Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Sci Rep ; 14(1): 15221, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956104

ABSTRACT

Municipal wastewater treatment systems use the chemical oxygen demand test (COD) to identify organic contaminants in industrial effluents that impede treatment due to their high concentration. This study reduced the COD levels in tannery wastewater using a multistage treatment process that included Fenton oxidation, chemical coagulation, and nanotechnology based on a synthetic soluble COD standard solution. At an acidic pH of 5, Fenton oxidation reduces the COD concentration by approximately 79%. It achieves this by combining 10 mL/L of H2O2 and 0.1 g/L of FeCl2. Furthermore, the author selected the FeCl3 coagulant for the coagulation process based on the best results of comparisons between different coagulants. At pH 8.5, the coagulation dose of 0.15 g/L achieved the maximum COD removal efficiency of approximately 56.7%. Finally, nano bimetallic Fe/Cu was used to complete the degradation and adsorption of the remaining organic pollutants. The XRD, SEM, and EDX analyses proved the formation of Fe/Cu nanoparticles. A dose of 0.09 g/L Fe/Cu NPs, 30 min of contact time, and a stirring rate of 200 rpm achieve a maximum removal efficiency of about 93% of COD at pH 7.5. The kinetics studies were analyzed using pseudo-first-order P.F.O., pseudo-second-order P.S.O., and intraparticle diffusion models. The P.S.O. showed the best fit among the kinetic models, with an R2 of 0.998. Finally, the authors recommended that technique for highly contaminated industrial effluents treatment for agriculture or industrial purposes.

2.
Sci Rep ; 14(1): 16468, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013981

ABSTRACT

This study explores the optimization of iron electrocoagulation for treating laundry greywater, which accounts for up to 38% of domestic greywater. Characterized by high concentrations of surfactants, detergents, and suspended solids, laundry greywater presents complex challenges for treatment processes, posing significant environmental and health risks. Utilizing response surface methodology (RSM), this research developed a second-order polynomial regression model focused on key operational parameters such as the area-to-volume ratio (A/V), current density, electrolysis time, and settling time. Optimal treatment conditions were identified: an A/V ratio of 30 m2/m3, a current density of 10 mA/cm2, an electrolysis duration of 50 min, and a settlement period of 12 h. Under these conditions, exceptional treatment outcomes were achieved, with turbidity removal reaching 94.26% and COD removal at 99.64%. The model exhibited high effectiveness for turbidity removal, with an R2 value of 94.16%, and moderate effectiveness for COD removal, with an R2 value of 75.90%. The interaction between the A/V ratio and electrolysis time particularly underscored their critical role in electrocoagulation system design. Moreover, these results highlight the potential for optimizing electrocoagulation parameters to adapt to daily fluctuations in greywater production and meet specific household reuse needs, such as toilet flushing. This tailored approach aims to maximize contaminant separation and coagulant efficiency, balance energy use and operational costs, and contribute to sustainable water management.

3.
J Environ Manage ; 365: 121606, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941846

ABSTRACT

Oil refineries produce annually large quantities of oily sludge and non-biodegradable wastewater during petroleum refining that require adequate management to minimize its environmental impact. The fraction solid of the oily sludge accounts for 25 wt% and without treatment for their valorization. This work is focused on the valorization of these solid particles through their transformation into porous materials with enhanced properties and with potential application in the catalytic wet air oxidation (CWAO) of a non-biodegradable spent caustic refinery wastewater. Hence, dealing with the valorization and treatment of both refinery wastes in a circular approach aligned with the petrol refinery transformations by 2050. The obtained oily sludge carbonaceous materials showed improved surface area (260-762 m2/g) and a high Fe content. The good catalytic performance of these materials in CWAO processes has been attributed to the simultaneous presence of surface basic sites and iron species. Those materials with higher content of Fe and basic sites yielded the highest degradation of organic compounds present in the spent caustic refinery wastewater. In particular, the best-performing material ACT-NP 1.1 (non-preoxidated and thermically treated with 1:1 mass ratio KOH:solid) showed a chemical oxygen demand (COD) removal of 60 % after 3 h of reaction and with a higher degradation rate than that achieved with thermal oxidation without catalyst (WAO) and that using an iron-free commercial activated carbon. Moreover, the biodegradability of the treated wastewater increased up to 80% (from ca. 31% initially of the untreated effluent). Finally, this material was reused up to three catalytic cycles without losing metal species and keeping the catalytic performance.


Subject(s)
Oxidation-Reduction , Sewage , Wastewater , Catalysis , Sewage/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods , Petroleum , Biological Oxygen Demand Analysis
4.
Environ Pollut ; : 124435, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925215

ABSTRACT

Recent escalating concerns surrounding textile wastewater pollution and the urgent need for sustainable treatment solutions to mitigate its environmental impact. This study investigates the multifaceted effects of Spirulina platensis (SP) cultivation in textile wastewater from two different sources (TWW1 and TWW2), focusing on growth kinetics, Chemical Oxygen Demand (COD), and nutrient removal percentage, and seed germination enhancement. Results showed that SP exhibited comparable growth performance in TWW1 and TWW2 to the control, indicating its potential for sustainable wastewater treatment. Moreover, maximum COD removal percentages were achieved, reaching 62.59±1.88 % for TWW1 and 46.68±1.40 % for TWW2 on day 5. The COD removal process aligns best with the first-order kinetic model. Nutrient removal rates showed decreasing trends over time, with maximum phosphate removal percentages of 36.42±0.73 % for TWW1 and 62.18±1.24 % for TWW2, and maximum ammonia removal percentages of 59.34±1.18 % for TWW1 and 69.31±1.39 % for TWW2. FTIR analysis confirmed pollutant removal-induced changes in algal biomass functional groups. Seed germination studies indicated enhanced shoot and root development of vigna radiatas using treated TWW1 and TWW2 compared to the control, suggesting potential applications for irrigation. An increase in the lipid & carbohydrate content post-treatment was observed and it would be suitable for biofuel production. This comprehensive assessment demonstrates the synergistic benefits of phycoremediation in simultaneously removing pollutants, promoting plant growth, and enhancing wastewater treatment efficiency, underscoring its potential for sustainable water management practices.

5.
J Environ Manage ; 359: 120974, 2024 May.
Article in English | MEDLINE | ID: mdl-38701584

ABSTRACT

This study has carried out a systematic review of 36 scientific papers (reporting 63 case studies) published in the last 15 years about the treatment of industrial, agri-food and municipal wastewater in lagoons. A concentration of studies from a few countries (Italy, Algeria and Iran) and about municipal wastewater (70% of papers) was revealed by the bibliographic analysis. Aeration was supplied in more than 50% of case studies; the storage capacity of lagoons (adopted as a measure of size) was extremely variable (over seven orders of magnitude), while their depth was generally lower than a few metres. The efficiency of lagoon treatments at removing COD was in a wide range (25-98%). Very few studies analysed the energy intensity of treatments in lagoons. The meta-analysis applied to a further selection of 10 papers with 29 case studies revealed significant differences in pH and dissolved oxygen concentration, due to aeration or type of treated wastewater. Treatment efficiency was higher in aerated lagoons compared to non-aerated systems, and did not depend on the type of treated wastewater. Based on the analysis of the reviewed papers, an urgent research need on this topic arises, mainly due to the oldness of most analysed studies. Practical suggestions are given to optimise the depuration performances of lagoons: (i) application of intermittent and night aeration; (ii) reduced air flow rates; (iii) adaptation of microbial biomass to high contents of inhibiting compounds in wastewater; (iv) construction of baffles to keep the planned hydraulic retention time avoiding short-circuit; (v) integration of lagoons with other treatments (e.g., constructed wetlands); (vi) ferti-irrigation of crops with lagoon effluents rather than disposal into water bodies.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Water Purification/methods
6.
J Environ Manage ; 358: 120836, 2024 May.
Article in English | MEDLINE | ID: mdl-38593741

ABSTRACT

Supercritical water gasification technology provides a favorable technology to achieve pollution elimination and resource utilization of phenolic wastewater. In this study, the reaction mechanism of phenolic wastewater supercritical water gasification was investigated using a combination of experimental and computational methods. Five reaction channels were identified to elucidate the underlying pathway of phenol decomposition. Importantly, the rate-determining step was found to be the dearomatization reaction. By integrating computational and experimental analyses, it was found that phenol decomposition via the path with the lowest energy barrier generates cyclopentadiene, featuring a dearomatization barrier of 70.97 kcal/mol. Additionally, supercritical water plays a catalytic role in the dearomatization process by facilitating proton transfer. Based on the obtained reaction pathway, alkali salts (Na2CO3 and K2CO3) are employed as a catalyst to diminish the energy barrier of the rate-determining step to 40.00 kcal/mol and 37.14 kcal/mol. Alkali salts catalysis significantly improved carbon conversion and pollutant removal from phenolic wastewater, increasing CGE from 58.44% to 93.55% and COD removal efficiency from 94.11% to 99.79%. Overall, this study provides a comprehensive understanding of the decomposition mechanism of phenolic wastewater in supercritical water.


Subject(s)
Wastewater , Wastewater/chemistry , Catalysis , Phenols/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water/chemistry
7.
Chemosphere ; 358: 142156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679172

ABSTRACT

Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.


Subject(s)
Biofilms , Bioreactors , Nitrification , Bioreactors/microbiology , Ammonium Compounds/metabolism , Water Purification/methods , Kinetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Microbiota , Nitrites/metabolism , Bacteria/metabolism , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Nitrates/metabolism
8.
Chemosphere ; 356: 141747, 2024 May.
Article in English | MEDLINE | ID: mdl-38556178

ABSTRACT

The present study aims to establish NaOCl as a potential oxidant in the COD removal of Acid Orange 8 using UVC light (λ = 254 nm) and Fe2+ as catalysts. The different systems used in this study are NaOCl, Fe2+/NaOCl, UV/NaOCl, and Fe2+/NaOCl/UV. All these process were found to be operative in acidic, neutral and basic medium. The initial decolorisation and COD removal efficiency (CODeff) for different systems follow the order: Fe2+/NaOCl/UV > UV/NaOCl > Fe2+/NaOCl > NaOCl. Nevertheless, NaOCl can alone be used in the treatment process considering its CODeff to the extent of 95% in 90 min. The change in pH of the solutions after treatment is an important observation - for non-UV systems it remained around 11.0 and 7.0 in other systems. Thus, UV systems are environmental benign. The effect of various anions on CODeff was tested in Fe2+ systems. Presence of F- ions were found to accelerate CODeff in both the systems. However, the effect is more pronounced in Fe2+/ NaOCl/UV, where complete CODeff was observed in the presence of 9.0 gl-1 of F-. The COD removal kinetics for all systems was studied using zero-order, first-order, second-order, and BMG kinetic models. BMG model was found to be more suitable among all and is in good agreement with CODeff of all systems. It is, therefore, established that NaOCl can serve as a powerful oxidant in the advanced oxidation process.


Subject(s)
Azo Compounds , Iron , Oxidants , Sodium Hypochlorite , Ultraviolet Rays , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Catalysis , Oxidants/chemistry , Sodium Hypochlorite/chemistry , Iron/chemistry , Azo Compounds/chemistry , Kinetics , Biological Oxygen Demand Analysis , Benzenesulfonates/chemistry , Hydrogen-Ion Concentration , Waste Disposal, Fluid/methods , Oxidation-Reduction
9.
Environ Sci Pollut Res Int ; 31(13): 20117-20132, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374501

ABSTRACT

Produced water (PW) is the largest by-product that comes out of the oil wells during oil and gas (O&G) field exploration. PW contains high-salt concentration along with other organic and inorganic components; therefore, PW must be treated before disposal. Electrocoagulation (EC) is an effective treatment method to remove pollutants from PW which has been the focus of many experimental studies; however, a mathematical model specifically for PW treatment by EC has not been developed yet. In this work, a comprehensive mathematical model has been developed to elucidate the role of EC operating parameters on the PW treatment performance and determine the mechanism for COD (Chemical Oxygen Demand) removal. The present model considers and identifies the dominant Al-hydroxy complex species and their contribution to the COD removal from synthetic PW samples by estimating their rate constants and comparing their magnitudes and investigates multi-scale modelling of the EC reactor. The influence of working parameters such as current density, initial pH, interelectrode distance, mixing speed and solution volume of PW on Al coagulant production and COD removal was investigated and modelled. The study estimates the rate constants of the reactions taking place for COD removal by EC process and by comparing their magnitudes identifies the dominant reactions and coagulant species involved in the process. The mathematical model prediction of COD removal fits well with the experimental data at 10 mA cm-2, 15 mA cm-2 and 20 mA cm-2 current density with R2 value of 0.96, 0.97 and 0.92, respectively and for dissolved Al concentration R2 value of 0.96, 0.99, and 0.97, respectively. The simulated results reproduced a good fit at initial pH of 6.1, 7.3 and 8.6 with R2 value of 0.92, 0.96 and 0.98, respectively for COD removal. The mathematical model and the experimental results showed the role of dominant Al-hydroxy complex species such as Al OH 2 + , Al OH 2 + , Al OH 3 , Al 2 OH 2 + 4 and Al OH 4 - in controlling the COD removal process. Under different operating conditions considered in the study, the model also predicted the COD removal performance of the EC reactors at different reactor volumes with R2 value of 0.96 for higher solution volume and larger reactor. The model presented and rate constants determined in the study will provide a theoretical basis for designing, scaling up and operating the EC reactor for oil-field PW treatment.


Subject(s)
Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Aluminum , Water , Oil and Gas Fields , Hydrogen-Ion Concentration , Electrodes , Electrocoagulation/methods , Models, Theoretical , Water Pollutants, Chemical/analysis , Industrial Waste
10.
Environ Res ; 247: 118359, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38320717

ABSTRACT

In this work, the Mn, Co, Ce co-doped corn cob biochar (MCCBC) as catalytic particle electrodes in a three-dimensional heterogeneous electro-Fenton-like (3D-HEFL) system for the efficient degradation of coking wastewater was investigated. Various characterization methods such as SEM, EDS, XRD, XPS and electrochemical analysis were employed for the prepared materials. The results showed that the MCCBC particle electrodes had excellent electrochemical degradation performances of COD in coking wastewater, and the COD removal and degradation rates of the 3D/HEFL system were 85.35% and 0.0563 min-1 respectively. RSM optimized conditions revealed higher COD removal rate at 89.23% after 31.6 min of electrolysis. The efficient degradability and wide adaptability of the 3D/HEFL system were due to its beneficial coupling mechanism, including the synergistic effect between the system factors (3D and HEFL) as well as the synergistic interactions between the ROS (dominated by •OH and supplemented by O2•-) in the system. Moreover, the COD removal rate of MCCBC could still remain at 81.41% after 5 cycles with a lower ion leaching and a specific energy consumption of 11.28 kWh kg-1 COD. The superior performance of MCCBC, as catalytic particle electrodes showed a great potential for engineering applications for the advanced treatment of coking wastewater.


Subject(s)
Charcoal , Cocaine , Coke , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Coke/analysis , Oxidation-Reduction , Electrodes , Cocaine/analysis , Water Pollutants, Chemical/analysis
11.
Environ Sci Pollut Res Int ; 31(8): 11801-11814, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225487

ABSTRACT

The present study aims to investigate the efficiency of a combined cheese wastewater treatment approach involving coagulation with ferric chloride coupled with a photo-Fenton-like oxidation process for potential reuse in irrigation. Laboratory-scale tests were conducted, examining the effect of various operational parameters on the treatment process. Specifically, the effects of initial wastewater pH, coagulant dosage, decantation time for the coagulation process, and initial pH, chemical oxygen demand (COD) concentration, and Fe3+ and H2O2 dosages for photo-Fenton-like oxidation were studied. Coagulation was found effective at natural pH of 6 and showed a highest removal efficiency in terms of COD (50.6%), biological oxygen demand BOD5 (42.1%), turbidity (99.3%), and least sludge volume generation (11.8% v/v) for an optimum coagulant dose of 400 mg Fe3+ L-1 and 8 h of decantation time. Thereafter, photo-Fenton-like oxidation (Fe3+/H2O2/UVA-300W) of the pretreated cheese effluent enhanced the removal of COD, BOD5 and TOC to 91.2%, 91.4%, and 97.5%, respectively, using the optimized conditions (pH = 3; [Fe3+] = 5.0 × 10-4 mol L-1; [H2O2] = 0.2 mol L-1 and tirr = 24 h). This study also shows that the proposed combined process allowed a significant phytotoxicity reduction toward lentil seed germination. The obtained outcome was encouraging and supports the possible use of the treated cheese wastewater as an additional water source for agricultural irrigation.


Subject(s)
Cheese , Water Pollutants, Chemical , Water Purification , Wastewater , Waste Disposal, Fluid , Flocculation , Hydrogen Peroxide , Iron , Water Pollutants, Chemical/analysis , Oxidation-Reduction
12.
Water Environ Res ; 96(1): e10963, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200640

ABSTRACT

The vegetable oil refinery industry generates highly polluted effluents during oil production, necessitating proper treatment before discharge to prevent environmental hazards. Treating such wastewater has become a major environmental concern in developing countries. Chemical oxygen demand (COD) is a key parameter in assessing the wastewater's organic pollutant load. High COD levels can lead to reduced dissolved oxygen in water bodies, negatively affecting aquatic life. Various technologies have been employed to treat oily wastewater, but microbial degradation has gained attention due to its potential to remove organic pollutants efficiently. This study aims to optimize the biodegradation treatment process for vegetable oil industrial effluent using response surface methodology (RSM). The wastewater's physicochemical properties were characterized to achieve this, and COD removal was analyzed. Furthermore, RSM was used to investigate the combined effects of pH, contact duration, and microbial concentration on COD removal efficiency. The result showed that the microbial strain used recorded a maximum COD removal of 92%. Furthermore, a quadratic model was developed to predict COD removal based on the experimental variables. From the analysis of variance (ANOVA) analysis, the model was found to be significant at p < 0.0004 and accurately predicted COD removal rates within the experimental region, with an R2 value of 90.99% and adjusted R2 value of 82.89%. Contour plots and statistical analysis revealed the importance of contact duration and microbial concentration on COD removal. PRACTITIONER POINTS: Response surface methodology (RSM) optimization achieved a significant chemical oxygen demand (COD) removal efficiency of 92% in vegetable oil industrial effluents. The study's success in optimizing COD removal using RSM highlights the potential for efficient and environmentally friendly wastewater treatment. Practitioners can benefit from the identified factors (pH, contact time, and microbial concentration) to enhance the operation of treatment systems. The developed predictive model offers a practical tool for plant operators and engineers to tailor wastewater treatment processes. This research underscores the importance of sustainable practices in wastewater treatment, emphasizing the role of microbial degradation in addressing organic pollutant loads.


Subject(s)
Environmental Pollutants , Plant Oils , Wastewater , Oxygen , Hydrogen-Ion Concentration
13.
J Environ Manage ; 351: 119681, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043314

ABSTRACT

In the present study, the technical feasibility of an electrocoagulation-treatment wetland continuous flow system, for the removal of organic matter from landfill leachate (LL), was evaluated. The response surface methodology (MSR) was used to assess the individual and combined effects of the applied potential and distance between electrodes, on the removal efficiency and optimization of the electrocoagulation process. The hybrid treatment wetland system consisted of a vertical flow system coupled to a horizontal subsurface flow system, both planted with Canna indica. For a chemical oxygen demand (COD) concentration - without pretreatment of 5142.8 ± 2.5 mg L-1, the removal percentage for the electrocoagulation system was 79.4 ± 0.16%, under the optimal working conditions (Potential: 20 V; Distance: 2.0 cm). The COD removal efficiency in the treatment wetland with Canna indica showed a dependence with the hydraulic retention time, reaching 59.2 ± 0.2 % over 15 days. The overall efficiency of the system was about 91.5 ± 0.02 % removal of COD. In addition, a decrease in the biochemical oxygen demand (94.8 ± 0.14%) and total suspended solids (88.2 ± 0.22%), also related to the contamination levels of the LL, were obtained. This study, for the first time, shows that the coupling of electrocoagulation together with a treatment wetland system is a good alternative for the removal of organic contaminants present in LL.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Wetlands , Electrocoagulation/methods , Biological Oxygen Demand Analysis , Electrodes
14.
Bioprocess Biosyst Eng ; 47(1): 91-103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085351

ABSTRACT

A continuous stirred tank bioreactor (CSTB) with cell recycling combined with ceramic membrane technology and inoculated with Rhodococcus opacus PD630 was employed to treat petroleum refinery wastewater for simultaneous chemical oxygen demand (COD) removal and lipid production from the retentate obtained during wastewater treatment. In the present study, the COD removal efficiency (CODRE) (%) and lipid concentration (g/L) were predicted using two artificial intelligence models, i.e., an artificial neural network (ANN) and a neuro-fuzzy neural network (NF-NN) with a network topology of 6-25-2 being the best for NF-NN. The results revealed the superiority of NF-NN over ANN in terms of determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Three learning algorithms were tested with NF-NN; among them, the Bayesian regularization backpropagation (BR-BP) outperformed others. The sensitivity analysis revealed that, if solid retention time and biomass concentrations were maintained between 35 and 75 h and 3.0 g/L and 3.5 g/L, respectively, high CODRE (93%) and lipid concentration (2.8 g/L) could be obtained consistently.


Subject(s)
Artificial Intelligence , Petroleum , Waste Disposal, Fluid/methods , Bayes Theorem , Bioreactors , Ceramics , Lipids
15.
Microb Cell Fact ; 22(1): 202, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803422

ABSTRACT

BACKGROUND: The application of exopolysaccharide-producing bacteria (EPS) in dual chamber microbial fuel cells (DCMFC) is critical which can minimize the chemical oxygen demand (COD) of molasses with bioelectricity production. Hence, our study aimed to evaluate the EPS production by the novel strain Bacillus piscis by using molasses waste. Therefore, statistical modeling was used to optimize the EPS production. Its structure was characterized by UV, FTIR, NMR, and monosaccharides compositions. Eventually, to highlight B. piscis' adaptability in energy applications, bioelectricity production by this organism was studied in the BCMFC fed by an optimized molasses medium. RESULTS: B. piscis OK324045 characterized by 16S rRNA is a potent EPS-forming organism and yielded a 6.42-fold increase upon supplementation of molasses (5%), MgSO4 (0.05%), and inoculum size (4%). The novel exopolysaccharide produced by Bacillus sp. (EPS-BP5M) was confirmed by the structural analysis. The findings indicated that the MFC's maximum close circuit voltage (CCV) was 265 mV. The strain enhanced the performance of DCMFC achieving maximum power density (PD) of 31.98 mW m-2, COD removal rate of 90.91%, and color removal of 27.68%. Furthermore, cyclic voltammetry (CV) revealed that anodic biofilms may directly transfer electrons to anodes without the use of external redox mediators. Additionally, CV measurements made at various sweep scan rates to evaluate the kinetic studies showed that the electron charge transfer was irreversible. The SEM images showed the biofilm growth distributed over the electrode's surface. CONCLUSIONS: This study offers a novel B. piscis strain for EPS-BP5M production, COD removal, decolorization, and electricity generation of the optimized molasses medium in MFCs. The biosynthesis of EPS-BP5M by a Bacillus piscis strain and its electrochemical activity has never been documented before. The approach adopted will provide significant benefits to sugar industries by generating bioelectricity using molasses as fuel and providing a viable way to improve molasses wastewater treatment.


Subject(s)
Bacillus , Bioelectric Energy Sources , Molasses , Kinetics , RNA, Ribosomal, 16S , Electricity , Electrodes
16.
Environ Technol ; : 1-9, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37727140

ABSTRACT

Three-dimensional (3D) electrochemical oxidation has become a popular advanced oxidation technology for wastewater treatment due to its various benefits. In this study, cerium (Ce) loaded biochar (Ce/BC) was used as a particle electrode to conduct the degradation of industrial wastewater released by the chemical industry. SEM, EDS, XRD, FTIR, XPS, and BET were used to characterize the properties of Ce/BC. The effects of some variables, including Ce loading (0-5%), pH (5-9), Ce/BC dosage (12.5-50.0 g/L), and working voltage (12-20 V), were evaluated with regard to COD elimination. The kinetics of COD oxidation and the energy consumption were carefully investigated. Tert-butanol significantly reduced the removal efficiency of COD, indicating that hydroxyl radicals generated during the process rather than direct electro-oxidation were the main mechanism for COD degradation. The treatment of industrial wastewater might benefit from the use of Ce/BC as particle electrode.

17.
Nanotechnology ; 34(50)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37708885

ABSTRACT

The paper critically addresses two contemporary environmental challenges, the water crisis and the unrestricted discharge of organic pollutants in waterways together. An eco-friendly method was used to fabricate a cellulose/g-C3N4/TiO2photocatalytic composite that displayed a remarkable degradation of methylene blue dye and atenolol drug under natural sunlight. Introducing graphitic carbon nitride (g-C3N4) onto pristine TiO2improved hybrid material's photonic efficacy and enhanced interfacial charge separation. Furthermore, immobilizing TiO2/g-C3N4on a semi-interpenetrating cellulose matrix promoted photocatalyst recovery and its reuse, ensuring practical affordability. Under optimized conditions, the nano-photocatalyst exhibited ∼95% degradation of both contaminants within two hours while retaining ∼55% activity after ten cycles demonstrating a promising photostability. The nano-photocatalyst caused 66% and 57% reduction in COD and TOC values in industrial wastewater containing these pollutants. The photocatalysis was fitted to various models to elucidate the degradation kinetics, while LC-MS results suggested the mineralization pathway of dye majorly via ring opening demethylation. >98% disinfection was achieved againstE. coli(104-105CFU·ml-1) contaminated water. This study thus paves multifaceted strategies to treat wastewater contaminants at environmental levels employing nano-photocatalysis.

18.
Korean J Chem Eng ; 40(6): 1389-1400, 2023.
Article in English | MEDLINE | ID: mdl-37325271

ABSTRACT

Performance of an anaerobic moving bed biofilm reactor (AnMBBR) was evaluated for pretreatment of real textile desizing wastewater at organic loading rate (OLR) of 1±0.05 to 6.3±0.37 kgCOD/m3/d. After OLR optimization, the performance of AnMBBR was evaluated for biodegradation of reactive dyes. AnMBBR was operated under a mesophilic temperature range of 30 to 36 °C, while the oxidation-reduction potential (ORP) and pH were in the range of 504 to 594 (-mV) and 6.98 to 7.28, respectively. By increasing the OLR from 1±0.05 to 6.3±0.37 kgCOD/m3/d, COD and BOD5 removal was decreased from 84 to 39% and 89 to 49%, respectively. While the production of biogas was increased from 0.12 to 0.83 L/L·d up to an optimum OLR of 4.9±0.43 kgCOD/m3/d. With increase in the dye concentration in the feed, COD, BOD5, color removal and biogas production reduced from 56, 63, 70% and 0.65 L/L·d to 34, 43, 41% and 0.08 L/L·d, respectively. Based on the data obtained, a cost-benefit analysis of AnMBBR was also investigated for the pretreatment of real textile desizing wastewater. Cost estimation of anaerobic pretreatment of textile desizing wastewater indicated a net profit of 21.09 million PKR/yr (114,000 €/yr) and a potential payback period of 2.54 years.

19.
J Environ Manage ; 342: 118259, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37311349

ABSTRACT

The wastewater generated from citric acid production has a high organic loading content. The treatment and reuse of citric acid wastewater with high organic loading become extremely important. In this study, the performance of calcium hydroxide (Ca(OH)2) precipitation as a low-cost and environmentally friendly pre-treatment method and aerobic membrane bioreactor (MBR) combined treatment system was investigated for the treatment of citric acid (CA) wastewater. At the first step, optimization parameters such as agitation speed (100, 150, 200 rpm), temperature (30, 50, 70 °C), and reaction time (2, 4, 6 h) for Ca(OH)2 precipitation as a pre-treatment method were investigated using response surface methodology (RSM) to achieve maximum chemical oxygen demand (COD) removal. Experimental sets were designed using Box-Behnken Design. As a result of pre-treatment with Ca(OH)2 precipitation, a COD removal efficiency of 97.3% was obtained. Then, pre-treated CA wastewater was fed continuously to the MBR process for 10 days, which was the second stage of the combined process. As a result of the MBR process, 92.0% COD removal efficiency was obtained for 24 h HRT and 10 days SRT. In total, 99.8% COD removal efficiency was obtained when combined process was used and COD concentration decreased from 52,000-114 mg/L. For the treatment and reuse of wastewater from citric acid production, Ca(OH)2 precipitation and MBR combined treatment systems demonstrated an effective strategy.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Bioreactors , Membranes , Chemical Precipitation
20.
Article in English | MEDLINE | ID: mdl-37249763

ABSTRACT

The cathode catalyst in microbial fuel cell (MFC) plays a crucial role in scaling up. Activity of biomass-derived activated carbon catalysts with appropriate precursor selection in a natural clay membrane-based MFC of 250 mL was studied. The performance of scaled up MFC of 1.5 L capacity with two different configurations was monitored. Rod-shaped particles with slit-type pores and amorphous graphitic nature with a surface area of 800.37 m2/g was synthesized. The intrinsic doping of heteroatoms N and P in the catalyst was with atomic weight percentages of 4.5 and 3.5, respectively and the deconvolution of N1 spectra confirmed pyridinic N and graphitic N content of 17.3% and 34.1% validating its suitability as a cathode catalyst. Electrochemical characterization of the catalyst coated SS mesh electrode confirmed that a loading of 5 mg/cm2 rendered higher catalytic activity compared to bare SS mesh. The maximum power density in catalyst modified cell was 0.91 W/m3 compared to 0.02 W/m3 as obtained in a plain stainless steel electrode cell at a COD removal efficiency of 93.3%. Series, parallel, and parallel-series combinations of 6 cells showed a maximum voltage of 4.15 V when connected in series and a maximum power density of 1.54 W/m3 when connected in parallel. System with multielectrode assembly achieved better power and current density (0.84 W/m3 and 1.97 A/m3) than the mixed parallel series circuitry (0.7 W/m3 and 0.57 A/m3). These performance results confirm that the catalyst is effective in both stacked and hydraulically connected system.

SELECTION OF CITATIONS
SEARCH DETAIL