Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
Stem Cell Res Ther ; 15(1): 254, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135188

ABSTRACT

BACKGROUND: Cytokine-induced killer (CIK) cells are a novel subgroup of immune effectors, classified as one of the modified T cell-mediated arms for immunotherapy. These cells exert MHC-unrestricted cytotoxicity against both hematological and solid malignancies with low incidence of treatment-related severe complications. This study reviews the application of CIK cells in treating cases with hematologic malignancies. MAIN BODY: CIK cells consist of CD3+/CD56+ natural killer (NK) T cells, CD3-/CD56+ NK cells, and CD3+/CD56- cytotoxic T cells. In this regard, the CD3+/CD56+ NK T cells are the primary effectors. Compared with the previously reported antitumor immune cells, CIK cells are characterized by improved in vitro proliferation and amplification, enhanced migration and invasive capacity to tumor region, more significant antitumor activity, and a broader antitumor spectrum. CIK cells can also induce death in tumor cells via numerous pathways and mechanisms. Hence, CIKs-based therapy has been used in various clinical trials and has shown efficacy with a very low graft versus host disease (GVHD) against several cancers, such as hematologic malignancies, even in relapsing cases, or cases not responding to other therapies. Despite the high content of T cells, CIK cells induce low alloreactivity and, thus, pose a restricted threat of GVHD induction even in MHC-mismatched transplantation cases. Phase 1 and 2 clinical trials of CIK cell therapy have also highlighted satisfactory therapeutic advantages against hematologic cancers, indicating the safety of CIK cells even in haploidentical transplantation settings. CONCLUSION: CIK cells have shown promising results in the treatment of hematologic malignancies, especially in combination with other antitumor strategies. However, the existing controversies in achieving desired clinical responses underscore the importance of future studies.


Subject(s)
Cytokine-Induced Killer Cells , Hematologic Neoplasms , Humans , Cytokine-Induced Killer Cells/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Immunotherapy, Adoptive/methods , Immunotherapy/methods
2.
Pharm Res ; 41(9): 1757-1773, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39187686

ABSTRACT

Myelodysplastic syndromes (MDS) are due to defective hematopoiesis in bone marrow characterized by cytopenia and dysplasia of blood cells, with a varying degree of risk of acute myeloid leukemia (AML). Currently, the only potentially curative strategy is hematopoietic stem cell transplantation (HSCT). Many patients are ineligible for HSCT, due to late diagnosis, presence of co-morbidities, old age and complications likely due to graft-versus-host disease (GvHD). As a consequence, patients with MDS are often treated conservatively with blood transfusions, chemotherapy, immunotherapy etc. based on the grade and manifestations of MDS. The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized immunotherapy for hematological malignancies, as evidenced by a large body of literature. However, resistance and toxicity associated with it are also a challenge. Hence, there is an urgent need to develop new strategies for immunological and hematopoetic management of MDS. Herein, we discuss current limitations of CAR T-cell therapy and summarize novel approaches to mitigate this. Further, we discuss the in vivo activation of tumor-specific T cells, immune check inhibitors (ICI) and other approaches to normalize the bone marrow milieu for the management of MDS.


Subject(s)
Immunotherapy, Adoptive , Myelodysplastic Syndromes , Receptors, Chimeric Antigen , T-Lymphocytes , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/immunology , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals
3.
Environ Toxicol ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004893

ABSTRACT

Trimethyltin chloride (TMT) is a highly toxic organotin pollutant frequently found in aquatic environments, posing a significant threat to the ecological system. The kidney plays a vital role in the body's detoxification processes, and TMT present in the environment tends to accumulate in the kidneys. However, it remained unclear whether exposure to different doses of TMT could induce pyroptosis and immune dysfunction in grass carp kidney cells (CIK cells). For this purpose, after assessing the half-maximal inhibitory concentration (IC50) of TMT on CIK cells, we established a model for exposure of CIK cells at varying concentrations of TMT. CIK cells were treated with various doses of TMT (2.5, 5, 10 µM) for 24 h. Oxidative stress levels were measured using kits and fluorescence methods, whereas the expression of related genes was verified through western blot and quantitative real-time PCR (qRT-PCR). The results indicated that TMT exposure led to oxidative stress, with increased levels of ROS, H2O2, MDA, and GSH, and inhibited activities of T-AOC, SOD, and CAT. It activated the NF-κB pathway, leading to the upregulation of NF-κB p65, NF-κB p50, GSDMD, NLRP3, ASC, and Caspase-1. Furthermore, TMT exposure also resulted in increased expression of cytokines (IL-18, IL-6, IL-2, IL-1ß, and TNF-α) and decreased expression of antimicrobial peptides (LEAP2, HEPC, and ß-defensin). In summary, exposure to TMT induces dose-dependent oxidative stress that activates the NF-κB pathway, leading to pyroptosis and immune dysfunction in grass carp CIK cells.

4.
Front Oncol ; 14: 1389725, 2024.
Article in English | MEDLINE | ID: mdl-38947891

ABSTRACT

While the incidence of small-cell lung cancer is low, it has a poor prognosis. Patients with extensive small-cell lung cancer account for about 70% of all cases of small-cell lung cancer, with a median overall survival duration of 8-13 months and a 5-year overall survival rate of only 1%-5%. Herein, we report small-cell lung cancer diagnosed by bronchoscopic biopsy in an adult male patient in 2011. The patient had a clinical stage of cT2N2M1 and stage IV disease (i.e., extensive small-cell lung cancer). Still, he survived for 13 years through a combination of chemotherapy, radiotherapy, and cytokine-induced killer (CIK) immunocell thera. Comprehensive tumor markers, lymphocyte subsets, and lung CT images were obtained through long-term follow-up. After 12 cycles of chemotherapy (CE/IP regimen) and 5940cgy/33f radiotherapy, we found that the patient was in an immunosuppressive state, so the patient was given CIK cell therapy combined with chemotherapy. After 2 years of immunocell-combined chemotherapy, there were no significant changes in the primary lesion or other adverse events. In the 13 years since the patient's initial diagnosis, we monitored the changes in the patient's indicators such as CEA, NSE, CD4/CD8 ratio, and CD3+CD4+ lymphocytes, suggesting that these may be the factors worth evaluating regarding the patient's immune status and the effectiveness of combination therapy. In this case, CIK cell immunotherapy combined with chemotherapy was applied to control tumor progression. With a good prognosis, we concluded that CIK cell immunotherapy combined with chemotherapy can prolong patient survival in cases of extensive small-cell lung cancer, and the advantages of combined therapy are reflected in improving the body's immune capacity and enhancing the killing effect of immune cells.

6.
Biomed Mater ; 19(4)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870927

ABSTRACT

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Subject(s)
Chlorophyllides , Cytokine-Induced Killer Cells , Gold , Lung Neoplasms , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Gold/chemistry , Photochemotherapy/methods , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Humans , Animals , Porphyrins/chemistry , Porphyrins/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Metal Nanoparticles/chemistry , Mice , Immunotherapy/methods , Cell Line, Tumor , Drug Delivery Systems , Polyethylene Glycols/chemistry , A549 Cells , Optical Imaging/methods , Mice, Nude
7.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928143

ABSTRACT

Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA-mRNA-protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases.


Subject(s)
Aeromonas hydrophila , Carps , MicroRNAs , RNA, Messenger , Reoviridae , Transcriptome , Animals , Carps/genetics , Carps/microbiology , Carps/virology , Carps/immunology , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reoviridae/physiology , Proteomics/methods , Fish Diseases/microbiology , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Gene Expression Profiling , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/genetics , Cell Line , Reoviridae Infections/veterinary , Reoviridae Infections/immunology , Reoviridae Infections/genetics , Gene Regulatory Networks
8.
Oncol Lett ; 27(5): 203, 2024 May.
Article in English | MEDLINE | ID: mdl-38516684

ABSTRACT

The 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) remains low, despite recent advances in targeted therapy and immunotherapy. Therefore, there is a need to identify alternative strategies to improve treatment outcomes. Modern diagnostics can significantly facilitate the selection of treatment plans to improve patient outcomes. In the present study, multi-form diagnostic methodologies were adopted, including next-generation sequencing-based actionable gene sequencing, programmed death ligand 1 (PD-L1) immunohistochemistry, a circulating tumor cell (CTC) assay, flow cytometric analysis of lymphocyte subsets and computed tomography, to improve disease management in an 86-year-old female patient with relapsed metastatic NSCLC. High expression of PD-L1, elevated CTC tmutations, were observed. Based on these results, the patient was initially treated with the programmed death protein 1 blocking antibody sintilimab for two cycles, resulting in the stabilization of their condition, although the patient still exhibited severe pain and other symptoms, including fatigue, malaise, a loss of appetite and poor mental state. Informed by dynamic monitoring of the patient's response to treatment, the treatment plan was subsequently adjusted to a combination therapy with sintilimab and autologous cytokine-induced killer cell infusion, which eventually led to improved outcomes in both the management of the cancer and quality of life. In conclusion, multi-omics analysis may be used to establish patient-tailored therapies to improve clinical outcomes in hard-to-treat elderly patients with metastatic NSCLC.

9.
Fish Shellfish Immunol ; 149: 109524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527657

ABSTRACT

Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.


Subject(s)
Carps , Fish Proteins , Inflammation , Lipopolysaccharides , MicroRNAs , Animals , MicroRNAs/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Lipopolysaccharides/pharmacology , Carps/genetics , Carps/immunology , Inflammation/genetics , Inflammation/immunology , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , Kidney/immunology , Immunity, Innate/genetics , Cell Line
10.
Front Immunol ; 15: 1329615, 2024.
Article in English | MEDLINE | ID: mdl-38476223

ABSTRACT

Background: Patients with metastatic colorectal cancer (mCRC) who are refractory to two or more lines of systemic chemotherapy have limited therapeutic options. The aim of this study was to evaluate the effect of autologous dendritic cell cytokine-induced killer (DC-CIK) transfer on the survival of patients with mCRC who are refractory or intolerant to at least two lines of systemic chemotherapies. Methods: A matched case-control comparative study was conducted with patients who received DC-CIK immunotherapy in addition to standard chemotherapy (cases) and those with standard chemotherapy alone (controls). The primary objective was to compare the duration of oncologic survival, including overall survival (OS) and progression-free survival (PFS), between the two groups. Results: A total of 27 cases and 27 controls were included. The median OS in the DC-CIK case group was 18.73 ± 5.48 months, which was significantly longer than that in the control group (14.23 ± 1.90 months, p = 0.045). However, there was no significant difference in PFS between the two groups (p = 0.086). Subgroup analysis showed that in patients with liver or extra-regional lymph node metastasis, DC-CIK cases had longer OS than controls (17.0 vs. 11.87 months, p = 0.019; not match vs. 6.93 months, p = 0.002, respectively). In patients with Eastern Cooperative Oncology Group (ECOG) scale 0 or wild RAS/BRAF, DC-CIK cases showed a significant increase in OS duration compared to controls (28.03 vs. 14.53 months, p = 0.038; 18.73 vs. 11.87 months, p = 0.013, respectively). Conclusions: The addition of autologous DC-CIK to standard chemotherapy had a positive effect on OS of patients with refractory mCRC, especially those with liver or extra-regional lymph node metastasis, ECOG = 0, and wild RAS/BRAF status.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Combined Modality Therapy , Lymphatic Metastasis , Proto-Oncogene Proteins B-raf/metabolism , Immunotherapy, Adoptive , Case-Control Studies , Dendritic Cells/metabolism , Colorectal Neoplasms/pathology
11.
J Interferon Cytokine Res ; 44(3): 99-110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488758

ABSTRACT

Despite the promising results of immunotherapy, further experiments need to be considered because of several factors ranging from physical barriers to off-tumor adverse effects. It is surprising that adoptive cellular immunotherapy, particularly dendritic cell and cytokine-induced killer (DC-CIK) therapy, is far less emphasized in the treatment of cancer diseases. DC-CIK therapy in cancer patients presents auspicious results with low or no side effects, which should not be overlooked. More interestingly, almost all DC-CIK clinical trials are ongoing in China that highlight the limitations of therapeutic strategies and require large-scale research. To date, it is advisable to consider combination therapy with chemotherapy since it has shown promising outcomes with higher efficacy. In this article, the efficacy of DC-CIK therapy in patients with cancer is summarized by underscoring the lack of experiments on soft cancers on an unprecedented scale. In brief, DC-CIK therapy is a safe and effective therapeutic agent for malignant and nonmalignant diseases that enhances short-term and long-term effects.


Subject(s)
Cytokine-Induced Killer Cells , Neoplasms , Humans , Cytokines/therapeutic use , Neoplasms/therapy , Immunotherapy , Immunotherapy, Adoptive/adverse effects , Dendritic Cells
12.
J Leukoc Biol ; 116(3): 544-554, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38373017

ABSTRACT

Murine cytokine-induced killer (CIK) cells are heterologous cells that kill various allogeneic and isogenic tumors and have functional and phenotypic characteristics of natural killer cells and T lymphocytes. However, the effect of CIK cells alone on solid tumor therapy is only limited. To enhance the therapeutic effect, it is vital to discover a mix of several therapy approaches. Immune cell function is inhibited by abnormal tumor vessels and the tumor microenvironment, which block lymphocyte entry into tumor tissue. To increase the effectiveness of CIK cells' antitumor activity, antivascular therapy and CIK cell therapy can be combined. Furthermore, anlotinib is a tiny drug with multitarget tyrosine kinase inhibitors that can block cell migration, delay angiogenesis, and decrease blood vessel density. Compared with other antiangiogenesis drugs, anlotinib stands out due to the wider target of action and lower effective dose. In this work, anlotinib and murine CIK cells were coupled to boost CD3+ T cell infiltration, CD3+CD4+ T cell infiltration, and expression of granzyme B and interferon γ from CD3+CD8+ T cells, which increased the antitumor activity. Through the generation of cytotoxic cytokines by T lymphocytes, the therapeutic group using anti-PD-1 monoclonal antibodies in conjunction with anlotinib and CIK cells was more successful than the group receiving dual therapy. The preclinical study contributes to exploring the therapeutic alternatives for patients with lung adenocarcinoma, thus prolonging their lives.


Subject(s)
Cytokine-Induced Killer Cells , Indoles , Lung Neoplasms , Programmed Cell Death 1 Receptor , Quinolines , Animals , Quinolines/therapeutic use , Quinolines/pharmacology , Indoles/pharmacology , Indoles/therapeutic use , Cytokine-Induced Killer Cells/immunology , Cytokine-Induced Killer Cells/transplantation , Mice , Lung Neoplasms/therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Humans , Cell Line, Tumor , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Mice, Inbred C57BL , Female
13.
Cancer Immunol Immunother ; 73(2): 21, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279995

ABSTRACT

On August 30, 2023, experts from Germany and abroad met to discuss the successes and challenges of cytokine-induced killer cell (CIK) therapy, that recently celebrated its 30th anniversary providing treatment for cancer. This first virtual conference was hosted by CIO Bonn, a certified Comprehensive Cancer Center (CCC) funded by German Cancer Aid (DKH). In addition to keynote speakers involved in CIK cell clinical trials or optimized preclinical models to improve this adoptive cell immunotherapy, more than 100 attendees from around the world also participated in this event. Initiatives to establish the International Society of CIK Cells (ISCC) and a stronger CIK cell network guiding preclinical research and future clinical trials were also announced.


Subject(s)
Cytokine-Induced Killer Cells , Neoplasms , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , Cytokines , Germany , Immunotherapy
14.
Environ Toxicol ; 39(4): 1923-1935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38064284

ABSTRACT

Microplastics (MPs) have attracted widespread worldwide attention as a new pollutant. However, the role of reactive oxygen species (ROS) and cell cycle in nephrotoxicity induced by different concentrations of polystyrene microplastics (PS-MPs) is unknown. This study used grass carp kidney cells (CIK) treated with different concentrations of PS-MPs (0, 0.012, 0.0625, and 0.5 mg L-1 ) as subjects. With the increase of PS-MPs concentration, the levels of ROS and malonaldehyde increased, while the level of total antioxidant capacity, superoxide Dismutase (SOD), and glutathione (GSH) activity decreased. The expression of BUB1 mitotic checkpoint serine/threonine kinase (BUB1), cyclin-dependent kinase (CDK1), CDK2, CyclinB1, cell division cycle 20 homolog (CDC20), and B-cell lymphoma-2, sequestosome 1 decreased significantly. Nevertheless, the expression of Caspase 3, Cleave-Caspase 3, cytochrome c (Cytc), BCL2-associated X, apoptosis regulator, poly ADP-ribose polymerase (PARP), Cleave-PARP, Caspase 9, autophagy immunoblot kit (LC3), and Beclin1 increased. Our research shows that PS-MPs can trigger oxidative stress and induce cell cycle arrest, apoptosis, and autophagy in CIK cells by regulating ROS. This work provides a theoretical basis for cellular biology and toxicology mechanisms and new insights into the potential risks to animals from MPs exposure in the environment.


Subject(s)
Microplastics , Polystyrenes , Animals , Humans , Reactive Oxygen Species/metabolism , Polystyrenes/toxicity , Microplastics/toxicity , Plastics/pharmacology , Caspase 3/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Division , Cell Cycle Checkpoints , Apoptosis , Autophagy , Kidney/metabolism
15.
Cancer Treat Rev ; 122: 102665, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091655

ABSTRACT

Colorectal cancer (CRC) remains a significant global health burden and is the second leading cause of cancer-related death. Cytokine induced killer (CIK) cell therapy is an immunotherapy which has the potential to meet this need. Clinical trials of CIK cell therapy for the management of CRC have reported improved clinical outcomes. However, production and delivery protocols varied significantly, and many studies were reported only in Chinese language journals. Here we present the most comprehensive review of the clinical CIK cell therapy trials for CRC management to date. We accessed both English and Chinese language clinical studies, and summarise how CIK cell therapy has been implemented, from manufacturing to patient delivery. We discuss current challenges that impede wider adoption of CIK cell therapy in CRC management.


Subject(s)
Colorectal Neoplasms , Immunotherapy, Adoptive , Humans , Immunotherapy, Adoptive/methods , Combined Modality Therapy , Colorectal Neoplasms/therapy , Cytokines , Cell- and Tissue-Based Therapy
16.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958486

ABSTRACT

Grass carp reovirus (GCRV), one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella), can lead to grass carp hemorrhagic disease (GCHD). Currently, GCRV can be divided into three genotypes, but the comparison of their pathogenic mechanisms and the host responses remain unclear. In this study, we utilized the Ctenopharyngodon idella kidney (CIK) model infected with GCRV to conduct comparative studies on the three genotypes. We observed a cytopathic effect (CPE) in the GCRV-I and GCRV-III groups, whereas the GCRV-II group did not show any CPE. Moreover, a consistent trend in the mRNA expression levels of antiviral-related genes across all experimental groups of CIK cells was detected via qPCR and further explored through RNA-seq analysis. Importantly, GO/KEGG enrichment analysis showed that GCRV-I, -II, and -III could all activate the immune response in CIK cells, but GCRV-II induced more intense immune responses. Intriguingly, transcriptomic analysis revealed a widespread down-regulation of metabolism processes such as steroid biosynthesis, butanoate metabolism, and N-Glycan biosynthesis in infected CIK cells. Overall, our results reveal the CIK cells showed unique responses in immunity and metabolism in the three genotypes of GCRV infection. These results provide a theoretical basis for understanding the pathogenesis and prevention and control methods of GCRV.


Subject(s)
Carps , Fish Diseases , Orthoreovirus , Reoviridae Infections , Reoviridae , Animals , Carps/genetics , Transcriptome , Virulence , Reoviridae/physiology , Reoviridae Infections/genetics , Reoviridae Infections/veterinary
17.
Am J Cancer Res ; 13(10): 4767-4782, 2023.
Article in English | MEDLINE | ID: mdl-37970341

ABSTRACT

Systematic assessment of adverse side effects of Adoptive T cell therapy, especially cytokine-induced killer cell and dendric cell treatment Dendritic cells-Cytokine-induced killer (DC-CIK) therapy, especially when combined with chemotherapy, has not been reported. Totally 1100 consecutive patients (2504 trail cycles) enrolled in DC-CIK treatment trials at Beijing Shijitian Hospital between August 2012 and August 2022 were retrospectively reviewed. The 370 patients (34%)/815 cycles enrolled in our trial combined with chemotherapy. In total, 548 (cases)/870 (cycles) patients experienced AEs. The AE class was mainly composed of Neurological 34 cycles (4%), Musculoskeletal 28 cycles (3%), Immunopathies 5 cycles (1%), Hematological 521 cycles (60%), 224 general disorders and administration site conditions cycles (26%), Gastrointestinal 209 cycles (24%), Skin 15 cycles (2%), and 119 Metabolism and Nutrition disorders cycles (14%). The AE class of gastrointestinal (vomiting, P=0.025), nutritional (anorexia, P=0.016), and hematological disorders (anemia P<0.0001, leukopenia P<0.0001) appeared in the DC-CIK treatment and were mainly correlated with chemotherapy. Multiple logistic regression analysis suggested that regardless of whether DC-CIK was combined with chemotherapy, multi-line treatment was more prone to nausea, anorexia, fatigue, anemia, and leukopenia than first-line treatment. However, correlation analysis verified that increasing the number of cycles of DC-CIK treatment alone could reduce the incidence rate of fatigue (P=0.001), anorexia (P<0.0001), and anxiety (P=0.01). Most of the adverse side effects that occurred during autologous DC-CIK treatment were associated with combined or previously applied chemotherapeutic treatment, which also indicated that autologous DC-CIK anti-tumor therapy was safe.

18.
Biomedicine (Taipei) ; 13(3): 57-62, 2023.
Article in English | MEDLINE | ID: mdl-37937058

ABSTRACT

Background: Recently, immunotherapy has emerged as a promising method for advanced HCC treatment. There are several clinical trials and meta-analyses of immune checkpoint inhibitors and immune cell therapy, but clinical evidence on the combination of these two therapies is lacking. Case description: A 66-year-old man with chronic hepatitis B-related cirrhosis complained of acute abdominal pain in an emergency department of a hospital. On exams, there was a palpable mass in the right upper quadrant of his abdomen. Contrast-enhanced abdominal computed tomography showed a large tumor in the right lobe, 13 cm × 17 cm in size, and right portal vein thrombosis. The alpha-fetoprotein (AFP) level was 30,905 mg/dL. Therefore this patient was diagnosed with BCLC stage C hepatocellular carcinoma (HCC). He underwent trans-arterial chemo-embolization (TACE), abdominal radiotherapy, nivolumab, and lenvatinib. His disease had been under control until two years later, the disease progressed with multiple lung metastases, and his AFP level rose from around 1000 to 17,000 ng/ml. At this stage, he underwent new combination immunotherapy in January 2022. He used pembrolizumab (100 mg) first, and the AFP level decreased by 600 ng/ml daily. Then he received DC-CIK cell therapy two weeks after using pembrolizumab, and the AFP level declined to 900 ng/ml a day. Unfortunately, severe pneumonitis and tension pneumothorax developed after therapy. The patient denied undergoing further treatment and expired peacefully. Conclusion: The previous in-vivo study found that combination immunotherapy can improve tumor control in the mice model. Besides, in previous clinical studies, the level of AFP may be a surrogate marker of tumor response. Therefore we thought the more rapidly declined level of AFP was the clinical evidence of the synergistic effect of checkpoint inhibitors combined with cell therapy in HCC treatment.

19.
J Exp Clin Cancer Res ; 42(1): 310, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993874

ABSTRACT

BACKGROUND: Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40-60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. METHODS: In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. RESULTS: We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. CONCLUSIONS: In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , Cytokines , Receptors, Chimeric Antigen/genetics , Immune Checkpoint Inhibitors , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local , Melanoma/genetics , Melanoma/therapy , Immunotherapy , Lymphocytes/pathology , Membrane Proteins , Chondroitin Sulfate Proteoglycans
20.
Front Immunol ; 14: 1267369, 2023.
Article in English | MEDLINE | ID: mdl-38022664

ABSTRACT

Aim: To evaluate the safety and initial efficacy of autologous cytokine-induced killer (CIK) cells combined with S-1+oxaliplatin (SOX) as the first-line treatment for locally advanced or metastatic gastric cancer (GC). Materials and methods: In this two-arm, single-center exploratory trial, patients with locally advanced or metastatic GC were randomly assigned (1:1) to receive autologous CIK cells in combination with SOX (CIK-SOX) or SOX alone. The primary endpoint was the incidence of adverse events (AEs). Progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR) served as the secondary endpoints. Results: Fifty-nine patients were enrolled in the study between November 20, 2014 and September 6, 2017. A total of 31 patients received CIK-SOX and 28 patients received SOX. The most common AEs in both groups were gastrointestinal reaction, leucopenia, neutropenia, anemia, thrombocytopenia, hyperbilirubinemia, and elevated aspartate transaminase concentration, with a higher incidence of these conditions in the SOX group. The median PFS for the CIK-SOX and SOX groups was 6.9 and 4.9 months, respectively (hazard ratio (HR) 0.80, p=0.45). The respective median OS values were 17.8 and 9.75 months (HR 0.76, p=0.34). Patients who received more than three injections of specific lymphocyte subsets benefited the most from this combination therapy. Cox univariate and multivariate analyses showed that tumor metastasis to more than two organs was the main risk factor for PFS and OS. A total of 29 patients in the CIK-SOX group and 25 in the SOX group had measurable lesions. The ORR for the CIK-SOX and SOX groups was 55.2% and 32.0%, while the DCR was 93.1% and 88.0%, respectively. Conclusion: The safety of CIK-SOX as the first-line treatment for patients with locally advanced or metastatic GC was good. Although the PFS and OS in the CIK-SOX group were not statistically significantly different compared to the values in the SOX alone group, this treatment increased the PFS and OS duration, with the absolute improvement in OS of about 8.05 months. Continuous benefit from the CIK-SOX treatment was observed during long-term follow-up. Clinical trial registration: https://clinicaltrials.gov/study/NCT02504229?term=NCT02504229&rank=1, identifier ChiCTR-IPR-15005923; NCT02504229.


Subject(s)
Cytokine-Induced Killer Cells , Stomach Neoplasms , Humans , Disease-Free Survival , Oxaliplatin/therapeutic use , Combined Modality Therapy
SELECTION OF CITATIONS
SEARCH DETAIL