-19 maternal mouse cardiovascular and metabolic status, placental nutrient transporters, and placental-fetal size and morphology. To further unravel mechanisms, we also examined placental total DNA 5'-hydroxymethylation and bulk RNA sequenced gene expression profiles. AP exposed pregnant mice and fetuses were tachycardic with a reduction in maternal left ventricular fractional shortening and increased uterine artery with decreased umbilical artery systolic peak velocities. In addition, they were hyperglycemic, glucose intolerant and insulin resistant, with changes in placental glucose (Glut3) and fatty acid (Fatp1 & Cd36) transporters, and a spatial disruption of cells expressing Glut10 that imports L-dehydroascorbic acid in protecting against oxidative stress. Placentas revealed inflammatory cellular infiltration with associated cellular edema and necrosis, with dilated vascular spaces and hemorrhage. Placental and fetal body weights decreased in mid-gestation with a reduction in brain cortical thickness emerging in late gestation. Placental total DNA 5'-hydroxymethylation was 2.5-fold higher, with perturbed gene expression profiles involving key metabolic, inflammatory, transcriptional, cellular polarizing and processing genes and pathways. We conclude that gestational exposure to AP incites a maternal inflammatory response resulting in features mimicking maternal gestational diabetes mellitus with altered placental DNA 5'-hydroxymethylation, gene expression, and associated injury.

2.
Brain Res ; 1842: 149106, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986827

ABSTRACT

Demyelination is characterized by disruption of myelin sheath and disorders in myelin formation. Currently, there are no effective therapeutic treatments available. Microglia, especially anti-inflammatory phenotype microglia are critical for remyelination. Galectin-3 (Gal-3), which is known to modulate microglia activation, is correlated with myelination. In this study, we aimed to elucidate the roles of Gal-3 during myelin formation and explore the efficiency and mechanism of rGal-3 administration in remyelination. We enrolled Gal-3 knockout (Lgals3 KO) mice and demonstrated Lgals3 KO causes demyelination during spontaneous myelinogenesis. We performed a cuprizone (CPZ) intoxication model and found Lgals3 KO aggravates demyelinated lesions and favors microglial pro-inflammatory phenotype polarization. Recombinant Gal-3 (rGal-3) administration alleviates CPZ intoxication and drives microglial towards anti-inflammatory phenotype. Additionally, RNA sequencing results reveal the correlation between Gal-3 and the PPARγ-CD36 axis. Thus, we performed SSO and GW9662 administration to inhibit the activation of the PPARγ-CD36 axis and found that rGal-3 administration modulates microglial phenotype polarization by regulating the PPARγ-CD36 axis. Together, our findings highlight the importance of Gal-3 in myelination and provide insights into rGal-3 administration for modulating microglial anti-inflammatory phenotype polarization through the PPARγ-CD36 axis.

3.
J Agric Food Chem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986018

ABSTRACT

Variances in the biological functions of astaxanthin geometric isomers (i.e., all-E, Z) are related to their intestinal absorption, but the mechanism of isomer absorption mediated by transporters remains unclear. Here, models of in vitro cell overexpression, in situ intestinal perfusion, and in vivo mouse inhibition were employed to investigate the impact of cluster of differentiation 36 (CD36) on the absorption of astaxanthin isomers. Cells overexpressing CD36 notably enhanced the uptake of Z-astaxanthin, particularly the 9-Z-isomer (47.76%). The absorption rate and permeability of Z-astaxanthin surpassed that of the all-E-isomer by the in situ model. Furthermore, the addition of the CD36-specific inhibitor sulfo-N-succinimidyl oleate significantly reduced the absorption of Z-astaxanthin in the mouse duodenum and jejunum, especially the 9-Z-isomer (57.66%). Molecular docking and surface plasmon resonance techniques further validated that 9-Z-astaxanthin binds to more amino acids of CD36 with higher affinity and in a fast-binding, fast-dissociating mode, thus favoring transport. Our findings elucidate, for the first time, the mechanism of the CD36-mediated transmembrane transport of astaxanthin geometric isomers.

