Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 549
Filter
1.
Behav Brain Res ; : 115139, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969017

ABSTRACT

Numerous studies have demonstrated that chronic stress during pregnancy (CSDP) can induce depression and hippocampal damage in offspring. It has also been observed that high levels of corticotropin-releasing hormone (CRH) can damage hippocampal neurons, and intraperitoneal injection of a corticotropin releasing hormone receptor 1 (CRHR1) antagonist decreases depression-like behavior and hippocampal neuronal damage in a mouse depression model. However, whether CSDP causes hippocampal damage and depression in offspring through the interaction of CRH and hippocampal CRHR1 remains unknown and warrants further investigation. Therefore, hippocampal Crhr1 conditional gene knockout mice and C57/BL6J mice were used to study these questions. Depression-related indexs in male offspring mice were examined using the forced swim test (FST), sucrose preference test (SPT), tail suspension test (TST) and open field test (OFT). Serum CRH levels were measured by enzyme-linked immunosorbent assay (ELISA). Golgi-Cox staining was used to examine the morphological changes of hippocampal neuronal dendrites. Neuronal apoptosis in the hippocampal CA3 regions was detected by terminal deoxynucleotidy transferase dUTP nick end labeling (TUNEL) staining. The levels of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR) and protein kinase B (AKT) proteins were measured by Western blot analysis. This study showed that CSDP induces depression-like behavior, hippocampal neuronal dendrite damage and apoptosis in male offspring mice. Conditional gene knockout of hippocampal Crhr1 in mice reduced CSDP-induced depression-like behavior, hippocampal neuronal dendrite damage and apoptosis in male offspring, and counteracted the CSDP-induced decreased expression of p-Akt and mTOR activity in male offspring hippocampus. These findings demonstrated that CSDP might inhibit the Akt/mTOR pathway by increasing the levels of CRH, leading to increased CRH-mediated activation of hippocampal CRHR1, thereby inducing synaptic impairment and apoptosis in hippocampal neurons, which in turn leads to depression-like behavior in offspring.

2.
Biomedicines ; 12(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38927393

ABSTRACT

Major depressive disorder (MDD) increases the risk of type 2 diabetes (T2D) by 60% in untreated patients, and hypercortisolism is common in MDD as well as in some patients with T2D. Patients with MDD, despite hypercortisolism, show inappropriately normal levels of corticotropin-releasing hormone (CRH) and plasma adrenocorticotropin (ACTH) in the cerebrospinal fluid, which might implicate impaired negative feedback. Also, a positive feedback loop of the CRH-norepinephrine (NE)-CRH system may be involved in the hypercortisolism of MDD and T2D. Dysfunctional CRH receptor 1 (CRHR1) and CRH receptor 2 (CRHR2), both of which are involved in glucose regulation, may explain hypercortisolism in MDD and T2D, at least in a subgroup of patients. CRHR1 increases glucose-stimulated insulin secretion. Dysfunctional CRHR1 variants can cause hypercortisolism, leading to serotonin dysfunction and depression, which can contribute to hyperglycemia, insulin resistance, and increased visceral fat, all of which are characteristics of T2D. CRHR2 is implicated in glucose homeostasis through the regulation of insulin secretion and gastrointestinal functions, and it stimulates insulin sensitivity at the muscular level. A few studies show a correlation of the CRHR2 gene with depressive disorders. Based on our own research, we have found a linkage and association (i.e., linkage disequilibrium [LD]) of the genes CRHR1 and CRHR2 with MDD and T2D in families with T2D. The correlation of CRHR1 and CRHR2 with MDD appears stronger than that with T2D, and per our hypothesis, MDD may precede the onset of T2D. According to the findings of our analysis, CRHR1 and CRHR2 variants could modify the response to prolonged chronic stress and contribute to high levels of cortisol, increasing the risk of developing MDD, T2D, and the comorbidity MDD-T2D. We report here the potential links of the CRH system, NE, and their roles in MDD and T2D.

3.
Pituitary ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888685

ABSTRACT

CONTEXT: Once hypercortisolemia is confirmed, differential diagnosis between Cushing's syndrome (CS) due to neoplastic endogenous hypercortisolism and non-neoplastic hypercortisolism (NNH, pseudo-Cushing's syndrome) is crucial. Due to worldwide corticotropin-releasing hormone (CRH) unavailability, accuracy of alternative tests to dexamethasone (Dex)-CRH, is clearly needed. OBJECTIVE: Assess the diagnostic accuracy of Dex-CRH test, desmopressin stimulation test, midnight serum cortisol (MSC), and late-night salivary cortisol (LNSC) levels to distinguish CS from NNH. METHODS: Articles through March 2022 were identified from Scopus, Web of Science, MEDLINE, EMBASE, and PubMed. All steps through the systematic review were performed independently and in duplicate and strictly adhered to the updated PRISMA-DTA checklist. DATA SYNTHESIS: A total of 24 articles (1900 patients) were included. Dex-CRH had a pooled sensitivity and specificity of 91% (95%CI 87-94%; I2 0%) and 82% (73-88%; I2 50%), desmopressin test 86% (81-90%; I2 28%) and 90% (84-94%; I2 15%), MSC 91% (85-94%; I2 66%) and 81% (70-89%; I2 71%), and LNSC 80% (67-89%; I2 57%) and 90% (84-93%; I2 21%), respectively. Summary receiver operating characteristics areas under the curve were Dex-CRH 0.949, desmopressin test 0.936, MSC 0.942, and LNSC 0.950 without visual or statistical significance. The overall risk of studies bias was moderate. CONCLUSION: Dex-CRH, the desmopressin stimulation test, and MSC have similar diagnostic accuracy, with Dex-CRH and MSC having slightly higher sensitivity, and the desmopressin test being more specific. LNSC was the least accurate, probably due to high heterogeneity, intrinsic variability, different assays, and lack of consistent reported cutoffs. When facing this challenging differential diagnosis, the results presented here should increase clinicians' confidence when deciding which test to perform.

4.
Stress ; 27(1): 2353781, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38823417

ABSTRACT

Hypothalamic-pituitary-adrenal (HPA)-axis hyperactivity measured by the combined dexamethasone-CRH test (DEX-CRH test) has been found in patients with major depressive disorder (MDD), whereas hypoactivity has been found in patients with work-related stress. We aimed to investigate the DEX-CRH test as a biomarker to distinguish between MDD and work-related stress (exhaustion disorder - ED). We hypothesized that there would be lower cortisol and ACTH response in participants with ED compared to MDD and healthy controls (HC). Also, we explored if the cortisol response of those patients interacted with robust markers of oxidative stress. Thirty inpatients with MDD and 23 outpatients with ED were recruited. Plasma cortisol and ACTH were sampled during a DEX-CRH test. The main outcome measure, area under the curve (AUC) for cortisol and ACTH, was compa-red between MDD vs. ED participants and a historical HC group. Secondary markers of oxidative stress urinary 8-oxodG and 8-oxoGuo; quality of sleep and psychometrics were obtained. Cortisol concentrations were higher in MDD and ED participants compared to HC, and no differences in AUC cortisol and ACTH were found between ED vs. MDD. Compared to ED, MDD participants had higher stress symptom severity and a lower sense of well-being. No differences in oxidative stress markers or quality of sleep between the groups were found. The result indicates that the patients with ED, like patients with MDD, are non-suppressors in DEX-CRH test and not hypocortisolemic as suggested.


Subject(s)
Adrenocorticotropic Hormone , Biomarkers , Depressive Disorder, Major , Dexamethasone , Hydrocortisone , Oxidative Stress , Humans , Depressive Disorder, Major/blood , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnosis , Female , Male , Hydrocortisone/blood , Adult , Oxidative Stress/physiology , Adrenocorticotropic Hormone/blood , Biomarkers/blood , Dexamethasone/pharmacology , Middle Aged , Corticotropin-Releasing Hormone/blood , Occupational Stress/physiopathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/physiopathology
5.
Gen Comp Endocrinol ; 356: 114577, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914296

ABSTRACT

The physiological processes in animal production are regulated through biologically active molecules like peptides, proteins, and hormones identified through the development of the fundamental sciences and their application. One of the main polypeptides that plays an essential role in regulating physiological responses is the pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP belongs to the glucagon/growth hormone-releasing hormone (GHRH)/vasoactive intestinal proteins (VIP) family and regulates feed intake, stress, and immune response in birds. Most of these regulations occur after PACAP stimulates the cAMP signaling pathway, which can regulate the expression of genes like MuRF1, FOXO1, Atrogin 1, and other ligases that are essential members of the ubiquitin system. On the other hand, PACAP stimulates the secretion of CRH in response to stress, activating the ubiquitin signaling pathway that plays a vital role in protein degradation and regulates oxidative stress and immune responses. Many studies conducted on rodents, mammals, and other models confirm the regulatory effects of PACAP, cAMP, and the ubiquitin pathway; however, there are no studies testing whether PACAP-induced cAMP signaling in poultry regulates the ubiquitin pathway. Besides, it would be interesting to investigate if PACAP can regulate ubiquitin signaling during stress response via CRH altered by HPA axis stimulation. Therefore, this review highlights a summary of research studies that indicate the potential interaction of the PACAP and ubiquitin signaling pathways on different molecular and physiological parameters in poultry species through the cAMP and stress signaling pathways.

6.
J Reprod Dev ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910127

ABSTRACT

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.

7.
Hormones (Athens) ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740711

ABSTRACT

PURPOSE: Corticotropin-releasing hormone (CRH) plays an important role in relief of pain by releasing analgesia-associated molecules in several inflammatory states. During inflammation, peripheral CRH acts on cells of the immune system to stimulate the local expression of proopiomelanocortin (POMC) and the production of ß-endorphin, which in turn binds to opioid receptors on sensory neurons to produce antinociception. In the present study, we further investigated the role of endogenous CRH in inflammatory pain by determining the effects of Crh-deficiency on this process. METHODS: For this purpose, we used Crh-deficient (Crh-/-) mice and their wildtype (Crh + / +) littermates in the CFA (Complete Freund's Adjuvant)-induced inflammatory pain model. Pain thresholds were evaluated with the Hargreaves apparatus. RESULTS: Our experiments showed that Crh deficiency led to increased pain response, which was associated with decreased POMC mRNA levels in locally inflamed paws of these mice. Furthermore, Crh-/- mice had higher paw edema than Crh + / + mice. Histological evaluation of inflamed paw tissues revealed increased inflammatory response in Crh-/- mice. Protein levels of proinflammatory cytokines, such as IL-6, TNF-α, and IL-1ß, were higher in inflamed tissue of Crh-/- mice compared to wildtype mice. Corticosterone replacement increased the pain threshold of Crh-/- mice, restored their paw volume to the levels of wildtype mice, and significantly reduced their proinflammatory cytokine levels. Furthermore, glucocorticoid administration significantly increased POMC mRNA expression in the inflamed paw. CONCLUSION: Our data suggest that genetic deficiency of CRH is associated with increased pain. This effect is likely attributable to the accompanying glucocorticoid insufficiency and is in part mediated by opioids expressed locally.

8.
Birth ; 51(2): 245-252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695278

ABSTRACT

This commentary is in response to the Call for Papers put forth by the Critical Midwifery Studies Collective (June 2022). We argue that due to a long and ongoing history of gendered racism, Women of Color are devalued in U.S. society. Devaluing Women of Color leads maternal healthcare practitioners to miss and even dismiss distress in Women of Color. The result is systematic underdiagnosis, undertreatment, and the delivery of poorer care to Women of Color, which negatively affects reproductive outcomes generally and birth outcomes specifically. These compounding effects exacerbate distress in Women of Color leading to greater distress. Stress physiology is ancient and intricately interwoven with healthy pregnancy physiology, and this relationship is a highly conserved reproductive strategy. Thus, where there is disproportionate or excess stress (distress), unsurprisingly, there are disproportionate and excess rates of poorer reproductive outcomes. Stress physiology and reproductive physiology collide with social injustices (i.e., racism, discrimination, and anti-Blackness), resulting in pernicious racialized maternal health disparities. Accordingly, the interplay between stress and reproduction is a key social justice issue and an important site for theoretical inquiry and birth equity efforts. Fortunately, both stress physiology and pregnancy physiology are highly plastic-responsive to the benefits of increased social support and respectful maternity care. Justice means valuing Women of Color and valuing their right to have a healthy, respected, and safe life.


Subject(s)
Racism , Social Justice , Stress, Psychological , Humans , Female , Pregnancy , Racism/psychology , United States , Reproduction , Healthcare Disparities , Black or African American/psychology
9.
J Intern Med ; 296(1): 2-23, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38606956

ABSTRACT

Cushing's syndrome (CS) is a rare disorder, once exogenous causes have been excluded. However, when diagnosed, the majority of cases are adrenocorticotropic hormone (ACTH)-dependent, of which a substantial minority are due to a source outside of the pituitary, ectopic ACTH syndrome (EAS). Differentiating among pituitary-dependent CS, Cushing's disease (CD) and an ectopic source can be problematic. Because non-invasive tests in the evaluation of CS patients often lack adequate sensitivity and specificity, bilateral inferior petrosal sinus sampling (BIPSS), a minimally invasive procedure performed during the investigation of ACTH-dependent CS, can be extremely helpful. BIPSS is considered to be the gold standard for differentiating CD from the EAS. Furthermore, although such differentiation may indeed be challenging, BIPSS is itself a complex investigation, especially in recent times due to the widespread withdrawal of corticotrophin-releasing hormone and its replacement by desmopressin. We review current published data on this investigation and, in the light of this and our own experience, discuss its appropriate use in diagnostic algorithms.


Subject(s)
ACTH Syndrome, Ectopic , Adrenocorticotropic Hormone , Cushing Syndrome , Petrosal Sinus Sampling , Humans , Diagnosis, Differential , Cushing Syndrome/diagnosis , ACTH Syndrome, Ectopic/diagnosis , Adrenocorticotropic Hormone/blood , Pituitary ACTH Hypersecretion/diagnosis
10.
Front Mol Neurosci ; 17: 1373337, 2024.
Article in English | MEDLINE | ID: mdl-38577026

ABSTRACT

Corticotropin-releasing hormone (CRH) neurons play an important role in the regulation of neuroendocrine responses to stress. The excitability of CRH neurons is regulated by inhibitory GABAergic inputs. However, it is unclear when GABAergic regulation of CRH neurons is established during fetal brain development. Furthermore, the exact progression of the developmental shift of GABA action from depolarization to hyperpolarization remains unelucidated. Considering the importance of CRH neuron function in subsequent hypothalamic-pituitary-adrenal (HPA) axis regulation during this critical phase of development, we investigated the ontogeny of GABAergic inputs to CRH neurons and consequent development of chloride homeostasis. Both CRH neuron soma in the paraventricular nucleus (PVN) and axons projecting to the median eminence could be identified at embryonic day 15 (E15). Using acute slices containing the PVN of CRF-VenusΔNeo mice, gramicidin perforated-patch clamp-recordings of CRH neurons at E15, postnatal day 0 (P0), and P7 were performed to evaluate the developmental shift of GABA action. The equilibrium potential of GABA (EGABA) was similar between E15 and P0 and showed a further hyperpolarizing shift between P0 and P7 that was comparable to EGABA values in adult CRH neurons. GABA primarily acted as an inhibitory signal at E15 and KCC2 expression was detected in CRH neurons at this age. Activation of the HPA axis has been proposed as the primary mechanism through which prenatal maternal stress shapes fetal development and subsequent long-term disease risk. We therefore examined the impact of maternal food restriction stress on the development of chloride homeostasis in CRH neurons. We observed a depolarization shift of EGABA in CRH neurons of pups exposed to maternal food restriction stress. These results suggest that Cl- homeostasis in early developmental CRH neurons attains mature intracellular Cl- levels, GABA acts primarily as inhibitory, and CRH neurons mature and function early compared with neurons in other brain regions, such as the cortex and hippocampus. Maternal food restriction stress alters chloride homeostasis in CRH neurons of pups, reducing their inhibitory control by GABA. This may contribute to increased CRH neuron activity and cause activation of the HPA axis in pups.

11.
Front Endocrinol (Lausanne) ; 15: 1363748, 2024.
Article in English | MEDLINE | ID: mdl-38616821

ABSTRACT

Corticotropin-releasing factor family peptides (CRF peptides) comprise corticotropin releasing hormone (CRH), urocortin (UCN1), UCN2 and UCN3. CRH is first isolated in the brain and later with UCNs found in many peripheral cells/tissues including the colon. CRH and UCNs function via the two types of receptors, CRF1 and CRF2, with CRH mainly acting on CRF1, UCN1 on both CRF1 &CRF2 and UCN2-3 on CRF2. Compiling evidence shows that CRH participates in inflammation and cancers via both indirect central effects related to stress response and direct peripheral influence. CRH, as a stress-response mediator, plays a significant central role in promoting the development of colitis involving colon motility, immunity and gut flora, while a few anti-colitis results of central CRH are also reported. Moreover, CRH is found to directly influence the motility and immune/inflammatory cells in the colon. Likewise, CRH is believed to be greatly related to tumorigenesis of many kinds of cancers including colon cancer via the central action during chronic stress while the peripheral effects on colitis-associated-colon cancer (CAC) are also proved. We and others observe that CRH/CRF1 plays a significant peripheral role in the development of colitis and CAC in that CRF1 deficiency dramatically suppresses the colon inflammation and CAC. However, up to date, there still exist not many relevant experimental data on this topic, and there seems to be no absolute clearcut between the central and direct peripheral effects of CRH in colitis and colon cancer. Taken together, CRH, as a critical factor in stress and immunity, may participate in colitis and CAC as a centrally active molecule; meanwhile, CRH has direct peripheral effects regulating the development of colitis and CAC, both of which will be summarized in this review.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Colonic Neoplasms , Humans , Corticotropin-Releasing Hormone , Colitis/complications , Colonic Neoplasms/etiology , Inflammation
12.
Transl Neurosci ; 15(1): 20220339, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38681523

ABSTRACT

The ventral bed nucleus of the stria terminalis (vBNST) plays a key role in cocaine addiction, especially relapse. However, the direct effects of cocaine on corticotropin-releasing hormone (CRH) neurons in the vBNST remain unclear. Here, we identify that cocaine exposure can remarkably attenuate the intrinsic excitability of CRH neurons in the vBNST in vitro. Accumulating studies reveal the crucial role of Sigma-1 receptors (Sig-1Rs) in modulating cocaine addiction. However, to the authors' best knowledge no investigations have explored the role of Sig-1Rs in the vBNST, let alone CRH neurons. Given that cocaine acts as a type of Sig-1Rs agonist, and the dramatic role of Sig-1Rs played in intrinsic excitability of neurons as well as cocaine addiction, we employ BD1063 a canonical Sig-1Rs antagonist to block the effects of cocaine, and significantly recover the excitability of CRH neurons. Together, we suggest that cocaine exposure leads to the firing rate depression of CRH neurons in the vBNST via binding to Sig-1Rs.

13.
Fish Physiol Biochem ; 50(3): 1225-1236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512395

ABSTRACT

Corticotropin-releasing hormone (CRH) is mainly secreted by the hypothalamus to regulate stress when environmental factors change. Gills contact with water directly and may also secrete CRH to maintain local homeostasis. Ocean acidification changes water chemical parameters and is becoming an important environmental stressor for marine fish. The response of brain and gill CRH systems to ocean acidification remains unclear. In this study, marine medaka were exposed to CO2-acidified seawater (440 ppm, 1000 ppm, and 1800 ppm CO2) for 2 h, 4 h, 24 h, and 7 d, respectively. At 2 h and 4 h, the expression of crh mRNA in gills increased with increasing CO2 concentration. Crh protein is expressed mainly in the lamellae cells. crhbp and crhr1 expression also increased significantly. However, at 2 h and 4 h, acidification caused little changes in these genes and Crh protein expression in the brain. At 7 d, Crh-positive cells were detected in the hypothalamus; moreover, Crh protein expression in the whole brain increased. It is suggested that CRH autocrine secretion in gills is responsible for local acid-base regulation rather than systemic mobilization after short-term acidification stress, which may help the rapid regulation of body damage caused by environmental stress.


Subject(s)
Brain , Corticotropin-Releasing Hormone , Gills , Oryzias , Seawater , Animals , Gills/metabolism , Gills/drug effects , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/genetics , Seawater/chemistry , Brain/metabolism , Brain/drug effects , Oryzias/metabolism , Hydrogen-Ion Concentration , Carbon Dioxide/toxicity , RNA, Messenger/metabolism , RNA, Messenger/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Ocean Acidification
14.
Chin Med ; 19(1): 43, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448912

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion can further exacerbate myocardial injury and increase the risk of death. Our previous research found that the paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the improvement of myocardial ischemia-reperfusion injury (MIRI) by electroacupuncture (EA) pretreatment, but its mechanism of action is still unclear. CRH neurons exhibit periodic concentrated expression in PVN, but further research is needed to determine whether they are involved in the improvement of MIRI by EA pretreatment. Meanwhile, numerous studies have shown that changes in sympathetic nervous system innervation and activity are associated with many heart diseases. This study aims to investigate whether EA pretreatment improves MIRI through sympathetic nervous system mediated by PVNCRH neurons. METHODS: Integrated use of fiber-optic recording, chemical genetics and other methods to detect relevant indicators: ECG signals were acquired through Powerlab standard II leads, and LabChart 8 calculated heart rate, ST-segment offset, and heart rate variability (HRV); Left ventricular ejection fraction (LVEF), left ventricular short-axis shortening (LVFS), left ventricular end-systolic internal diameter (LVIDs) and interventricular septal thickness (IVSs) were measured by echocardiography; Myocardial infarct area (IA) and area at risk (AAR) were calculated by Evans-TTC staining. Pathological changes in cardiomyocytes were observed by HE staining; Changes in PVNCRH neuronal activity were recorded by fiber-optic photometry; Sympathetic nerve discharges were recorded for in vivo electrophysiology; NE and TH protein expression was assayed by Western blot. RESULTS: Our data indicated that EA pretreatment can effectively alleviate MIRI. Meanwhile, we found that in the MIRI model, the number and activity of CRH neurons co labeled with c-Fos in the PVN area of the rat brain increased, and the frequency of sympathetic nerve discharge increased. EA pretreatment could reverse this change. In addition, the results of chemical genetics indicated that inhibiting PVNCRH neurons has a similar protective effect on MIRI as EA pretreatment, and the activation of PVNCRH neurons can counteract this protective effect. CONCLUSION: EA pretreatment can inhibit PVNCRH neurons and improve MIRI by inhibiting sympathetic nerve, which offers fresh perspectives on the application of acupuncture in the management of cardiovascular disease.

15.
Psychoneuroendocrinology ; 164: 107030, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537413

ABSTRACT

OBJECTIVE: Depressive symptoms following birth are common and can have adverse effects for mothers, children, and families. Changes in hypothalamic-pituitary-adrenal (HPA) axis regulation during pregnancy may be implicated in the development of postpartum depressive symptoms, particularly changes in placental corticotropinreleasing hormone (pCRH). However, few studies have tested how dynamic pCRH changes over pregnancy relate to postpartum depressive symptoms. This preregistered investigation tests associations of both pCRH levels and changes from early to late pregnancy with postpartum depressive symptoms. METHODS: The sample consists of 173 women studied in early, mid, and late pregnancy who later reported on depressive symptoms with the Edinburgh Postpartum Depression Scale during interviews at 1, 6 and 12 months postpartum. Blood samples were collected at each prenatal timepoint and assayed for pCRH using radioimmunoassay. Latent growth curve analysis was employed to identify distinct trajectories of pCRH during pregnancy. RESULTS: We identified three prenatal pCRH trajectories labeled as typical, flat, and accelerated. Each trajectory showed exponential increases in pCRH levels over the course of gestation but differed in overall levels and rates of change. pCRH levels were not associated with postpartum depressive symptoms. However, women with accelerated pCRH trajectories reported marginally higher depressive symptoms one month postpartum. Primary analysis models adjusted for marital status, income, prepregnancy BMI, parity, prenatal depressive symptoms, and gestational age. CONCLUSIONS: These findings add to our understanding of dynamic changes to maternal HPA axis regulation during pregnancy and contribute to growing evidence on how pCRH changes relate to the development of postpartum depressive symptoms.


Subject(s)
Corticotropin-Releasing Hormone , Depression, Postpartum , Child , Pregnancy , Female , Humans , Placenta , Depression , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Postpartum Period , Adrenocorticotropic Hormone
16.
Psychoneuroendocrinology ; 163: 106994, 2024 May.
Article in English | MEDLINE | ID: mdl-38387218

ABSTRACT

Placental corticotropin-releasing hormone (pCRH) is a neuroactive peptide produced in high concentrations in mid-late pregnancy, during key periods of fetal brain development. Some evidence suggests that higher pCRH exposure during gestation is associated with adverse neurodevelopment, particularly in female offspring. In 858 mother-child dyads from the sociodemographically diverse CANDLE cohort (Memphis, TN), we examined: (1) the slope of pCRH rise in mid-late pregnancy and (2) estimated pCRH at delivery as a measure of cumulative prenatal exposure. When children were 4 years-old, mothers reported on problem behaviors using the Child Behavior Checklist (CBCL) and cognitive performance was assessed by trained psychologists using the Stanford-Binet Intelligence Scales. We fitted linear regression models examining pCRH in relation to behavioral and cognitive performance measures, adjusting for covariates. Using interaction models, we evaluated whether associations differed by fetal sex, breastfeeding, and postnatal neighborhood opportunity. In the full cohort, log-transformed pCRH measures were not associated with outcomes; however, we observed sex differences in some models (interaction p-values≤0.01). In male offspring, an interquartile (IQR) increase in pCRH slope (but not estimated pCRH at delivery), was positively associated with raw Total (ß=3.06, 95%CI: 0.40, 5.72), Internalizing (ß=0.89, 95%CI: 0.03, 1.76), and Externalizing (ß=1.25, 95%CI: 0.27, 2.22) Problem scores, whereas, in females, all associations were negative (Total Problems: ß=-1.99, 95%CI: -3.89, -0.09; Internalizing: ß=-0.82, 95%CI: -1.42, -0.23; Externalizing: ß=-0.56, 95%CI: -1.34, 0.22). No associations with cognitive performance were observed nor did we observe moderation by breastfeeding or postnatal neighborhood opportunity. Our results provide further evidence that prenatal pCRH exposure may impact subsequent child behavior in sex-specific ways, however in contrast to prior studies suggesting adverse impacts in females, steeper mid-gestation pCRH rise was associated with more problem behaviors in males, but fewer in females.


Subject(s)
Prenatal Exposure Delayed Effects , Problem Behavior , Humans , Pregnancy , Female , Male , Child, Preschool , Corticotropin-Releasing Hormone , Placenta , Fetal Development , Prenatal Care
17.
J Integr Neurosci ; 23(2): 41, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38419452

ABSTRACT

BACKGROUND: Different types of stress inflicted in early stages of life elevate the risk, among adult animals and humans, to develop disturbed emotional-associated behaviors, such as hyperphagia or depression. Early-life stressed (ELS) adults present hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis, which is a risk factor associated with mood disorders. However, the prevalence of hyperphagia (17%) and depression (50%) is variable among adults that experienced ELS, suggesting that the nature, intensity, and chronicity of the stress determines the specific behavioral alteration that those individuals develop. METHODS: We analyzed corticosterone serum levels, Crh, GR, Crhr1 genes expression in the hypothalamic paraventricular nucleus, amygdala, and hippocampus due to their regulatory role on HPA axis in adult rats that experienced maternal separation (MS) or limited nesting material (LNM) stress; as well as the serotonergic system activity in the same regions given its association with the corticotropin-releasing hormone (CRH) pathway functioning and with the hyperphagia and depression development. RESULTS: Alterations in dams' maternal care provoked an unresponsive or hyper-responsive HPA axis function to an acute stress in MS and LNM adults, respectively. The differential changes in amygdala and hippocampal CRH system seemed compensating alterations to the hypothalamic desensitized glucocorticoids receptor (GR) in MS or hypersensitive in LNM. However, both adult animals developed hyperphagia and depression-like behavior when subjected to the forced-swimming test, which helps to understand that both hypo and hypercortisolemic patients present those disorders. CONCLUSION: Different ELS types induce neuroendocrine, brain CRH and 5-hydroxytriptamine (5-HT) systems' alterations that may interact converging to develop similar maladaptive behaviors.


Subject(s)
Corticotropin-Releasing Hormone , Serotonin , Humans , Rats , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Serotonin/metabolism , Hypothalamo-Hypophyseal System/metabolism , Depression/etiology , Maternal Deprivation , Pituitary-Adrenal System/metabolism , Brain/metabolism , Hyperphagia/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Stress, Psychological
18.
Alcohol ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38185336

ABSTRACT

Research confirms that stress is associated with alcohol drinking and relapse in males and females and that there are sex differences in the alcohol-related adaptations of stress pathways. The predator stress (PS) model of traumatic stress produces an increase in alcohol drinking or self-administration in a subpopulation of rodents, so it is utilized as an animal model of comorbid alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD). Previous work determined that sensitivity to PS-enhanced drinking produced sex differences in proteins related to stress-regulating systems in the medial prefrontal cortex and hippocampus. The present studies examined whether male and female C57BL/6J mice differ in sensitivity to the ability of the corticotropin releasing factor receptor 1 antagonist CP-376395 to decrease PS-enhanced drinking. In control studies, CP-376395 doses of 5, 10, and 20 mg/kg dose-dependently decreased 4-hour ethanol drinking. Next, CP-376395 doses of 5 and 10 mg/kg were tested for effects on ethanol drinking in mice with differential sensitivity to PS-enhanced drinking. Subgroups of "Sensitive" and "Resilient" male and female mice were identified based on changes in ethanol intake in an unrestricted access ethanol drinking procedure following four exposures to PS (dirty rat bedding). During the first 2 hours post-injection of CP-376395, both doses significantly decreased ethanol licks versus vehicle in the females, with no significant interaction between subgroups, whereas the 10 mg/kg dose significantly decreased ethanol licks versus vehicle in the "Resilient" males. Thus, sensitivity to the suppressive effect of CP-376395 on stress-induced ethanol intake was greater in females versus males, whereas sensitivity and resilience to PS-enhanced drinking produced differential sensitivity to the ability of CP-376395 to decrease ethanol drinking only in male mice. Our results argue against greater efficacy of CRF-R1's ability to decrease ethanol intake in subjects with traumatic stress-enhanced ethanol drinking.

19.
Clin. transl. oncol. (Print) ; 26(1): 260-268, jan. 2024. tab, ilus
Article in English | IBECS | ID: ibc-229164

ABSTRACT

Objectives To examine the relation of corticotropin-releasing hormone (CRH) family peptides with inflammatory processes and oncogenesis, emphasizing in vulvar inflammatory, premalignant and malignant lesions, as well as to investigate the possibility of lesion cells immunoescaping, utilizing FAS/FAS-L complex. Methods Immunohistochemical expression of CRH, urocortin (UCN), FasL and their receptors CRHR1, CRHR2 and Fas was studied in vulvar tissue sections obtained from patients with histologically confirmed diagnosis of lichen, vulvar intraepithelial neoplasia (VIN) and vulvar squamous cell carcinoma (VSCC). The patient cohort was selected from a tertiary teaching Hospital in Greece, between 2005 and 2015. For each of the disease categories, immunohistochemical staining was evaluated and the results were statistically compared. Results A progressive increase of the cytoplasmic immunohistochemical expression of CRH and UCN, from precancerous lesions to VSCC was observed. A similar increase was detected for Fas and FasL expression. Nuclear localization of UCN was demonstrated in both premalignant and VSCC lesions, with staining being significantly intensified in carcinomas, particularly in the less differentiated tumor areas or in the areas at invasive tumor front. Conclusions Stress response system and CRH family peptides seem to have a role in inflammation maintenance and progression of vulvar premalignant lesions to malignancy. It seems that stress peptides may locally modulate the stroma through Fas/FasL upregulation, possibly contributing to vulvar cancer development (AU)


Subject(s)
Humans , Female , Carcinoma, Squamous Cell/metabolism , Vulvar Neoplasms/metabolism , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Precancerous Conditions , Down-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...