Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Cell Biochem Biophys ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39078538

ABSTRACT

Systemic lupus erythematosus (SLE) is a classic autoimmune disease characterized by abnormal autoantibodies, immune complex deposition, and tissue inflammation. Despite extensive research, the exact etiology and progression of SLE remain elusive. Cytidine/uridine monophosphate kinase 2 (CMPK2), a mitochondrial nucleoside monophosphate kinase, has garnered attention for its potential involvement in the development of various diseases, including SLE, where it has been observed to be dysregulated in affected individuals. However, the specific involvement of CMPK2 in the pathogenesis of SLE remains unclear. This study aims to clarify the expression level of CMPK2 in SLE CD4+ T cells and explore its impact on CD4+ T cells. The expression levels of the CMPK2 gene and the corresponding CMPK2 protein in CD4+ T cells of SLE patients were quantified using RT-qPCR and Western blot, respectively. Immunofluorescence and RT-qPCR were used to assess the mitochondrial function of SLE CD4+ T cells. Flow cytometry was used to assess CD4+ T cell activation and apoptosis levels. The impact of CMPK2 on CD4+ T cells was investigated by gene transfection experiment. We found that CMPK2 was significantly upregulated in SLE CD4+ T cells at both gene and protein levels. These cells demonstrated aberrant mitochondrial function, as evidenced by elevated mitochondrial reactive oxygen species (mtROS) levels, mitochondrial membrane potential, and mitochondrial DNA (mtDNA) copy number. Flow cytometry revealed a notable increase in both apoptosis and activation levels of CD4+ T cells in SLE patients. Gene transfection experiments showed that suppressing CMPK2 led to a significant improvement in these conditions. These findings suggest that CMPK2 may be involved in the pathogenesis of SLE by regulating mitochondrial dysfunction in CD4+ T cells and thus affecting CD4+ T cell activation and apoptosis. Our study may provide a new target for the treatment of SLE.

2.
Cell Rep Med ; 5(5): 101522, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38701781

ABSTRACT

Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.


Subject(s)
Ischemic Stroke , Microglia , Neuroinflammatory Diseases , Animals , Humans , Male , Mice , Brain Injuries/pathology , Brain Injuries/metabolism , Brain Injuries/genetics , Brain Ischemia/pathology , Brain Ischemia/metabolism , Brain Ischemia/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammasomes/metabolism , Ischemic Stroke/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Monocytes/metabolism , Monocytes/drug effects , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
3.
J Med Virol ; 96(5): e29643, 2024 May.
Article in English | MEDLINE | ID: mdl-38695269

ABSTRACT

Severe pneumonia caused by respiratory viruses has become a major threat to humans, especially with the SARS-CoV-2 outbreak and epidemic. The aim of this study was to investigate the universal molecular mechanism of severe pneumonia induced by multiple respiratory viruses and to search for therapeutic strategies targeting this universal molecular mechanism. The common differential genes of four respiratory viruses, including respiratory syncytial virus (RSV), rhinovirus, influenza, and SARS-CoV-2, were screened by GEO database, and the hub gene was obtained by Sytohubba in Cytoscape. Then, the effect of hub genes on inflammasome and pyrodeath was investigated in the model of RSV infection in vitro and in vivo. Finally, through virtual screening, drugs targeting the hub gene were obtained, which could alleviate severe viral pneumonia in vitro and in vivo. The results showed that CMPK2 is one of the hub genes after infection by four respiratory viruses. CMPK2 activates the inflammasome by activating NLRP3, and promotes the releases of inflammatory factors interleukin (IL)-1ß and IL-18 to induce severe viral pneumonia. Z25 and Z08 can reduce the expression level of CMPK2 mRNA and protein, thereby inhibiting NLRP3 and alleviating the development of severe viral pneumonia. In conclusion, the inflammatory response mediated by CMPK2 is the common molecular mechanism of severe pneumonia induced by viral infection, and Z25 and Z08 can effectively alleviate viral infection and severe pneumonia through this mechanism.


Subject(s)
Inflammasomes , Pyroptosis , Pyroptosis/drug effects , Humans , Animals , Inflammasomes/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Interleukin-18/metabolism , Interleukin-18/genetics , SARS-CoV-2 , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology
4.
Int J Biol Sci ; 20(5): 1617-1633, 2024.
Article in English | MEDLINE | ID: mdl-38481810

ABSTRACT

In rheumatoid arthritis (RA), a debilitating autoimmune disorder marked by chronic synovial inflammation and progressive cartilage degradation, fibroblast-like synoviocytes (FLS) are key pathogenic players. Current treatments targeting these cells are limited. Our study focused on the Fat Mass and Obesity-associated protein (FTO), known for its roles in cell proliferation and inflammatory response modulation, and its involvement in RA. We specifically examined the inflammatory regulatory roles of FTO and CMPK2, a mitochondrial DNA synthesis protein, in FLS. Utilizing a combination of in vitro and in vivo methods, including FTO inhibition and gene knockdown, we aimed to understand FTO's influence on RA progression and chondrocyte functionality. Our findings showed that increased FTO expression in RA synovial cells enhanced their proliferation and migration and decreased senescence and apoptosis. Inhibiting FTO significantly slowed the disease progression in our models. Our research also highlighted that the FTO-CMPK2 pathway plays a crucial role in regulating synovial inflammation through the mtDNA-mediated cGAS/STING pathway, affecting chondrocyte homeostasis. This study indicates that targeting the FTO-CMPK2 axis could be a promising new therapeutic strategy for managing RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Synovial Membrane/metabolism , Synovial Membrane/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/drug therapy , Inflammation/genetics , Inflammation/metabolism , Cell Proliferation/genetics , Homeostasis/genetics , Fibroblasts/metabolism , Cartilage/metabolism , Cells, Cultured , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
5.
J Med Virol ; 96(3): e29533, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483048

ABSTRACT

Cytidine/uridine monophosphate kinase 2 (UMP-CMP kinase 2, CMPK2) has been reported as an antiviral interferon-stimulated gene (ISG). We previously observed that the expression of CMPK2 was significantly upregulated after Zika Virus (ZIKV) infection in A549 cells. However, the association and the underlying mechanisms between CMPK2 induction and ZIKV replication remain to be determined. We investigated the induction of CMPK2 during ZIKV infection and the effect of CMPK2 on ZIKV replication in A549, U251, Vero, IFNAR-deficient U5A and its parental 2fTGH cells, Huh7 and its RIG-I-deficient derivatives Huh7.5.1 cells. The activation status of Jak-STAT signaling pathway was determined by detecting the phosphorylation level of STAT1, the activity of interferon stimulated response element (ISRE) and the expression of several interferon stimulated genes (ISGs). We found that ZIKV infection induced CMPK2 expression through an IFNAR and RIG-I dependent manner. Overexpression of CMPK2 inhibited while CMPK2 knockdown promoted ZIKV replication in A549 and U251 cells. Mechanically, we found that CMPK2 overexpression increased IFNß expression and activated Jak/STAT signaling pathway as shown by the increased level of p-STAT1, enhanced activity of ISRE, and the upregulated expression of downstream ISGs. These findings suggest that ZIKV infection induced CMPK2 expression, which inhibited ZIKV replication and serves as a positive feedback regulator for IFN-Jak/STAT pathway.


Subject(s)
Interferon Type I , Nucleoside-Phosphate Kinase , Zika Virus Infection , Zika Virus , Humans , Zika Virus/metabolism , Signal Transduction , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , STAT Transcription Factors/pharmacology , Interferon Type I/genetics , Virus Replication , Receptors, Immunologic
6.
Article in English | MEDLINE | ID: mdl-38486392

ABSTRACT

INTRODUCTION: UMP-CMP kinase 2 (CMPK2) is involved in mitochondrial DNA synthesis which can be oxidized and released into the cytoplasm in innate immunity. It initiates the assembly of NLRP3 inflammasomes and mediates various pathological processes such as human immunodeficiency virus infection and systemic lupus erythematosus. However the role of CMPK2 in tumor progression and tumor immunity remains unclear. METHOD: In this study we conducted a systematical analysis of CMPK2 across 33 different cancers based on datasets such as Genotype Tissue-Expression (GTEx) The Cancer Genome Atlas (TCGA) the Cancer Cell Line Encyclopedia (CCLE) and Tumor Immune Syngeneic Mouse (TISMO). Our focus encompassed the characterization of CMPK2 expression patternsclinical significance potential regulatory mechanisms and its relationship with the tumor immune profile including responsiveness to immune checkpoint inhibitor treatment. CMPK2 expression was elevated in 23 cancers and decreased in two cancers. Receiver operating characteristic curve analysis indicated that CMPK2 expression had a high diagnostic value for 16 cancers. Kaplan-Meier survival analysis showed that high CMPK2 expression was associated with Lower Overall Survival (OS)Disease- Specific Survival (DSS) and Progression-Free Interval (PFI) in Kidney Cutaneous Chromophobe (KICH) Uterine Corpus Endometrial Carcinoma (UCEC) and Uveal Melanoma (UVM) and the opposite was true in Skin Cutaneous Melanoma (SKCM). Immune microenvironment-related analysis revealed strong associations between CMPK2 expression and immune cell infiltration as well as immune checkpoint expression across various tumors. RESULT: Notably in four mouse immunotherapy cohorts CMPK2 expression in treated mouse tumors was post-treatment. In five clinical immunotherapy cohorts patients with high CMPK2 expression show better responses to immunotherapy. Furthermore the methylation level of the CMPK2 gene was closely correlated to its expression and tumor prognosis. Among these cancers the clinical and immunological indications of SKCM are particularly closely related to CMPK2 expression. CONCLUSION: Our analysis preliminarily describes the complex function of CMPK2 in cancer progression and immune microenvironment highlighting its potential as a diagnostic and therapeutic target for immunotherapy.

7.
Front Genet ; 15: 1325035, 2024.
Article in English | MEDLINE | ID: mdl-38389573

ABSTRACT

Background: Mitochondrial dysfunction has been implicated in the pathogenesis of dermatomyositis (DM), a rare autoimmune disease affecting the skin and muscles. However, the genetic basis underlying dysfunctional mitochondria and the development of DM remains incomplete. Methods: The datasets of DM muscle and skin tissues were retrieved from the Gene Expression Omnibus database. The mitochondrial related genes (MRGs) were retrieved from MitoCarta. DM-related modules in muscle and skin tissues were identified with the analysis of weighted gene co-expression network (WGCNA), and then compared with the MRGs to obtain the overlapping mitochondrial related module genes (mito-MGs). Subsequently, differential expression genes (DEGs) obtained from muscle and skin datasets were overlapped with MRGs to identify mitochondrial related DEGs (mito-DEGs). Next, functional enrichment analysis was applied to analyze possible relevant biological pathways. We used the Jvenn online tool to intersect mito-MGs with mito-DEGs to identify hub genes and validate them using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry staining. In addition, we evaluated immune infiltration in muscle and skin tissues of DM patients using the one-sample gene set enrichment analysis (ssGSEA) algorithm and predicted potential transcription factor (TF) -gene network by NetworkAnalyst. Results: The WGCNA analysis revealed 105 mito-MGs, while the DEG analysis identified 3 mito-DEGs. These genes showed functional enrichment for amino acid metabolism, energy metabolism and oxidative phosphorylation. Through the intersection analysis of the mito-MGs from the WGCNA analysis and the mito-DEGs from the DEG set, three DM mito-hub genes (IFI27, CMPK2, and LAP3) were identified and validated by RT-qPCR and immunohistochemistry analysis. Additionally, positive correlations were observed between hub genes and immune cell abundance. The TF-hub gene regulatory network revealed significant interactions involving ERG, VDR, and ZFX with CMPK2 and LAP3, as well as SOX2 with LAP3 and IFI27, and AR with IFI27 and CMPK2. Conclusion: The mito-hub genes (IFI27, CMPK2, and LAP3) are identified in both muscles and skin tissues from DM patients. These genes may be associated with immune infiltration in DM, providing a new entry point for the pathogenesis of DM.

8.
Clin Transl Med ; 13(10): e1449, 2023 10.
Article in English | MEDLINE | ID: mdl-37859535

ABSTRACT

BACKGROUND: Despite all modern advances in medicine, an effective drug for treating sepsis has yet to be found. The discovery of CMPK2 spurred hopes for the treatment of sepsis. However, CMPK2-untapped target inhibitors are still an enormous obstacle that has hindered the CMPK2-centric treatment of sepsis. METHODS: Here, we found that the CMPK2 gene is highly expressed in the whole blood of sepsis patients by RNA-Seq. First, recombinant CMPK2 was purified by a eukaryotic expression purification system, and the activity of recombinant CMPK2 was detected by the ADP-GLO assay. Second, we developed an affinity MS strategy combined with quantitative lysine reactivity profiling to discover CMPK2 ligands from the active ingredients of Chinese herbs. In addition, the dissociation constant Kd of the ligand and the target protein CMPK2 was further detected by microscale thermophoresis technology. Third, we used this strategy to identify a naturally sourced small molecule, dracorhodin (DP). Using mass spectrometry-based quantitative lysine reactivity profiling combined with a series of mutant tests, the results show that K265 acts as a bright hotspot of DP inhibition of CMPK2. Fourth, immune-histochemical staining, ELISAs, RT-qPCR, flow cytometry and immunoblotting were used to illustrate the potential function and related mechanism of DP in regulating sepsis injury. RESULTS: Our results suggest that DP exerts powerful anti-inflammatory effects by regulating the NLRP3 inflammasome via the lipopolysaccharide (LPS)-induced CMPK2 pathway. Strikingly, DP significantly attenuated LPS-induced sepsis in a mouse model, but its effect was weakened in mice with myeloid-specific Cmpk2 ablation. CONCLUSION: We provide a new framework that provides more valuable information for new therapeutic approaches to sepsis, including the establishment of screening strategies and the development of target drugs to provide a theoretical basis for ultimately improving clinical outcomes for sepsis patients. Collectively, these findings reveal that DP is a promising CMPK2 inhibitor for the treatment of sepsis.


Subject(s)
Lipopolysaccharides , Sepsis , Humans , Animals , Mice , Lysine , Inflammation/drug therapy , Sepsis/drug therapy , Sepsis/metabolism
9.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37703114

ABSTRACT

The high-fertility Meishan pig is currently categorized into medium sized (MMS) and small sized (SMS) based on body size. To identify causal genes responsible for the variation in body size within the two categories, we sequenced individuals representing the entire consanguinity of the existing Meishan pig. This enabled us to conduct genome selective signal analysis. Our findings revealed the genomes of MMS and SMS are stratified, with selective sweep regions formed by differential genomic intervals between the two categories enriched in multiple pig body size related quantitative trait loci (QTLs). Furthermore, the missense mutation c.575T > C of candidate causal gene NR6A1, accounting for the variation in lumbar vertebrae number in pigs, was positively selected in MMS only, leading to an increase in body length of MMS at 6 months of age. To precisely identify causal genes accounting for body size variation through multi-omics, we collected femoral cartilage and liver transcription data from MMS and SMS respectively, and re-sequencing data from pig breeds exhibiting varying body sizes. We found that two selected regions where the RSAD2-CMPK2 and COL3A1 genes are located, respectively, showed different haplotypes in pig breeds of varying body size, and was associated with body or carcass length in hybridized Suhuai pig. Additionally, the above three hub genes, were significantly greater expressed in SMS femoral cartilage and liver tissues compared to MMS. These three genes could strengthen the pathways related to bone resorption and metabolism in SMS, potentially hindering bone and skeletal development and resulting in a smaller body size in SMS. These findings provide valuable insights into the genetic mechanism of body size variation in Meishan pig population.


The existing well-known Meishan pig population has been categorized into medium sized (MMS), and small sized (SMS) based on body size, which is a result of artificial selection. MMS is relatively large in all body size traits, but otherwise have highly similar appearance and performance traits. To effectively identify the candidate selected genes that contribute to the body size variation in Meishan pigs, this study collected individuals from all lineages of MMS and SMS for re-sequencing. Additionally, femoral cartilage and liver transcription data were collected from MMS and SMS, respectively, and re-sequencing data from pig breeds exhibiting varying body sizes were also analyzed. Through multi-omics analysis, it was discovered that the missense mutation c.575T > C in the candidate causal gene NR6A1 was positively selected in MMS only, leading to an increase in the body length of MMS at 6 months of age. Moreover, the selected genes RSAD2-CMPK2 and COL3A1 were found to be significantly greater expressed in SMS femoral cartilage and liver tissues compared with MMS. These genes could potentially strengthen bone resorption and metabolism-related pathways in SMS. These findings contribute to a better understanding of the genetic mechanisms underlying body size variation in Meishan pigs and Chinese indigenous pigs.


Subject(s)
Collagen Type III , Nuclear Receptor Subfamily 6, Group A, Member 1 , Nucleoside-Phosphate Kinase , Oxidoreductases Acting on CH-CH Group Donors , Quantitative Trait Loci , Viperin Protein , Animals , Base Sequence , Body Size/genetics , Collagen Type III/genetics , Haplotypes , Nuclear Receptor Subfamily 6, Group A, Member 1/genetics , Swine/genetics , Viperin Protein/genetics , Sus scrofa , Nucleoside-Phosphate Kinase/genetics
10.
Redox Biol ; 64: 102775, 2023 08.
Article in English | MEDLINE | ID: mdl-37339559

ABSTRACT

Endothelial dysfunction results in chronic vascular inflammation, which is critical for the development of atherosclerotic diseases. Transcription factor Gata6 has been reported to regulate vascular endothelial cell activation and inflammation in vitro. Here, we aimed to explore the roles and mechanisms of endothelial Gata6 in atherogenesis. Endothelial cell (EC) specific Gata6 deletion was generated in the ApoeKO hyperlipidemic atherosclerosis mouse model. Atherosclerotic lesion formation, endothelial inflammatory signaling, and endothelial-macrophage interaction were examined in vivo and in vitro by using cellular and molecular biological approaches. EC-GATA6 deletion mice exhibited a significant decrease in monocyte infiltration and atherosclerotic lesion compared to littermate control mice. Cytosine monophosphate kinase 2 (Cmpk2) was identified as a direct target gene of GATA6 and EC-GATA6 deletion decreased monocyte adherence, migration and pro-inflammatory macrophage foam cell formation through regulation of the CMPK2-Nlrp3 pathway. Endothelial target delivery of Cmpk2-shRNA by intercellular adhesion molecule 2 (Icam-2) promoter-driven AAV9 carrying the shRNA reversed the Gata6 upregulation mediated elevated Cmpk2 expression and further Nlrp3 activation and thus attenuated atherosclerosis. In addition, C-C motif chemokine ligand 5 (Ccl5) was also identified as a direct target gene of Gata6 to regulate monocyte adherence and migration influencing atherogenesis. This study provides direct in vivo evidence of EC-GATA6 involvement in the regulation of Cmpk2-Nlrp3, as well as Ccl5, on monocyte adherence and migration in atherosclerosis development and advances our understanding of the in vivo mechanisms of atherosclerotic lesion development, and meanwhile provides opportunities for future therapeutic interventions.


Subject(s)
Atherosclerosis , Monocytes , Animals , Mice , Atherosclerosis/metabolism , Cell Adhesion , Inflammation/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Small Interfering/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
11.
Arch Gerontol Geriatr ; 114: 105080, 2023 11.
Article in English | MEDLINE | ID: mdl-37269696

ABSTRACT

Mitochondrial dysfunction plays a crucial role in the development of glucocorticoid-induced osteoporosis (GIO). Cytidine monophosphate kinase 2 (Cmpk2), an essential mitochondria-associated gene, promotes the production of free mitochondrial DNA, which leads to the formation of inflammasome-mediated inflammatory factors. However, the specific role of Cmpk2 in GIO remains unclear. In this study, we report that glucocorticoids induce cellular senescence within the bone, particularly in bone marrow mesenchymal stem cells and preosteoblasts. We discovered that glucocorticoids cause mitochondrial dysfunction in preosteoblasts, increasing cellular senescence. Moreover, we observed elevated expression of Cmpk2 in preosteoblasts following glucocorticoid exposure. Inhibiting Cmpk2 expression alleviates glucocorticoid-induced cellular senescence and promotes osteogenic differentiation by improving mitochondrial function. Our study uncovers new mechanisms underlying glucocorticoid-induced senescence in stem cells and preosteoblasts, highlighting the potential of inhibiting the mitochondrial gene Cmpk2 to reduce senescence and enhance osteogenic differentiation. This finding offers a potential therapeutic approach for the treatment of GIO.


Subject(s)
Glucocorticoids , Osteoporosis , Humans , Glucocorticoids/adverse effects , Osteogenesis/genetics , Cell Differentiation/genetics , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoblasts/metabolism , Mitochondria/metabolism
12.
Kaohsiung J Med Sci ; 39(7): 688-698, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37092308

ABSTRACT

Bone mesenchymal stem cell-derived exosome (BMSC-exosome) is a potential candidate for lung ischemia-reperfusion injury (LIRI) treatment. This study aims to investigate the anti-pyroptosis effect of BMSC-exosomes in LIRI. The LIRI cell model was established by hypoxia/reoxygenation (H/R) treatment. Interleukin (IL)-1ß and IL-18 levels were examined by enzyme-linked immunosorbent assay. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Lactate dehydrogenase (LDH) release was examined using a LDH assay kit. The interaction between microRNA (miR)-202-5p and cytidine monophosphate kinase 2 (CMPK2) was analyzed using dual-luciferase reporter assay and RNA immunoprecipitation. BMSC-exosomes promoted cell viability and suppressed pyroptosis in H/R-treated mouse lung epithelial. miR-202-5p was enriched in BMSC-exosomes, and exosomal miR-202-5p inhibition upregulated pyroptosis-associated proteins, including cleaved N-terminal Gasdermin D, nucleotide-binding domain-like receptor family member pyrin domain-containing protein 3, and Caspase1. Meanwhile, miR-202-5p suppressed CMPK2 expression by directly targeting CMPK2. Expectedly, CMPK2 knockdown reversed the promoting effect of exosomal miR-202-5p inhibition on pyroptosis in LIRI. Therefore, BMSC-derived exosome miR-202-5p repressed pyroptosis to inhibit LIRI progression by targeting CMPK2.


Subject(s)
Exosomes , MicroRNAs , Animals , Mice , Exosomes/genetics , Hypoxia , Lung , MicroRNAs/genetics , Nucleoside-Phosphate Kinase
13.
Front Immunol ; 13: 935710, 2022.
Article in English | MEDLINE | ID: mdl-36451821

ABSTRACT

In addition to their role in cellular energy production, mitochondria are increasingly recognized as regulators of the innate immune response of phagocytes. Here, we demonstrate that altering expression levels of the mitochondria-associated enzyme, cytidine monophosphate kinase 2 (CMPK2), disrupts mitochondrial physiology and significantly deregulates the resting immune homeostasis of macrophages. Both CMPK2 silenced and constitutively overexpressing macrophage lines portray mitochondrial stress with marked depolarization of their membrane potential, enhanced reactive oxygen species (ROS), and disturbed architecture culminating in the enhanced expression of the pro-inflammatory genes IL1ß, TNFα, and IL8. Interestingly, the long-term modulation of CMPK2 expression resulted in an increased glycolytic flux of macrophages akin to the altered physiological state of activated M1 macrophages. While infection-induced inflammation for restricting pathogens is regulated, our observation of a total dysregulation of basal inflammation by bidirectional alteration of CMPK2 expression only highlights the critical role of this gene in mitochondria-mediated control of inflammation.


Subject(s)
Genes, Mitochondrial , Macrophages , Humans , Homeostasis , Inflammation/genetics
14.
Front Genet ; 13: 859595, 2022.
Article in English | MEDLINE | ID: mdl-35832195

ABSTRACT

Bovine digital dermatitis (BDD) is an infectious disease of the hoof in cattle with multifactorial etiology and a polygenic influence on susceptibility. With our study, we identified genomic regions with the impact on occurrence and development of BDD. We used 5,040 genotyped animals with phenotype information based on the M-stage system for genome-wide association. Significant associations for single-nucleotide polymorphisms were found near genes CMPK2 (chromosome 11) and ASB16 (chromosome 19) both being implicated in immunological processes. A sequence analysis of the chromosomal regions revealed rs208894039 and rs109521151 polymorphisms as having significant influence on susceptibility to the disease. Specific genotypes were significantly more likely to be affected by BDD and developed chronic lesions. Our study provides an insight into the genomic background for a genetic predisposition related to the pathogenesis of BDD. Results might be implemented in cattle-breeding programs and could pave the way for the establishment of a BDD prescreening test.

15.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Article in English | MEDLINE | ID: mdl-35685361

ABSTRACT

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

16.
Front Immunol ; 13: 788556, 2022.
Article in English | MEDLINE | ID: mdl-35401582

ABSTRACT

Objectives: This study aimed to evaluate the expression of cytosine monophosphate kinase 2 (CMPK2) and activation of the NLRP3 inflammasome in rats with spinal cord injury (SCI) and to characterize the effects of electroacupuncture on CMPK2-associated regulation of the NLRP3 inflammasome. Methods: An SCI model was established in Sprague-Dawley (SD) rats. The expression levels of NLRP3 and CMPK2 were measured at different time points following induction of SCI. The rats were randomly divided into a sham group (Sham), a model group (Model), an electroacupuncture group (EA), an adeno-associated virus (AAV) CMPK2 group, and an AAV NC group. Electroacupuncture was performed at jiaji points on both sides of T9 and T11 for 20 min each day for 3 consecutive days. In the AAV CMPK2 and AAV NC groups, the viruses were injected into the T9 spinal cord via a microneedle using a microscope and a stereotactic syringe. The Basso-Beattie-Bresnahan (BBB) score was used to evaluate the motor function of rats in each group. Histopathological changes in spinal cord tissue were detected using H&E staining, and the expression levels of NLRP3, CMPK2, ASC, caspase-1, IL-18, and IL-1ß were quantified using Western blotting (WB), immunofluorescence (IF), and RT-PCR. Results: The expression levels of NLRP3 and CMPK2 in the spinal cords of the model group were significantly increased at day 1 compared with those in the sham group (p < 0.05). The expression levels of NLRP3 and CMPK2 decreased gradually over time and remained low at 14 days post-SCI. We successfully constructed AAV CMPK2 and showed that CMPK2 was significantly knocked down following 2 dilutions. Finally, treatment with EA or AAV CMPK2 resulted in significantly increased BBB scores compared to those in the model group and the AAV NC group (p < 0.05). The histomorphology of the spinal cord in the EA and AAV CMPK2 groups was significantly different than that in the model and AAV NC groups. WB, IF, and PCR analyses showed that the expression levels of CMPK2, NLRP3, ASC, caspase-1, IL-18, and IL-1ß were significantly lower in the EA and AAV CMPK2 groups compared with those in the model and AAV NC groups (p < 0.05). Conclusion: Our study showed that CMPK2 regulated NLRP3 expression in rats with SCI. Activation of NLRP3 is a critical mechanism of inflammasome activation and the inflammatory response following SCI. Electroacupuncture downregulated the expression of CMPK2 and inhibited activation of NLRP3, which could improve motor function in rats with SCI.


Subject(s)
Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , Nucleoside-Phosphate Kinase , Spinal Cord Injuries , Animals , Caspases , Inflammasomes , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nucleoside-Phosphate Kinase/genetics , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/therapy
17.
Exp Ther Med ; 22(6): 1358, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34659504

ABSTRACT

Cytidine monophosphate kinase 2 (CMPK2) is a mitochondrial nucleotide monophosphate kinase which is important for the substrates of mitochondrial DNA synthesis and has been reported to participate in macrophage activation and the inflammatory response. The purpose of the present research was to determine the potential role of CMPK2 in hepatic ischemia/reperfusion (I/R) injury and to elucidate the underlying molecular mechanisms. The present study investigated the role of CMPK2 in regulating the NLRP3 pathway and liver dysfunction induced by hepatic I/R both in vivo and in vitro. It was revealed that hypoxia/reoxygenation (H/R) treatment enhanced the mRNA expression levels of CMPK2, NLRP3, IL-18, IL-1ß and TNF-α in RAW 264.7 cells. The protein expression levels of IL-18, IL-1ß and cleaved-caspase-1 were decreased following CMPK2 knockdown. Furthermore, the inhibition of AIM2 downregulated the expression level of IL-1ß, IL-18 and cleaved-caspase-1 in the CMPK2 knockdown group followed by H/R treatment, while the inhibition of NLRP3 did not. CMPK2 deficiency also decreased alanine aminotransferase and aspartate aminotransferase expression in mice serum, as well as the pathological changes in the liver. Similarly, the release of IL-18 and IL-1ß in mouse serum was also restrained with the decline of CMPK2. In conclusion, the results of the present study demonstrate that CMPK2 is indispensable for NLRP3 inflammasome activation, making CMPK2 an effective target to relieve the liver from I/R injury. In addition, the function of CMPK2 is closely associated with NLRP3 inflammasome activation, instead of AIM2.

18.
Immunity ; 54(7): 1463-1477.e11, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34115964

ABSTRACT

Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1ß production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.


Subject(s)
Adenosine Triphosphate/metabolism , DNA, Mitochondrial/biosynthesis , Inflammasomes/drug effects , Metformin/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/prevention & control , Animals , COVID-19/metabolism , COVID-19/prevention & control , Cytokines/genetics , Cytokines/metabolism , DNA, Mitochondrial/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Metformin/therapeutic use , Mice , Nucleoside-Phosphate Kinase/metabolism , Pneumonia/metabolism , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2/pathogenicity
19.
Biochem Cell Biol ; 99(3): 286-295, 2021 06.
Article in English | MEDLINE | ID: mdl-34037470

ABSTRACT

Acute lung injury (ALI) is a severe respiratory disorder with a high rate of mortality, and is characterized by excessive cell apoptosis and inflammation. MicroRNAs (miRNAs) play pivotal roles in ALI. This study examined the biological function of miR-494-3p in cell apoptosis and inflammatory response in ALI. For this, mice were injected with lipopolysaccharide (LPS) to generate an in-vivo model of ALI (ALI mice), and WI-38 cells were stimulated with lipopolysaccharide (LPS) to generate an in-vitro model of ALI. We found that miR-494-3p was significantly downregulated in the ALI mice and in the in-vitro model. Overexpression of miR-494-3p inhibited inflammation and cell apoptosis in the LPS-induced WI-38 cells, and improved the symptoms of lung injury in the ALI mice. We then identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a novel target of miR-494-3p in the WI-38 cells. Furthermore, miR-494-3p suppressed cell apoptosis and the inflammatory response in LPS-treated WI-38 cells through targeting CMPK2. The NLRP3 inflammasome is reportedly responsible for the activation of inflammatory processes. In our study, CMPK2 was confirmed to activate the NLRP3 inflammasome in LPS-treated WI-38 cells. In conclusion, miR-494-3p attenuates ALI through inhibiting cell apoptosis and the inflammatory response by targeting CMPK2, which suggests the value of miR-494-3p as a target for the treatment for ALI.


Subject(s)
Acute Lung Injury/prevention & control , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleoside-Phosphate Kinase/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Humans , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nucleoside-Phosphate Kinase/genetics
20.
Arthritis Res Ther ; 23(1): 120, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33874983

ABSTRACT

BACKGROUND: Premature atherosclerosis occurs in patients with SLE; however, the mechanisms remain unclear. Both mitochondrial machinery and proinflammatory cytokine interferon alpha (IFN-α) potentially contribute to atherogenic processes in SLE. Here, we explore the roles of the mitochondrial protein cytidine/uridine monophosphate kinase 2 (CMPK2) in IFN-α-mediated pro-atherogenic events. METHODS: Foam cell measurements were performed by oil red O staining, Dil-oxLDL uptake and the BODIPY approach. The mRNA and protein levels were measured by qPCR and Western blotting, respectively. Isolation of CD4+ T cells and monocytes was performed with monoclonal antibodies conjugated with microbeads. Manipulation of protein expression was conducted by either small interference RNA (siRNA) knockdown or CRISPR/Cas9 knockout. The expression of mitochondrial reactive oxygen species (mtROS) was determined by flow cytometry and confocal microscopy. RESULTS: IFN-α enhanced oxLDL-induced foam cell formation and Dil-oxLDL uptake by macrophages. In addition to IFN-α, several triggers of atherosclerosis, including thrombin and IFN-γ, can induce CMPK2 expression, which was elevated in CD4+ T cells and CD14+ monocytes isolated from SLE patients compared to those isolated from controls. The analysis of cellular subfractions revealed that CMPK2 was present in both mitochondrial and cytosolic fractions. IFN-α-induced CMPK2 expression was inhibited by Janus kinase (JAK)1/2 and tyrosine kinase 2 (Tyk2) inhibitors. Both the knockdown and knockout of CMPK2 attenuated IFN-α-mediated foam cell formation, which involved the reduction of scavenger receptor class A (SR-A) expression. CMPK2 also regulated IFN-α-enhanced mtROS production and inflammasome activation. CONCLUSIONS: The study suggests that CMPK2 plays contributing roles in the pro-atherogenic effects of IFN-α.


Subject(s)
Atherosclerosis , Foam Cells , Interferon-alpha , Lupus Erythematosus, Systemic , Nucleoside-Phosphate Kinase/metabolism , Atherosclerosis/complications , Humans , Lipoproteins, LDL , Lupus Erythematosus, Systemic/complications , Mitochondrial Proteins
SELECTION OF CITATIONS
SEARCH DETAIL