4.
Leuk Lymphoma ; : 1-17, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982639

ABSTRACT

Cluster of differentiation 36 (CD36) is a multiligand receptor with important roles in lipid metabolism, angiogenesis and innate immunity, and its diverse effects may depend on the binding of specific ligands in different contexts. CD36 is expressed not only on immune cells in the tumor microenvironment (TME) but also on some hematopoietic cells. CD36 is associated with the growth, metastasis and drug resistance in some hematologic tumors, such as leukemia, lymphoma and myelodysplastic syndrome. Currently, some targeted therapeutic agents against CD36 have been developed, such as anti-CD36 antibodies, CD36 antagonists (small molecules) and CD36 expression inhibitors. This paper not only innovatively addresses the role of CD36 in some hematopoietic cells, such as erythrocytes, hematopoietic stem cells and platelets, but also pays special attention to the role of CD36 in the development of hematologic tumors, and suggests that CD36 may be a potential cancer therapeutic target in hematologic tumors.

5.
Acta Biochim Pol ; 71: 13004, 2024.
Article in English | MEDLINE | ID: mdl-39041003

ABSTRACT

CD36 is a type 2 cell surface scavenger receptor expressed in various tissues. In macrophages, CD36 recognizes oxidized low-density lipoprotein (ox-LDL), which promotes the formation of foam cells, the first step toward an atherosclerotic arterial lesion. CD36 possesses a variety of posttranslational modifications, among them N-glycosylation and O-GlcNAc modification. Some of the roles of these modifications on CD36 are known, such as N-linked glycosylation, which provides proper folding and trafficking to the plasma membrane in the human embryonic kidney. This study aimed to determine whether variations in the availability of UDP-GlcNAc could impact Rab-5-mediated endocytic trafficking and, therefore, the cellular localization of CD36. These preliminary results suggest that the availability of the substrate UDP-GlcNAc, modulated in response to treatment with Thiamet G (TMG), OSMI-1 (O-GlcNAcylation enzymes modulators) or Azaserine (HBP modulator), influences the localization of CD36 in J774 macrophages, and the endocytic trafficking as evidenced by the regulatory protein Rab-5, between the plasma membrane and the cytoplasm.


Subject(s)
CD36 Antigens , Macrophages , CD36 Antigens/metabolism , Macrophages/metabolism , Animals , Mice , Cell Line , Glycosylation , Cell Membrane/metabolism , Humans , Lipoproteins, LDL/metabolism , Hexosamines/metabolism , Hexosamines/biosynthesis , rab5 GTP-Binding Proteins/metabolism , Protein Transport , Biosynthetic Pathways , Protein Processing, Post-Translational
6.
Article in Chinese | MEDLINE | ID: mdl-38964904

ABSTRACT

Objective: To investigate the mechanism of Sulfo-N-succinimidyloleate (SSO) regulating lipid metabolism disorder induced by silicon dioxide (SiO(2)) . Methods: In March 2023, Rat alveolar macrophages NR8383 were cultured in vitro and randomly divided into control group (C), SSO exposure group (SSO), SiO(2) exposure group (SiO(2)) and SiO(2)+SSO exposure group (SiO(2)+SSO). NR8383 cells were exposure separately or jointly by SSO and SiO(2) for 36 h to construct cell models. Immunofluorescence and BODIPY 493/ 503 staining were used to detect cluster of differentiation (CD36) and intracellular lipid levels, the protein expression levels of CD36, liver X receptors (LXR), P-mammalian target of rapamycin (P-mTOR) and cholinephosphotransferase 1 (CHPT1) were detected by Western blot, respectively, and lipid metabolomics was used to screen for different lipid metabolites and enrichment pathways. Single-factor ANOVA was used for multi-group comparison, and LSD test was used for pair-to-group comparison. Results: SiO(2) caused the expression of CD36 and P-mTOR to increase (P=0.012, 0.020), the expression of LXR to decrease (P=0.005), and the intracellular lipid level to increase. After SSO treatment, CD36 expression decreased (P=0.023) and LXR expression increased (P=0.000) in SiO(2)+SSO exposure group compared with SiO(2) exposure group. Metabolomics identified 87 different metabolites in the C group and SiO(2) exposure group, 19 different metabolites in the SiO(2) exposure group and SiO(2)+SSO group, and 5 overlaps of different metabolites in the two comparison groups, they are PS (22∶1/14∶0), DG (O-16∶0/18∶0/0∶0), PGP (i-13∶0/i-20∶0), PC (18∶3/16∶0), and Sphinganine. In addition, the differential metabolites of the two comparison groups were mainly concentrated in the glycerophospholipid metabolism and sphingolipid metabolism pathways. The differential gene CHPT1 in glycerophospholipid metabolic pathway was verified, and the expression of CHPT1 decreased after SiO(2) exposure. Conclusion: SSO may improve SiO(2)-induced lipid metabolism disorders by regulating PS (22∶1/14∶0), DG (O-16∶0/18∶0/0∶0), PGP (i-13∶0/i-20∶0), PC (18∶3/16∶0), SPA, glycerophospholipid metabolism and sphingolipid metabolism pathways.


Subject(s)
CD36 Antigens , Lipid Metabolism , Silicon Dioxide , Animals , Rats , Silicon Dioxide/toxicity , Lipid Metabolism/drug effects , CD36 Antigens/metabolism , Metabolomics , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/chemically induced , Macrophages/metabolism , Macrophages/drug effects , Liver X Receptors/metabolism , TOR Serine-Threonine Kinases/metabolism , Lipids
7.
Sci Rep ; 14(1): 14723, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926392

ABSTRACT

Invasive candidiasis (IC) is a notable healthcare-associated fungal infection, characterized by high morbidity, mortality, and substantial treatment costs. Candida albicans emerges as a principal pathogen in this context. Recent academic advancements have shed light on the critical role of exosomes in key biological processes, such as immune responses and antigen presentation. This burgeoning body of research underscores the potential of exosomes in the realm of medical diagnostics and therapeutics, particularly in relation to fungal infections like IC. The exploration of exosomal functions in the pathophysiology of IC not only enhances our understanding of the disease but also opens new avenues for innovative therapeutic interventions. In this investigation, we focus on exosomes (Exos) secreted by macrophages, both uninfected and those infected with C. albicans. Our objective is to extract and analyze these exosomes, delving into the nuances of their protein compositions and subgroups. To achieve this, we employ an innovative technique known as Proximity Barcoding Assay (PBA). This methodology is pivotal in our quest to identify novel biological targets, which could significantly enhance the diagnostic and therapeutic approaches for C. albicans infection. The comparative analysis of exosomal contents from these two distinct cellular states promises to yield insightful data, potentially leading to breakthroughs in understanding and treating this invasive fungal infection. In our study, we analyzed differentially expressed proteins in exosomes from macrophages and C. albicans -infected macrophages, focusing on proteins such as ACE2, CD36, CAV1, LAMP2, CD27, and MPO. We also examined exosome subpopulations, finding a dominant expression of MPO in the most prevalent subgroup, and a distinct expression of CD36 in cluster14. These findings are crucial for understanding the host response to C. albicans and may inform targeted diagnostic and therapeutic approaches. Our study leads us to infer that MPO and CD36 proteins may play roles in the immune escape mechanisms of C. albicans. Additionally, the CD36 exosome subpopulations, identified through our analysis, could serve as potential biomarkers and therapeutic targets for C. albicans infection. This insight opens new avenues for understanding the infection's pathology and developing targeted treatments.


Subject(s)
Biomarkers , CD36 Antigens , Candida albicans , Candidiasis , Exosomes , Macrophages , Exosomes/metabolism , Biomarkers/metabolism , Macrophages/metabolism , Macrophages/microbiology , Macrophages/immunology , CD36 Antigens/metabolism , Candidiasis/diagnosis , Candidiasis/microbiology , Candidiasis/metabolism , Candidiasis/immunology , Humans , Animals , Mice
8.
Int J Biol Macromol ; 274(Pt 2): 133422, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925187

ABSTRACT

BACKGROUND: Small extracellular vesicles derived from milk (Milk-sEVs) have the advantages of easy availability, low cost, low toxicity, and inhibition of inflammation. CD36 mediates inflammation stress in a variety of disease states. The purpose of this study was to investigate the role of Milk-sEVs in inhibiting fibroblast inflammation through CD36 and provide reference data for the treatment of chronic apical periodontitis. RESULTS: The addition of Milk-sEVs resulted in decreased expression of inflammation-related factors in L929 cells, and transcriptome sequencing screened for the DEG CD36 in the Milk-sEV treatment group under inflammation. The mouse model of apical periodontitis was successfully established, and CD36 expression increased with the development of inflammation. Transfection of si-CD36 into L929 cells reduced inflammation by inhibiting activation of the MAPK signaling pathway. CONCLUSIONS: CD36 expression increased with the development of apical periodontitis. In the setting of LPS-mediated inflammation, Milk-sEVs inhibited activation of the MAPK signaling pathway by decreasing the expression of CD36 in L929 cells and thereby reducing inflammation.

9.
EBioMedicine ; 105: 105198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889480

ABSTRACT

BACKGROUND: Disease susceptibility and progression of Mycobacterium avium complex pulmonary disease (MAC-PD) is associated with multiple factors, including low body mass index (BMI). However, the specific impact of low BMI on MAC-PD progression remains poorly understood. This study aims to examine the progression of MAC-PD in the context of low BMI, utilising a disease-resistant mouse model. METHODS: We employed a MAC infection-resistant female A/J mouse model to compare the progression of MAC-PD under two dietary conditions: one group was fed a standard protein diet, representing protein-energy unrestricted conditions, and the other was fed a low protein diet (LPD), representing protein-energy restriction. FINDINGS: Our results reveal that protein-energy restriction significantly exacerbates MAC-PD progression by disrupting lipid metabolism. Mice fed an LPD showed elevated fatty acid levels and related gene expressions in lung tissues, similar to findings of increased fatty acids in the serum of patients who exhibited the MAC-PD progression. These mice also exhibited increased CD36 expression and lipid accumulation in macrophages upon MAC infection. In vitro experiments emphasised the crucial role of CD36-mediated palmitic acid uptake in bacterial proliferation. Importantly, in vivo studies demonstrated that administering anti-CD36 antibody to LPD-fed A/J mice reduced macrophage lipid accumulation and impeded bacterial growth, resulting in remarkable slowing disease progression. INTERPRETATION: Our findings indicate that the metabolic status of host immune cells critically influences MAC-PD progression. This study highlights the potential of adequate nutrient intake in preventing MAC-PD progression, suggesting that targeting CD36-mediated pathways might be a host-directed therapeutic strategy to managing MAC infection. FUNDING: This research was funded by the National Research Foundation of Korea, the Korea Research Institute of Bioscience and Biotechnology, and the Korea National Institute of Health.


Subject(s)
Disease Models, Animal , Disease Progression , Lipid Metabolism , Mycobacterium avium-intracellulare Infection , Animals , Female , Mice , Mycobacterium avium-intracellulare Infection/microbiology , Mycobacterium avium-intracellulare Infection/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Macrophages/metabolism , Humans , Mycobacterium avium Complex , Lung/metabolism , Lung/microbiology , Lung/pathology , Fatty Acids/metabolism , Mycobacterium avium , Disease Susceptibility
10.
J Neuroinflammation ; 21(1): 148, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840180

ABSTRACT

BACKGROUND: White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS: TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS: Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS: This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.


Subject(s)
CD36 Antigens , Mice, Inbred C57BL , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Mice , CD36 Antigens/metabolism , CD36 Antigens/genetics , Mice, Knockout , White Matter/pathology , White Matter/metabolism , MAP Kinase Signaling System/physiology , Male , Cell Polarity/physiology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Signal Transduction/physiology
11.
Adv Sci (Weinh) ; : e2400493, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894572

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of various chronic metabolic hepatic diseases with limited therapeutics. Rubicon, an essential regulator in lysosomal degradation, is reported to exacerbate hepatic steatosis in NAFLD mice and patients, indicating its probability of being a therapeutic target for NAFLD treatment. In this study, the therapeutic potential of Rubicon blockage is investigated. Lipid nanoparticles carrying Rubicon-specific CRISPR-Cas9 components exhibited liver accumulation, cell internalization, and Rubicon knockdown. A single administration of the nanoparticles results in attenuated lipid deposition and hepatic steatosis, with lower circulating lipid levels and decreased adipocyte size in NAFLD mice. Furthermore, the increase of phosphatidylcholine and phosphatidylethanolamine levels can be observed in the NAFLD mice livers after Rubicon silencing, along with regulatory effects on metabolism-related genes such as CD36, Gpcpd1, Chka, and Lpin2. The results indicate that knockdown of Rubicon improves glycerophospholipid metabolism and thereby ameliorates the NAFLD progression, which provides a potential strategy for NAFLD therapy via the restoration of Rubicon.

12.
Front Immunol ; 15: 1413947, 2024.
Article in English | MEDLINE | ID: mdl-38881887

ABSTRACT

CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.


Subject(s)
CD36 Antigens , Mycobacterium tuberculosis , Tuberculosis , Humans , CD36 Antigens/metabolism , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Animals , Lipid Metabolism , Signal Transduction , Biomarkers , Host-Pathogen Interactions/immunology
13.
Int Immunopharmacol ; 137: 112485, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38878487

ABSTRACT

Circular RNAs (circRNAs) are gaining attention for their involvement in immune escape and immunotherapy sensitivity regulation. CircZNF609 is a well-known oncogene in various solid tumours. Our previous research revealed its role in reducing the chemosensitivity of bladder cancer (BCa) to cisplatin. However, the underlying role of circZNF609 in BCa immune escape and immunotherapy sensitivity remains unknown. We conducted BCa cells-CD8 + T cells co-culture assays, cell line-derived xenograft and patient-derived xenograft mouse models with human immune reconstitution to further confirm the role of circZNF609 in BCa immune escape and immunotherapy sensitivity. Overexpression of circZNF609 promoted BCa immune escape in vitro and in vivo. Mechanistically, circZNF609 was bound to IGF2BP2, enhancing its interaction with the 3'-untranslated region of CD36. This increased the stability of the CD36 mRNA, leading to enhanced fatty acid uptake by BCa cells and fatty acid depletion within the tumour microenvironment. Additionally, the nuclear export of circZNF609 was regulated by DDX39B. CircZNF609 promoted immune escape and suppressed BCa immunotherapy sensitivity by regulating the newly identified circZNF609/IGF2BP2/CD36 cascade. Therefore, circZNF609 holds potential as both a biomarker and therapeutic target in BCa immunotherapy.


Subject(s)
Fatty Acids , Immunotherapy , RNA, Circular , RNA-Binding Proteins , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Humans , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Line, Tumor , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Immunotherapy/methods , Fatty Acids/metabolism , Tumor Escape , Tumor Microenvironment/immunology , Signal Transduction , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , CD8-Positive T-Lymphocytes/immunology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Male , Female , CD36 Antigens
14.
Phytomedicine ; 130: 155668, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38776739

ABSTRACT

BACKGROUND: Baoyuan decoction (BYD) has been widely utilized as a traditional prescription for the treatment of various conditions such as coronary heart disease, aplastic anemia, and chronic renal failure. However, its potential efficacy in improving atherosclerosis has not yet been investigated. PURPOSE: Our research aimed to assess the potential of BYD as an inhibitor of atherosclerosis and uncover the underlying mechanism by which it acts on foam cell formation. STUDY DESIGN AND METHODS: High-fat diet-induced ApoE-/- mice were employed to explore the effect of BYD on atherosclerosis. The differential metabolites in feces were identified and analyzed by LC-Qtrap-MS. In addition, we utilized pharmacological inhibition of BYD on foam cell formation induced by oxLDL in THP-1 cells to elucidate the underlying mechanisms specifically in macrophages. RESULTS: The atherosclerotic plaque burden in the aortic sinus of ApoE-/- mice was notably reduced with BYD treatment, despite no significant alterations in plasma lipids. Metabolomic analysis revealed that BYD suppressed the increased levels of peroxidized fatty acids, specifically 9/13-hydroxyoctadecadienoic acid (9/13-HODE), in the feces of mice. As a prominent peroxidized fatty acid found in oxLDL, we confirmed that 9/13-HODE induced the overexpression of CD36 in THP-1 macrophages by upregulating PPARγ. In subsequent experiments, the decreased levels of CD36 triggered by oxLDL were observed after BYD treatment. This decrease occurred through the regulation of the Src/MMK4/JNK pathway, resulting in the suppression of lipid deposition in THP-1 macrophages. CONCLUSIONS: These results illustrate that BYD exhibits potential anti-atherosclerotic effects by inhibiting CD36 expression to prevent foam cell formation.


Subject(s)
Atherosclerosis , CD36 Antigens , Drugs, Chinese Herbal , Foam Cells , Lipoproteins, LDL , Animals , Atherosclerosis/drug therapy , CD36 Antigens/metabolism , Drugs, Chinese Herbal/pharmacology , Humans , Male , Mice , Foam Cells/drug effects , Foam Cells/metabolism , Lipoproteins, LDL/metabolism , Diet, High-Fat , Fatty Acids , Mice, Inbred C57BL , THP-1 Cells , Plaque, Atherosclerotic/drug therapy , MAP Kinase Signaling System/drug effects , Apolipoproteins E
15.
Biochem Biophys Res Commun ; 722: 150162, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38801802

ABSTRACT

Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.


Subject(s)
Cell Proliferation , Glutamine , Oleic Acid , Ovarian Neoplasms , Pentose Phosphate Pathway , Glutamine/metabolism , Pentose Phosphate Pathway/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Proliferation/drug effects , Humans , Cell Line, Tumor , Female , Oleic Acid/pharmacology , Oleic Acid/metabolism , Glucose/metabolism
16.
Biomedicines ; 12(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38790959

ABSTRACT

Clinical and basic science applications using adipose-derived stem cells (ADSCs) are gaining popularity. The current adipose tissue harvesting procedures introduce nonphysiological conditions, which may affect the overall performance of the isolated ADSCs. In this study, we elucidate the differences between ADSCs isolated from adipose tissues harvested within the first 5 min of the initial surgical incision (well-vascularized, nonpremedicated condition) versus those isolated from adipose tissues subjected to medications and deprived of blood supply during elective free flap procedures (ischemic condition). ADSCs isolated from well-vascularized and ischemic tissues positively immunostained for several standard stem cell markers. Interestingly, the percent change in the CD36 expression for ADSCs isolated from ischemic versus well-vascularized tissue was significantly lower in males than females (p < 0.05). Upon differentiation and maturation to adipocytes, spheroids formed using ADSCs isolated from ischemic adipose tissue had lower triglyceride content compared to those formed using ADSCs isolated from the well-vascularized tissue (p < 0.05). These results indicate that ADSCs isolated from ischemic tissue either fail to uptake fatty acids or fail to efficiently convert those fatty acids into triglycerides. Therefore, more robust ADSCs suitable to establish in vitro adipose tissue models can be obtained by harvesting well-vascularized and nonpremedicated adipose tissues.

17.
Cell Mol Biol Lett ; 29(1): 76, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762740

ABSTRACT

BACKGROUND: The role of the scavenger receptor CD36 in cell metabolism and the immune response has been investigated mainly in macrophages, dendritic cells, and T cells. However, its involvement in B cells has not been comprehensively examined. METHODS: To investigate the function of CD36 in B cells, we exposed Cd36fl/flMB1cre mice, which lack CD36 specifically in B cells, to apoptotic cells to trigger an autoimmune response. To validate the proteins that interact with CD36 in primary B cells, we conducted mass spectrometry analysis following anti-CD36 immunoprecipitation. Immunofluorescence and co-immunoprecipitation were used to confirm the protein interactions. RESULTS: The data revealed that mice lacking CD36 in B cells exhibited a reduction in germinal center B cells and anti-DNA antibodies in vivo. Mass spectrometry analysis identified 30 potential candidates that potentially interact with CD36. Furthermore, the interaction between CD36 and the inhibitory Fc receptor FcγRIIb was first discovered by mass spectrometry and confirmed through immunofluorescence and co-immunoprecipitation techniques. Finally, deletion of FcγRIIb in mice led to decreased expression of CD36 in marginal zone B cells, germinal center B cells, and plasma cells. CONCLUSIONS: Our data indicate that CD36 in B cells is a critical regulator of autoimmunity. The interaction of CD36-FcγRIIb has the potential to serve as a therapeutic target for the treatment of autoimmune disorders.


Subject(s)
Autoimmune Diseases , B-Lymphocytes , CD36 Antigens , Receptors, IgG , Animals , Mice , Autoimmune Diseases/metabolism , Autoimmune Diseases/immunology , Autoimmunity , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , CD36 Antigens/metabolism , CD36 Antigens/genetics , Germinal Center/metabolism , Germinal Center/immunology , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Receptors, IgG/metabolism , Receptors, IgG/genetics
18.
Stem Cells ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733123

ABSTRACT

Endometrium fibrosis is the leading cause of uterine infertility. Macrophages participated in the occurrence and development of endometrial fibrosis. We previously reported that human umbilical cord multipotent stromal cells (hUC-MSCs) exerted their therapeutic effect in a macrophage-dependent manner in endometrial fibrosis. However precise mechanisms by which hUC-MSCs may influence macrophages in endometrial fibrosis remain largely unexplored. Here, we demonstrated that abnormal iron and lipid metabolism occurred in intrauterine adhesions (IUA) patients and murine models. Ferroptosis has been proven to contribute to the progression of fibrotic diseases. Our results revealed that pharmacological activation of ferroptosis by Erastin aggravated endometrial fibrosis, while inhibition of ferroptosis by Ferrostatin-1 ameliorated endometrial fibrosis in vivo. Moreover, ferroptosis of macrophages was significantly upregulated in endometria of IUA murine models. Of note, transcriptome profiles revealed that CD36 gene expression was significantly increased in IUA patients and immunofluorescence analysis showed CD36 protein was mainly located in macrophages. Silencing CD36 in macrophages could reverse cell ferroptosis. Dual luciferase reporter assay revealed that CD36 was the direct target of activation transcription factor 3 (ATF3). Furthermore, through establishing coculture system and IUA murine models, we found that hUC-MSCs had a protective role against macrophage ferroptosis and alleviated endometrial fibrosis related to decreased CD36 and ATF3. The effect of hUC-MSCs on macrophage ferroptosis was attributed to the upregulation of amphiregulin (AREG). Our data highlighted that macrophage ferroptosis occurred in endometrial fibrosis via the ATF3-CD36 pathway and hUC-MSCs protected against macrophage ferroptosis to alleviate endometrial fibrosis via secreting AREG. These findings provided a potential target for therapeutic implications of endometrial fibrosis.

19.
Nutrients ; 16(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732501

ABSTRACT

Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.


Subject(s)
Fibroblast Growth Factors , Lipid Metabolism , Liver , Muscle, Skeletal , Obesity , Animals , Fibroblast Growth Factors/metabolism , Muscle, Skeletal/metabolism , Liver/metabolism , Mice , Obesity/metabolism , Male , Mice, Inbred C57BL , Perilipin-1/metabolism , Lipid Droplets/metabolism
20.
Am J Physiol Cell Physiol ; 326(5): C1543-C1555, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38586877

ABSTRACT

Obesity imposes deficits on adipose tissue and vascular endothelium, yet the role that distinct adipose depots play in mediating endothelial dysfunction in local arteries remains unresolved. We recently showed that obesity impairs endothelial Kir2.1 channels, mediators of nitric oxide production, in arteries of visceral adipose tissue (VAT), while Kir2.1 function in subcutaneous adipose tissue (SAT) endothelium remains intact. Therefore, we determined if VAT versus SAT from lean or diet-induced obese mice affected Kir2.1 channel function in vitro. We found that VAT from obese mice reduces Kir2.1 function without altering channel expression whereas AT from lean mice and SAT from obese mice had no effect on Kir2.1 function as compared to untreated control cells. As Kir2.1 is well known to be inhibited by fatty acid derivatives and obesity is strongly associated with elevated circulating fatty acids, we next tested the role of the fatty acid translocase CD36 in mediating VAT-induced Kir2.1 dysfunction. We found that the downregulation of CD36 restored Kir2.1 currents in endothelial cells exposed to VAT from obese mice. In addition, endothelial cells exposed to VAT from obese mice exhibited a significant increase in CD36-mediated fatty acid uptake. The importance of CD36 in obesity-induced endothelial dysfunction of VAT arteries was further supported in ex vivo pressure myography studies where CD36 ablation rescued the endothelium-dependent response to flow via restoring Kir2.1 and endothelial nitric oxide synthase function. These findings provide new insight into the role of VAT in mediating obesity-induced endothelial dysfunction and suggest a novel role for CD36 as a mediator of endothelial Kir2.1 impairment.NEW & NOTEWORTHY Our findings suggest a role for visceral adipose tissue (VAT) in the dysfunction of endothelial Kir2.1 in obesity. We further reveal a role for CD36 as a major contributor to VAT-mediated Kir2.1 and endothelial dysfunction, suggesting that CD36 offers a potential target for preventing the early development of obesity-associated cardiovascular disease.


Subject(s)
CD36 Antigens , Endothelial Cells , Intra-Abdominal Fat , Mice, Inbred C57BL , Obesity , Potassium Channels, Inwardly Rectifying , Animals , Mice , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Intra-Abdominal Fat/metabolism , Mice, Obese , Obesity/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Subcutaneous Fat/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL