Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
1.
Front Immunol ; 15: 1365946, 2024.
Article in English | MEDLINE | ID: mdl-39131155

ABSTRACT

Introduction: Humanized mouse models to recapitulate human biological systems still have limitations, such as the onset of lethal graft-versus-host disease (GvHD), a variable success rate, and the low accessibility of total body irradiation (TBI). Recently, mice modified with the CD47-SIRPA axis have been studied to improve humanized mouse models. However, such trials have been rarely applied in NOD mice. In this study, we created a novel mouse strain, NOD-CD47nullRag2nullIL-2rγnull (RTKO) mice, and applied it to generate humanized mice. Methods: Four-week-old female NOD-Rag2nullIL-2rγnull (RID) and RTKO mice pre-conditioned with TBI or busulfan (BSF) injection were used for generating human CD34+ hematopoietic stem cell (HSC) engrafted humanized mice. Clinical signs were observed twice a week, and body weight was measured once a week. Flow cytometry for human leukocyte antigens was performed at intervals of four weeks or two weeks, and mice were sacrificed at 48 weeks after HSC injection. Results: For a long period from 16 to 40 weeks post transplantation, the percentage of hCD45 was mostly maintained above 25% in all groups, and it was sustained the longest and highest in the RTKO BSF group. Reconstruction of human leukocytes, including hCD3, was also most prominent in the RTKO BSF group. Only two mice died before 40 weeks post transplantation in all groups, and there were no life-threatening GvHD lesions except in the dead mice. The occurrence of GvHD has been identified as mainly due to human T cells infiltrating tissues and their related cytokines. Discussion: Humanized mouse models under all conditions applied in this study are considered suitable models for long-term experiments based on the improvement of human leukocytes reconstruction and the stable animal health. Especially, RTKO mice pretreated with BSF are expected to be a valuable platform not only for generating humanized mice but also for various immune research fields.


Subject(s)
Busulfan , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Mice, Inbred NOD , Mice, Knockout , Transplantation Conditioning , Animals , Busulfan/pharmacology , Humans , Mice , Hematopoietic Stem Cell Transplantation/methods , Transplantation Conditioning/methods , Hematopoietic Stem Cells/metabolism , Female , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/deficiency , Graft vs Host Disease/prevention & control , Graft vs Host Disease/immunology , Disease Models, Animal , Whole-Body Irradiation
2.
J Exp Clin Cancer Res ; 43(1): 225, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135122

ABSTRACT

BACKGROUND: Long non-coding RNAs (LncRNAs) have been implicated as critical regulators of cancer tumorigenesis and progression. However, their functions and molecular mechanisms in colorectal cancer (CRC) still remain to be further elucidated. METHODS: LINC00460 was identified by differential analysis between human CRC and normal tissues and verified by in situ hybridization (ISH) and qRT-PCR. We investigated the biological functions of LINC00460 in CRC by in vitro and in vivo experiments. We predicted the mechanism and downstream functional molecules of LINC00460 by bioinformatics analysis, and confirmed them by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP), RNA pull-down, etc. RESULTS: LINC00460 was found to be significantly overexpressed in CRC and associated with poor prognosis. Overexpression of LINC00460 promoted CRC cell immune escape and remodeled a suppressive tumor immune microenvironment, thereby promoting CRC proliferation and metastasis. Mechanistic studies showed that LINC00460 served as a molecular sponge for miR-186-3p, and then promoted the expressions of MYC, CD47 and PD-L1 to facilitate CRC cell immune escape. We also demonstrated that MYC upregulated LINC00460 expression at the transcriptional level and formed a positive feedback loop. CONCLUSIONS: The LINC00460/miR-186-3p/MYC feedback loop promotes CRC cell immune escape and subsequently facilitates CRC proliferation and metastasis. Our findings provide novel insight into LINC00460 as a CRC immune regulator, and provide a potential therapeutic target for CRC patients.


Subject(s)
B7-H1 Antigen , CD47 Antigen , Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/immunology , MicroRNAs/genetics , CD47 Antigen/metabolism , CD47 Antigen/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Animals , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Tumor Escape/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Male , Female , Cell Proliferation , Feedback, Physiological , Prognosis , Mice, Nude
3.
FASEB J ; 38(15): e23857, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39114953

ABSTRACT

Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.


Subject(s)
Atherosclerosis , CD47 Antigen , Efferocytosis , MicroRNAs , Animals , Humans , Mice , 3' Untranslated Regions , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Diet, High-Fat/adverse effects , Foam Cells/metabolism , Foam Cells/pathology , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Mol Cancer ; 23(1): 166, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138571

ABSTRACT

BACKGROUND: Ovarian cancer (OC) remains one of the most challenging and deadly malignancies facing women today. While PARP inhibitors (PARPis) have transformed the treatment landscape for women with advanced OC, many patients will relapse and the PARPi-resistant setting is an area of unmet medical need. Traditional immunotherapies targeting PD-1/PD-L1 have failed to show any benefit in OC. The CD47/TSP-1 axis may be relevant in OC. We aimed to describe changes in CD47 expression with platinum therapy and their relationship with immune features and prognosis. METHODS: Tumor and blood samples collected from OC patients in the CHIVA trial were assessed for CD47 and TSP-1 before and after neoadjuvant chemotherapy (NACT) and multiplex analysis was used to investigate immune markers. Considering the therapeutic relevance of targeting the CD47/TSP-1 axis, we used the CD47-derived TAX2 peptide to selectively antagonize it in a preclinical model of aggressive ovarian carcinoma. RESULTS: Significant reductions in CD47 expression were observed post NACT. Tumor patients having the highest CD47 expression profile at baseline showed the greatest CD4+ and CD8+ T-cell influx post NACT and displayed a better prognosis. In addition, TSP-1 plasma levels decreased significantly under NACT, and high TSP-1 was associated with a worse prognosis. We demonstrated that TAX2 exhibited a selective and favorable biodistribution profile in mice, localizing at the tumor sites. Using a relevant peritoneal carcinomatosis model displaying PARPi resistance, we demonstrated that post-olaparib (post-PARPi) administration of TAX2 significantly reduced tumor burden and prolonged survival. Remarkably, TAX2 used sequentially was also able to increase animal survival even under treatment conditions allowing olaparib efficacy. CONCLUSIONS: Our study thus (1) proposes a CD47-based stratification of patients who may be most likely to benefit from postoperative immunotherapy, and (2) suggests that TAX2 is a potential alternative therapy for patients relapsing on PARP inhibitors.


Subject(s)
Biomarkers, Tumor , CD47 Antigen , Ovarian Neoplasms , Thrombospondin 1 , CD47 Antigen/metabolism , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Biomarkers, Tumor/metabolism , Animals , Mice , Thrombospondin 1/metabolism , Prognosis , Cell Line, Tumor , Neoadjuvant Therapy , Xenograft Model Antitumor Assays , Middle Aged , Gene Expression Regulation, Neoplastic/drug effects
5.
Front Immunol ; 15: 1386561, 2024.
Article in English | MEDLINE | ID: mdl-38957460

ABSTRACT

Targeted therapy and immunotherapy are both important in the treatment of non-small-cell lung cancer (NSCLC). Accurate diagnose and precise treatment are key in achieving long survival of patients. MET fusion is a rare oncogenic factor, whose optimal detection and treatment are not well established. Here, we report on a 32-year-old female lung adenocarcinoma patient with positive PD-L1 and negative driver gene detected by DNA-based next-generation sequencing (NGS). A radical resection of the primary lesion after chemotherapy combined with PD-1 checkpoint inhibitor administration indicated primary immuno-resistance according to her pathological response and rapid relapse. A rare CD47-MET was detected by RNA-based NGS, which was confirmed by fluorescence in situ hybridization. Multiplex immunofluorescence revealed a PD-L1 related heterogeneous immunosuppressive microenvironment with little distribution of CD4+ T cells and CD8+ T cells. Savolitinib therapy resulted in a progression-free survival (PFS) of >12 months, until a new secondary resistance mutation in MET p.D1228H was detected by re-biopsy and joint DNA-RNA-based NGS after disease progression. In this case, CD47-MET fusion NSCLC was primarily resistant to immunotherapy, sensitive to savolitinib, and developed secondary MET p.D1228H mutation after targeted treatment. DNA-RNA-based NGS is useful in the detection of such molecular events and tracking of secondary mutations in drug resistance. To this end, DNA-RNA-based NGS may be of better value in guiding precise diagnosis and individualized treatment in this patient population.


Subject(s)
Adenocarcinoma of Lung , High-Throughput Nucleotide Sequencing , Lung Neoplasms , Proto-Oncogene Proteins c-met , Humans , Female , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adult , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Proto-Oncogene Proteins c-met/genetics , Oncogene Proteins, Fusion/genetics , Drug Resistance, Neoplasm/genetics , Immune Checkpoint Inhibitors/therapeutic use
6.
Adv Sci (Weinh) ; : e2400695, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981064

ABSTRACT

Tumor immune evasion relies on the crosstalk between tumor cells and adaptive/innate immune cells. Immune checkpoints play critical roles in the crosstalk, and immune checkpoint inhibitors have achieved promising clinical effects. The long non-coding RNA taurine-upregulated gene 1 (TUG1) is upregulated in hepatocellular carcinoma (HCC). However, how TUG1 is upregulated and the effects on tumor immune evasion are incompletely understood. Here, METTL3-mediated m6A modification led to TUG1 upregulation is demonstrated. Knockdown of TUG1 inhibited tumor growth and metastasis, increased the infiltration of CD8+ T cells and M1-like macrophages in tumors, promoted the activation of CD8+ T cells through PD-L1, and improved the phagocytosis of macrophages through CD47. Mechanistically, TUG1 regulated PD-L1 and CD47 expressions by acting as a sponge of miR-141 and miR-340, respectively. Meanwhile, TUG1 interacted with YBX1 to facilitate the upregulation of PD-L1 and CD47 transcriptionally, which ultimately regulated tumor immune evasion. Clinically, TUG1 positively correlated with PD-L1 and CD47 in HCC tissues. Moreover, the combination of Tug1-siRNA therapy with a Pdl1 antibody effectively suppressed tumor growth. Therefore, the mechanism of TUG1 in regulating tumor immune evasion is revealed and can inform existing strategies targeting TUG1 for enhancing HCC immune therapy and drug development.

7.
J Exp Clin Cancer Res ; 43(1): 193, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992659

ABSTRACT

BACKGROUND: Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. METHODS: Macrophages were derived from human peripheral blood monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. RESULTS: We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. CONCLUSIONS: By turning "two keys" simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.


Subject(s)
Immunotherapy , Macrophages , Sarcoma, Ewing , Sarcoma, Ewing/immunology , Sarcoma, Ewing/pathology , Sarcoma, Ewing/therapy , Sarcoma, Ewing/drug therapy , Animals , Mice , Humans , Macrophages/immunology , Macrophages/metabolism , Immunotherapy/methods , CD47 Antigen/metabolism , Cell Line, Tumor , Phagocytosis , Xenograft Model Antitumor Assays , Female , Immunity, Innate , Disease Models, Animal
8.
Acta Pharm Sin B ; 14(7): 3218-3231, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027241

ABSTRACT

Current cytotoxic T lymphocyte (CTL) activating immunotherapy requires a major histocompatibility complex I (MHC-I)-mediated presentation of tumor-associated antigens, which malfunctions in around half of patients with triple-negative breast cancer (TNBC). Here, we create a LCL161-loaded macrophage membrane decorated nanoparticle (LMN) for immunotherapy of MHC-I-deficient TNBC. SIRPα on the macrophage membrane helps LMNs recognize CD47-expressing cancer cells for targeted delivery of LCL161, which induces the release of high mobility group protein 1 and proinflammatory cytokines from cancer cells. The released cytokines and high mobility group protein 1 activate antitumor immunity by increasing the intratumoral density of the phagocytic macrophage subtype by 15 times and elevating the intratumoral concentration of CTL lymphotoxin by 4.6 folds. LMNs also block CD47-mediated phagocytosis suppression. LMNs inhibit the growth of MHC-I-deficient TNBC tumors, as well as those resistant to combined therapy of anti-PDL1 antibody and albumin-bound paclitaxel, and prolong the survival of animals, during which process CTLs also play important roles. This macrophage membrane-decorated nanoparticle presents a generalizable platform for increasing macrophage-mediated antitumor immunity for effective immunotherapy of MHC-I-deficient cancers.

10.
Mol Ther Oncol ; 32(3): 200824, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39035202

ABSTRACT

Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.

11.
Front Oncol ; 14: 1378647, 2024.
Article in English | MEDLINE | ID: mdl-39040441

ABSTRACT

Since its initial report in 2015, CD47 has garnered significant attention as an innate immune checkpoint, raising expectations to become the next "PD-1." The optimistic early stages of clinical development spurred a flurry of licensing deals for CD47-targeted molecules and company mergers or acquisitions for related assets. However, a series of setbacks unfolded recently, starting with the July 2023 announcement of discontinuing the phase 3 ENHANCE study on Magrolimab plus Azacitidine for higher-risk myelodysplastic syndromes (MDS). Subsequently, in August 2023, the termination of the ASPEN-02 program, assessing Evorpacept in combination with Azacitidine in MDS patients, was disclosed due to insufficient improvement compared to Azacitidine alone. These setbacks have cast doubt on the feasibility of targeting CD47 in the industry. In this review, we delve into the challenges of developing CD47-SIRPα-targeted drugs, analyze factors contributing to the mentioned setbacks, discuss future perspectives, and explore potential solutions for enhancing CD47-SIRPα-targeted drug development.

12.
Mol Pharm ; 21(8): 3897-3908, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38959154

ABSTRACT

The antitumor strategies based on innate immunity activation have become favored by researchers in recent years. In particular, strategies targeting antiphagocytic signaling blockade to enhance phagocytosis have been widely reported. For example, the addition of prophagocytic signals such as calreticulin could make the strategy significantly more effective. In this study, an antitumor strategy that combines photodynamic therapy (PDT) with CD47 blockade has been reported. This approach promotes the maturation of dendritic cells and the presentation of tumor antigens by PDT-mediated tumor immunogenic cell death, as well as the enhancement of cytotoxic T lymphocyte infiltration in tumor areas and the phagocytic activity of phagocytes. Furthermore, the downregulation and blockage of CD47 protein could further promote phagocytic activity, strengthen the innate immune system, and ultimately elevate the antitumor efficacy and inhibit tumor metastasis.


Subject(s)
CD47 Antigen , Dendritic Cells , Phagocytosis , Photochemotherapy , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , Photochemotherapy/methods , Animals , Mice , Phagocytosis/drug effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Mice, Inbred C57BL , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Humans , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , Immunity, Innate/drug effects , Mice, Inbred BALB C , Female
13.
Front Immunol ; 15: 1403752, 2024.
Article in English | MEDLINE | ID: mdl-38975343

ABSTRACT

Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing pancreatic beta cells. Recent advancements in the technology of generating pancreatic beta cells from human pluripotent stem cells (SC-beta cells) have facilitated the exploration of cell replacement therapies for treating T1D. However, the persistent threat of autoimmunity poses a significant challenge to the survival of transplanted SC-beta cells. Genetic engineering is a promising approach to enhance immune resistance of beta cells as we previously showed by inactivating the Renalase (Rnls) gene. Here, we demonstrate that Rnls loss of function in beta cells shapes autoimmunity by mediating a regulatory natural killer (NK) cell phenotype important for the induction of tolerogenic antigen-presenting cells. Rnls-deficient beta cells mediate cell-cell contact-independent induction of hallmark anti-inflammatory cytokine Tgfß1 in NK cells. In addition, surface expression of regulatory NK immune checkpoints CD47 and Ceacam1 is markedly elevated on beta cells deficient for Rnls. Altered glucose metabolism in Rnls mutant beta cells is involved in the upregulation of CD47 surface expression. These findings are crucial to better understand how genetically engineered beta cells shape autoimmunity, giving valuable insights for future therapeutic advancements to treat and cure T1D.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Mice , Diabetes Mellitus, Type 1/immunology , Humans , CD47 Antigen/metabolism , CD47 Antigen/genetics , CD47 Antigen/immunology , Transforming Growth Factor beta1/metabolism , Mice, Inbred NOD , Monoamine Oxidase
14.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979889

ABSTRACT

Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47-/- mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47-/- spleens but significantly depleted in Thbs1-/- spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119-CD34+ progenitors and Ter119+CD34- committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1-/- spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.


Subject(s)
CD47 Antigen , Erythropoiesis , Spleen , Thrombospondin 1 , Animals , CD47 Antigen/metabolism , CD47 Antigen/genetics , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Spleen/metabolism , Mice , Mice, Knockout , Gene Expression Regulation , Mice, Inbred C57BL , Erythroid Precursor Cells/metabolism
15.
Front Immunol ; 15: 1398508, 2024.
Article in English | MEDLINE | ID: mdl-38983860

ABSTRACT

Background: CD38 and CD47 are expressed in many hematologic malignancies, including multiple myeloma (MM), B-cell non-Hodgkin lymphoma (NHL), B-cell acute lymphoblastic leukemia (ALL), and B-cell chronic lymphocytic leukemia (CLL). Here, we evaluated the antitumor activities of CD38/CD47 bispecific antibodies (BsAbs). Methods: Five suitable anti-CD38 antibodies for co-targeting CD47 and CD38 BsAb were developed using a 2 + 2 "mAb-trap" platform. The activity characteristics of the CD38/CD47 BsAbs were evaluated using in vitro and in vivo systems. Results: Using hybridoma screening technology, we obtained nine suitable anti-CD38 antibodies. All anti-CD38 antibodies bind to CD38+ tumor cells and kill tumor cells via antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Five anti-CD38 antibodies (4A8, 12C10, 26B4, 35G5, and 65A7) were selected for designing CD38/CD47 BsAbs (IMM5605) using a "mAb-trap" platform. BsAbs had higher affinity and binding activity to the CD38 target than those to the CD47 target, decreasing the potential on-target potential and off-tumor effects. The CD38/CD47 BsAbs did not bind to RBCs and did not induce RBC agglutination; thus, BsAbs had much lower blood toxicity. The CD38/CD47 BsAbs had a greater ability to block the CD47/SIRPα signal in CD38+/CD47+ tumor cells than IMM01 (SIRPα Fc fusion protein). Through Fc domain engineering, CD38/CD47 BsAbs were shown to kill tumors more effectively by inducing ADCC and ADCP. IMM5605-26B4 had the strongest inhibitory effect on cellular CD38 enzymatic activity. IMM5605-12C10 had the strongest ability to directly induce the apoptosis of tumor cells. The anti-CD38 antibody 26B4 combined with the SIRPα-Fc fusion proteins showed strong antitumor effects, which were better than any of the mono-therapeutic agents used alone in the NCI-H929 cell xenograft model. The CD38/CD47 BsAbs exhibited strong antitumor effects; specifically, IMM5605-12C10 efficiently eradicated all established tumors in all mice. Conclusion: A panel of BsAbs targeting CD38 and CD47 developed based on the "mAb-tarp" platform showed potent tumor-killing ability in vitro and in vivo. As BsAbs had lower affinity for binding to CD47, higher affinity for binding to CD38, no affinity for binding to RBCs, and did not induce RBC agglutination, we concluded that CD38/CD47 BsAbs are safe and have a satisfactory tolerability profile.


Subject(s)
ADP-ribosyl Cyclase 1 , CD47 Antigen , Hematologic Neoplasms , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/metabolism , Humans , Animals , Mice , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Cell Line, Tumor , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Xenograft Model Antitumor Assays , Membrane Glycoproteins/immunology , Membrane Glycoproteins/antagonists & inhibitors , Antibody-Dependent Cell Cytotoxicity , Female , Antineoplastic Agents, Immunological/pharmacology
16.
Article in English | MEDLINE | ID: mdl-39079025

ABSTRACT

Glycinamide ribonucleotide formyltransferase (GARFT) is an important enzyme in the folate metabolism pathway, and chemical drugs targeting GARFT have been used in tumor treatments over the past few decades. The development of novel antimetabolism drugs that target GARFT with improved performance and superior activity remains an attractive strategy. Herein, we proposed a targeted double-template molecularly imprinted polymer (MIP) for enhancing macrophage phagocytosis and synergistic antimetabolic therapy. The double-template MIP was prepared by imprinting the exposed peptide segment of the extracellular domain of CD47 and the active center of GARFT. Owing to the imprinted cavities on the surface of MIP, it can actively target cancer cells and mask the "do not eat me" signal upon binding to CD47 thereby blocking the CD47-SIRPα pathway and ultimately enhancing phagocytosis by macrophages. In addition, MIP can specifically bind to the active center of GARFT upon entry into the cells, thereby inhibiting its catalytic activity and ultimately interfering with the normal expression of DNA. A series of cell experiments demonstrated that MIP can effectively target CD47 overexpressed 4T1 cancer cells and inhibit the growth of 4T1 cells. The enhanced phagocytosis ability of macrophages-RAW264.7 cells was also clearly observed by confocal imaging experiments. In vivo experiments also showed that the MIP exhibited a satisfactory tumor inhibition effect. Therefore, this study provides a new idea for the application of molecular imprinting technology to antimetabolic therapy in conjunction with macrophage-mediated immunotherapy.

17.
Cell Physiol Biochem ; 58(4): 322-335, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39074350

ABSTRACT

BACKGROUND/AIMS: Immune cells are reported to upregulate CD47 during infection, however, the role of CD47 in innate and adaptive immune cells remains unclear. METHODS: To bridge this knowledge gap, we analysed our single cell (sc)-RNA dataset along with other publicly available sc-RNA datasets from healthy controls, people with HIV-1 (PWH) and COVID-19 patients. We characterized each immune cell based on low, intermediate, and high expression of CD47 . RESULTS: Our analyses revealed that CD47 high pDCs and monocytes exhibited relatively higher expression of IFN-α regulatory genes, antiviral interferon-stimulated genes (ISGs) and MHC-I associated genes compared to CD47 inter. and CD47 low cells. Furthermore, CD47 high NK and CD8+ T cells showed higher expression of antiviral ISGs, as well as genes encoding for cytotoxic markers like granzyme B, perforin, granulysin, interferon gamma and NKG7. Additionally, CD47 high CD8+ T cells expressed higher levels of PD-1 and LAG-3 genes. Lastly, we found that CD47 high B cells had enriched expression of genes involved in cell activation and humoral responses. CONCLUSION: Overall, our analyses revealed that innate and adaptive immune cells expressing elevated activation and functional gene signatures also express higher CD47 levels.


Subject(s)
CD47 Antigen , CD8-Positive T-Lymphocytes , Granzymes , HIV-1 , Killer Cells, Natural , Perforin , Programmed Cell Death 1 Receptor , RNA, Messenger , Single-Cell Analysis , Humans , CD47 Antigen/metabolism , CD47 Antigen/genetics , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Granzymes/metabolism , Granzymes/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Perforin/metabolism , Perforin/genetics , HIV-1/immunology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , HIV Infections/immunology , HIV Infections/virology , HIV Infections/genetics , Lymphocyte Activation Gene 3 Protein , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , SARS-CoV-2/immunology , Interferon-gamma/metabolism , Interferon-gamma/genetics , Monocytes/metabolism , Monocytes/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Immunity, Innate
18.
Heliyon ; 10(11): e32056, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882340

ABSTRACT

Washed red blood cells (RBCs) can be used to treat immune-related diseases. However, whether the washing process changes the quality of RBCs and affects the curative effect of transfusion therapy remains unclear. We retrospectively analysed the clinical data of patients who received blood transfusion. The physiological and biochemical parameters of RBCs were tested on an automated haematology-biochemical analyser. CD47 and phosphatidylserine (PS) plasma membrane expression were analysed using flow cytometry. Morphological changes in RBCs were observed using scanning electron microscopy. The results showed that the curative effect on patients who received washed RBCs was weaker than that on those who received non-washed RBCs. Physiological and biochemical parameters of RBCs were not significantly different. RBC immune indices changed significantly after washing. The expression of "don't eat me" signals was weakened, whereas the intensity of "eat me" signals was enhanced. This study suggests that the current use of physiological and biochemical parameters as indicators to evaluate the quality of RBCs may not be comprehensive and that evaluation of the real status of RBCs requires other effective parameters. Immune molecules in RBCs are expected to become supplementary markers for evaluating RBC quality.

19.
Transfus Med Hemother ; 51(3): 185-192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867811

ABSTRACT

Introduction: Evorpacept is a CD47-blocking agent currently being developed for the treatment of various cancers. Interference by evorpacept in pretransfusion compatibility testing has been reported at limited plasma concentrations. Although various mitigation strategies have been proposed, none are practical. This in vitro study assessed evorpacept-induced interference at extended concentrations and investigated the capability of a novel mitigation agent, Evo-NR. Methods: Antibody screening tests were performed on evorpacept-spiked plasma with (anti-E and anti-Jka) or without alloantibodies at evorpacept concentrations up to 2,000 µg/mL using manual gel cards and automated analyzers. Evorpacept-coated red blood cells (RBCs) (rr [ce/ce], Fy[a+b-], S-s+) were tested by direct antiglobulin testing (DAT) and antigen typing using anti-Fyb and anti-S reagents at indirect antiglobulin testing (IAT) phase. Evo-NR was used to resolve the interference in plasma and RBC samples. Flow cytometry was used to assess the mitigation effects. Results: Evorpacept-spiked plasma showed panreactive interference in antibody screening tests using manual gel cards (2+ to 3+) and automated analyzers (4+). A carryover effect was also observed in the automated analyzers. The use of a 3- to 6-fold molar excess of Evo-NR effectively resolved the interference in the plasma and enabled accurate alloantibody identification. Although the reduction in evorpacept binding to RBCs was identified via flow cytometry, Evo-NR was incapable of resolving the serologic interference observed in DAT and antigen typing at IAT phase. Discussion: Evorpacept showed constant panreactivity and a carryover effect at high concentrations. Evo-NR successfully resolved the interference in the plasma samples and could be considered a practical and efficient mitigation solution. Implementation of Evo-NR has the potential to support RBC transfusion for patients undergoing evorpacept treatment.

20.
Ann Hematol ; 103(8): 3033-3042, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886192

ABSTRACT

BACKGROUND: The interaction between CD47 and signal-regulatory protein-alpha (SIRPα) inhibits phagocytosis, and their clinicopathological characteristics have been evaluated in various diseases. However, the significance of CD47 and SIRPα expression, as well as the combined effect, in Extranodal Natural killer/T-cell Lymphoma (ENKTL) remains uncertain. METHODS: In total, 76 newly diagnosed ENKTL patients (mean age 49.9 years, 73.7% male) were included in this study. CD47 and SIRPα expression were examined by immunohistochemistry. Survival analyses were conducted through Kaplan-Meier curves and the Cox regression model. RESULTS: Seventy-one (93.4%) cases were categorized as the CD47 positive group and 59 (77.6%) cases were categorized as the SIRPα positive group. CD47-negative cases had more advanced-stage illness (P = 0.001), while SIRPα-positive cases showed significantly lower levels of high-density lipoprotein (P < 0.001). In univariable analysis, CD47, SIRPα expression, and their combination were significantly associated with prognosis (P < 0.05). In multivariable analysis, only positive SIRPα expression remained significantly associated with superior overall survival (Hazard ratio [HR] 0.446; 95% confidence interval [CI] 0.207-0.963; P = 0.004). Furthermore, SIRPα expression could re-stratify the survival of patients in ECOG (< 2), advanced CA stage, PINK (HR), CD38-positive, PD1-positive, and CD30-positive groups. CONCLUSIONS: SIRPα status was a potential independent prognostic factor for ENKTL. The prognostic significance of CD47 expression and the interaction between CD47 and SIRPα in ENKTL need further investigation.


Subject(s)
CD47 Antigen , Lymphoma, Extranodal NK-T-Cell , Receptors, Immunologic , Humans , CD47 Antigen/metabolism , CD47 Antigen/analysis , CD47 Antigen/biosynthesis , Male , Middle Aged , Female , Receptors, Immunologic/metabolism , Receptors, Immunologic/biosynthesis , Lymphoma, Extranodal NK-T-Cell/metabolism , Lymphoma, Extranodal NK-T-Cell/pathology , Lymphoma, Extranodal NK-T-Cell/mortality , Adult , Aged , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/analysis , Immunohistochemistry , Prognosis , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL