Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters











Publication year range
1.
J Biol Chem ; 300(8): 107555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002684

ABSTRACT

Reverse transcriptases (RTs) are enzymes with DNA polymerase and RNase H activities. They convert ssRNA into dsDNA and are key enzymes for the replication of retroviruses and retroelements. Caulimoviridae is a major family of plant-infecting viruses. Caulimoviruses have a circular dsDNA genome that is replicated by reverse transcription, but in contrast to retroviruses, they lack integrase. Caulimoviruses are related to Ty3 retroelements. Ty3 RT has been extensively studied structurally and biochemically, but corresponding information for caulimoviral RTs is unavailable. In the present study, we report the first crystal structure of cauliflower mosaic virus (CaMV) RT in complex with a duplex made of RNA and DNA strands (RNA/DNA hybrid). CaMV RT forms a monomeric complex with the hybrid, unlike Ty3 RT, which does so as a dimer. Results of the RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activity assays showed that individual CaMV RT molecules are able to perform full polymerase functions. However, our analyses showed that an additional CaMV RT molecule needs to transiently associate with a polymerase-competent RT molecule to execute RNase H cuts of the RNA strand. Collectively, our results provide details into the structure and function of CaMV RT and describe how the enzyme compares to other related RTs.


Subject(s)
Caulimovirus , RNA-Directed DNA Polymerase , Caulimovirus/genetics , Caulimovirus/metabolism , Caulimovirus/chemistry , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , Crystallography, X-Ray , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/genetics , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Models, Molecular
2.
Talanta ; 278: 126441, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38924982

ABSTRACT

Fast, sensitive, and portable detection of genetic modification contributes to agricultural security and food safety. Here, we developed RPA-CRISPR/Cas12a-G-quadruplex colorimetric assays that can combine with intelligent recognition by deep learning algorithms to achieve sensitive, rapid, and portable detection of the CaMV35S promoter. When the crRNA-Cas12a complex recognizes the RPA amplification product, Cas12 cleaves the G-quadruplex, causing the G4-Hemin complex to lose its peroxide mimetic enzyme function and be unable to catalyze the conversion of ABTS2- to ABTS, allowing CaMV35S concentration to be determined based on ABTS absorbance. By utilizing the RPA-CRISPR/Cas12a-G4 assay, we achieved a CaMV35S limit of detection down to 10 aM and a 0.01 % genetic modification sample in 45 min. Deep learning algorithms are designed for highly accurate classification of color results. Yolov5 objective finding and Resnet classification algorithms have been trained to identify trace (0.01 %) CaMV35S more accurately than naked eye colorimetry. We also coupled deep learning algorithms with a smartphone app to achieve portable and rapid photo identification. Overall, our findings enable low cost ($0.43), high accuracy, and intelligent detection of the CaMV35S promoter.


Subject(s)
CRISPR-Cas Systems , Colorimetry , Deep Learning , G-Quadruplexes , Colorimetry/methods , CRISPR-Cas Systems/genetics , Promoter Regions, Genetic , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Limit of Detection , Bacterial Proteins/genetics , Endodeoxyribonucleases
3.
Sci Rep ; 14(1): 13657, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871942

ABSTRACT

This work aimed to design a synthetic salt-inducible promoter using a cis-engineering approach. The designed promoter (PS) comprises a minimal promoter sequence for basal-level expression and upstream cis-regulatory elements (CREs) from promoters of salinity-stress-induced genes. The copy number, spacer lengths, and locations of CREs were manually determined based on their occurrence within native promoters. The initial activity profile of the synthesized PS promoter in transiently transformed N. tabacum leaves shows a seven-fold, five-fold, and four-fold increase in reporter GUS activity under salt, drought, and abscisic acid stress, respectively, at the 24-h interval, compared to the constitutive CaMV35S promoter. Analysis of gus expression in stable Arabidopsis transformants showed that the PS promoter induces over a two-fold increase in expression under drought or abscisic acid stress and a five-fold increase under salt stress at 24- and 48-h intervals, compared to the CaMV35S promoter. The promoter PS exhibits higher and more sustained activity under salt, drought, and abscisic acid stress compared to the constitutive CaMV35S.


Subject(s)
Abscisic Acid , Arabidopsis , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Arabidopsis/genetics , Abscisic Acid/pharmacology , Plants, Genetically Modified/genetics , Droughts , Nicotiana/genetics , Stress, Physiological/genetics , Sodium Chloride/pharmacology , Genetic Engineering/methods , Salt Stress/genetics
4.
J Agric Food Chem ; 72(19): 11195-11204, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38564697

ABSTRACT

Genetically modified crops (GMCs) have been discussed due to unknown safety, and thus, it is imperative to develop an effective detection technology. CRISPR/Cas is deemed a burgeoning technology for nucleic acid detection. Herein, we developed a novel detection method for the first time, which combined thermostable Cas12b with loop-mediated isothermal amplification (LAMP), to detect genetically modified (GM) soybeans in a customized one-pot vessel. In our method, LAMP-specific primers were used to amplify the cauliflower mosaic virus 35S promoter (CaMV35S) of the GM soybean samples. The corresponding amplicons activated the trans-cleavage activity of Cas12b, which resulted in the change of fluorescence intensity. The proposed bioassay was capable of detecting synthetic plasmid DNA samples down to 10 copies/µL, and as few as 0.05% transgenic contents could be detected in less than 40 min. This work presented an original detection method for GMCs, which performed rapid, on-site, and deployable detection.


Subject(s)
Glycine max , Nucleic Acid Amplification Techniques , Plants, Genetically Modified , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Plants, Genetically Modified/genetics , Plants, Genetically Modified/chemistry , Glycine max/genetics , Glycine max/chemistry , Biological Assay/methods , CRISPR-Cas Systems , Caulimovirus/genetics , Bacterial Proteins/genetics
5.
Cureus ; 16(1): e53326, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38435940

ABSTRACT

Arteriovenous malformation is a developmental anomaly of the vascular system characterized by arteriovenous shunt through a collection of tortuous vessels without intervening capillary bed. Brain arteriovenous malformations (AVMs) may cause hemorrhagic stroke, epilepsy, and chronic headache. Migraine with aura was reported in up to 58% of females with AVM. A 23-year-old female presented with episodes of severe left-side headache for five months, throbbing in character with photophobia, phonophobia, and nausea. Brain MRI showed a large AVM in the left cerebellar hemisphere. She was diagnosed with grade six AVM, which is inoperable, and secondary migraine. Her migraine symptoms didn't respond to oral medications. However, it responded dramatically to Botox injections. Seven days after Botox injection, her headache disappeared, and her well-being improved. Three years post-diagnosis and treatment, she got married, then three months later became pregnant. During pregnancy, she followed up with neurology, obstetrics, and gynecology. She was delivered by cesarean section to minimize the risk of intracranial hemorrhage and delivered without complications. The female patient in this case with migraine secondary to inoperable brain AVM treated with Botox; she got married and delivered by C-section without complications. This case raises the following important lessons: large AVMs can present with migraine only, and Botox has a dramatic effect on the treatment and the ability to have a safe pregnancy and delivery in large AVM cases.

6.
J Basic Microbiol ; 64(5): e2300664, 2024 May.
Article in English | MEDLINE | ID: mdl-38436477

ABSTRACT

Cauliflower mosaic virus (CaMV) has a double-stranded DNA genome and is globally distributed. The phylogeny tree of 121 CaMV isolates was categorized into two primary groups, with Iranian isolates showing the greatest genetic variations. Nucleotide A demonstrated the highest percentage (36.95%) in the CaMV genome and the dinucleotide odds ratio analysis revealed that TC dinucleotide (1.34 ≥ 1.23) and CG dinucleotide (0.63 ≤ 0.78) are overrepresented and underrepresented, respectively. Relative synonymous codon usage (RSCU) analysis confirmed codon usage bias in CaMV and its hosts. Brassica oleracea and Brassica rapa, among the susceptible hosts of CaMV, showed a codon adaptation index (CAI) value above 0.8. Additionally, relative codon deoptimization index (RCDI) results exhibited the highest degree of deoptimization in Raphanus sativus. These findings suggest that the genes of CaMV underwent codon adaptation with its hosts. Among the CaMV open reading frames (ORFs), genes that produce reverse transcriptase and virus coat proteins showed the highest CAI value of 0.83. These genes are crucial for the creation of new virion particles. The results confirm that CaMV co-evolved with its host to ensure the optimal expression of its genes in the hosts, allowing for easy infection and effective spread. To detect the force behind codon usage bias, an effective number of codons (ENC)-plot and neutrality plot were conducted. The results indicated that natural selection is the primary factor influencing CaMV codon usage bias.


Subject(s)
Caulimovirus , Codon Usage , Evolution, Molecular , Genome, Viral , Phylogeny , Plant Diseases , Genome, Viral/genetics , Caulimovirus/genetics , Plant Diseases/virology , Open Reading Frames/genetics , Codon/genetics , Genetic Variation , Brassica rapa/genetics , Brassica rapa/virology , Host-Pathogen Interactions/genetics , Brassica/genetics , Brassica/virology , Raphanus/genetics , Raphanus/virology , Iran
7.
Virology ; 593: 110011, 2024 05.
Article in English | MEDLINE | ID: mdl-38367474

ABSTRACT

BACKGROUND: Groundnut (Arachis hypogaea L.) is the 13th most important global crop grown throughout the tropical and subtropical regions of the world. One of the major constraints to groundnut production is viruses, which are also the most economically important and most abundant pathogens among cultivated legumes. Only a few studies have reported the characterization of RNA viruses in cultivated groundnuts in western Kenya, most of which deployed classical methods of detecting known viruses. METHODS: We sampled twenty-one symptomatic and three asymptomatic groundnut leaf samples from farmers' fields in western Kenya. Total RNA was extracted from the samples followed by First-strand cDNA synthesis and sequencing on the Illumina HiSeq 2500 platform. After removing host and rRNA sequences, high-quality viral RNA sequences were de novo assembled and viral genomes annotated using the publicly available NCBI virus database. Multiple sequence alignment and phylogenetic analysis were done using MEGA X. RESULTS: Bioinformatics analyses using as low as ∼3.5 million reads yielded complete and partial genomes for Cauliflower mosaic virus (CaMV), Cowpea polerovirus 2 (CPPV2), Groundnut rosette assistor virus (GRAV), Groundnut rosette virus (GRV), Groundnut rosette virus satellite RNA (satRNA) and Peanut mottle virus (PeMoV) falling within the species demarcation criteria. This is the first report of CaMV and the second report of CPPV2 on groundnut hosts in the world. Confirmation of the detected viruses was further verified through phylogenetic analyses alongside reported publicly available highly similar viruses. PeMoV was the only seed-borne virus reported. CONCLUSION: Our findings demonstrate the power of Next Generation Sequencing in the discovery and identification of novel viruses in groundnuts. The detection of the new viruses indicates the complexity of virus diseases in groundnuts and would require more focus in future studies to establish the effect of the viruses as sole or mixed infections on the crop. The detection of PeMoV with potential origin from Malawi indicates the importance of seed certification and cross-boundary seed health testing.


Subject(s)
Fabaceae , Luteoviridae , Plant Viruses , RNA Viruses , Tombusviridae , Caulimovirus/genetics , Kenya , Phylogeny , Plant Viruses/genetics , RNA Viruses/genetics , Fabaceae/genetics , Luteoviridae/genetics , Gene Expression Profiling
8.
Virology ; 580: 112-119, 2023 03.
Article in English | MEDLINE | ID: mdl-36812696

ABSTRACT

Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.


Subject(s)
Caulimovirus , Host Microbial Interactions , Humans , Caulimovirus/genetics , Plants , Promoter Regions, Genetic , Biotechnology
9.
3 Biotech ; 13(3): 89, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36815010

ABSTRACT

The activity of a green tissue-specific promoter of the Rubisco small subunit gene from Arabidopsis (AraSSU) was studied using transgenic chickpea lines. We generated transgenic chickpea lines expressing an AraSSU promoter-driven cry2Aa gene through the Agrobacterium-mediated transformation method. Lines with AraSSU expressed the gene in all green tissues at high levels (> 90 ng/mg of fresh weight tissue) compared to lines generated using CaMV35S (< 10 ng/mg FW). We used vertical cross sections of various tissues of homozygous progeny using microtome for immunolocalization. The immunolocalization showed the expression of the cry2Aa gene in the green mesophyll cells of the leaves of both AraSSU and CaMV35 chickpea lines. Moreover, the accumulation of AraSSU-regulated Cry2Aa protein was also observed in vascular tissues, including enucleate sieve elements and their companion cells. However, no expression was observed in the roots of AraSSU lines. In the case of CaMV35 lines, the transgene expression was observed in all the tissues. Since our data indicated that the AraSSU promoter is active in non-green tissues such as vascular bundles. Therefore, we validated this by RT-PCR. We found Cry2Aa RNA transcripts in leaves, stems without epidermis (for vascular tissues), and roots with and without epidermis. Thus, the AraSSU promoter is active in all above-ground tissues of the chickpea plant.

10.
ACS Synth Biol ; 12(1): 178-185, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36563338

ABSTRACT

Synthetic biology uses genetically encoded devices and circuits to implement novel complex functions in living cells and organisms. A hallmark of these genetic circuits is the interaction among their individual parts, according to predefined rules, to process cellular information and produce a circuit output or response. As the number of individual components in a genetic circuit increases, so does the number of interactions needed to achieve the correct behavior, and hence, a greater need to fine-tune the levels of expression of each component. Transcriptional promoters play a key regulatory role in genetic circuits, as they influence the levels of RNA and proteins produced. In multicellular organisms, such as plants, they can also determine developmental, spatial, and tissue-specific patterns of gene expression. The 35S promoter from the Cauliflower Mosaic Virus (CaMV 35S) is widely used in plant biotechnology to direct high levels of gene expression in a variety of plant species. We produced a library of 21 variants of the CaMV 35S promoter by introducing all single nucleotide substitutions to the promoter's TATA box sequence. We then characterized the activity of all variants in homozygous transgenic plants and showed that some of these variants have lower activity than the wild type in plants. These promoter variants could be used to fine-tune the behavior of synthetic genetic circuits in plants.


Subject(s)
Nicotiana , Nucleotides , TATA Box/genetics , Nucleotides/metabolism , Nicotiana/genetics , Promoter Regions, Genetic/genetics , Plants, Genetically Modified/genetics
11.
Metab Eng Commun ; 15: e00207, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36188638

ABSTRACT

Engineering bioenergy crops to accumulate coproducts in planta can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (ubiC) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-d-arabino-heptulonate-7-phosphate synthase (aroG) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express ubiC and aroG produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11-15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.

12.
Anal Chim Acta ; 1215: 339973, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35680336

ABSTRACT

A novel fluorescent biosensor was proposed for detecting the CaMV 35S promoter in genetically modified organisms (GMOs). It was based on a proximity extension mediated multiple cascade strand displacement amplification connected with CRISPR/Cpf 1 (termed PE-MC/SDA-CRISPR/Cpf1). In this protocol, the CaMV 35S was recognized by proximity reaction in the presence of two adjacent primer probes. The proximity extension further triggered the multiple cascade strand displacement amplification (MC/SDA), generating a mass of ssDNA. The products compelled the trans-cleavage activity of CRISPR/Cpf 1, so as to cleave nearby ssDNA-FQ reporters and generate a strong fluorescent signal. The ingenious three-link combination design allowed the CaMV 35S a low background interference. And the MC/SDA combined with CRISPR/Cpf 1 dramatically improved the detection sensitivity. Under optimized conditions, the detection linear range of ultrasensitive fluorescent biosensor for CaMV 35S was from 50 fM to10 pM and 10 pM-500 pM, along with the limit of detection (LOD) down to 14.4 fM. The sensing platform also had excellent performance in the assay of selectivity and real samples. Therefore, the method earned great application potential for transgenic crops.


Subject(s)
Biosensing Techniques , Nucleic Acid Amplification Techniques , Biosensing Techniques/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Promoter Regions, Genetic
13.
Curr Protoc ; 2(4): e417, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35441802

ABSTRACT

The adoption of Arabidopsis thaliana in the 1980s as a universal plant model finally enabled researchers to adopt and take full advantage of the molecular biology tools and methods developed in the bacterial and animal fields since the early 1970s. It further brought the plant sciences up to speed with other research fields, which had been employing widely accepted model organisms for decades. In parallel with this major development, the concurrent establishment of the plant transformation methodology and the description of the cauliflower mosaic virus (CaMV) 35S promoter enabled scientists to create robust transgenic plant lines for the first time, thereby providing a valuable tool for studying gene function. The ability to create transgenic plants launched the plant biotechnology sector, with Monsanto and Plant Genetic Systems developing the first herbicide- and pest-tolerant plants, initiating a revolution in the agricultural industry. Here I review the major developments over a less than 10-year span and demonstrate how they complemented each other to trigger a revolution in plant molecular biology and launch an era of unprecedented progress for the whole plant field. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Arabidopsis/genetics , Caulimovirus/genetics , Molecular Biology , Plants, Genetically Modified/genetics
14.
Microbiol Res ; 253: 126878, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607236

ABSTRACT

Premature leaf fall of apple caused by Marssonina coronaria is economically very important apple disease and all the commercially available apple cultivars are susceptible to this disease. The non-availability of an efficient transformation system for this fungus hinders the functional genomics research. Herein, we report for the first time, the successful Agrobacterium-mediated transformation in apple leaf blotch fungus M. coronaria by transferring T-DNA harbouring the genes for hygromycin phosphotransferase (hpt), ß-glucuronidase (uidA) and green fluorescent protein (gfp) under the control of CaMV 35S promoter. The key factors that affect the transformation efficiency including type of recipient fungal material, acetosyringone concentration, the conditions for co-cultivation, Agrobacterium concentration, Agrobacterium strains and membrane types as support were investigated. The present results have recommended that 250 µM concentration of acetosyringone, 24 °C temperature and 48 h time, 0.5 OD600 of A. tumefaciens, EHA105 Agrobacterium strain and Whatman filter paper were the optimal co-cultivation conditions for the transformation of M. coronaria by using fragmented mycelia suspension and mycelial plugs. We observed that conidia were tedious to transform as compared to the fragmented mycelia and mycelial plugs of this slow growing fungus. These optimized parameters yielded 54 and 70 average transformants per 60 mycelial plugs and 104 fragmented mycelia, respectively. Fungal transformants were analysed for T-DNA integration, gus gene expression and gfp gene expression. Strong gus histochemical staining and green fluorescence expression indicated that the CaMV 35S promoter can drive gene expression in M. croronaria. Some mutants showed difference in the morphology of the colony as compared to the wild type control. This report will be very useful to inspect molecular basis of apple-M. coronaria interactions by deciphering the functional roles of various genes in this pathogenic fungus.


Subject(s)
Agrobacterium tumefaciens , Ascomycota , Genetic Markers , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Ascomycota/genetics , Genetic Markers/genetics , Green Fluorescent Proteins/genetics , Malus/microbiology , Promoter Regions, Genetic/genetics , Spores, Fungal
15.
Plant Cell Physiol ; 62(5): 815-826, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33693842

ABSTRACT

The plant circadian oscillation system is based on the circadian clock of individual cells. Circadian behavior of cells has been observed by monitoring the circadian reporter activity, such as bioluminescence of AtCCA1::LUC+. To deeply analyze different circadian behaviors in individual cells, we developed the dual-color bioluminescence monitoring system that automatically measured the luminescence of two luciferase reporters simultaneously at a single-cell level. We selected a yellow-green-emitting firefly luciferase (LUC+) and a red-emitting luciferase (PtRLUC) that is a mutant form of Brazilian click beetle ELUC. We used AtCCA1::LUC+ and CaMV35S::PtRLUC. CaMV35S::LUC+ was previously reported as a circadian reporter with a low-amplitude rhythm. These bioluminescent reporters were introduced into the cells of a duckweed, Lemna minor, by particle bombardment. Time series of the bioluminescence of individual cells in a frond were obtained using a dual-color bioluminescence monitoring system with a green-pass- and red-pass filter. Luminescence intensities from the LUC+ and PtRLUC of each cell were calculated from the filtered luminescence intensities. We succeeded in reconstructing the bioluminescence behaviors of AtCCA1::LUC+ and CaMV35S::PtRLUC in the same cells. Under prolonged constant light conditions, AtCCA1::LUC+ showed a robust circadian rhythm in individual cells in an asynchronous state in the frond, as previously reported. By contrast, CaMV35S::PtRLUC stochastically showed circadian rhythms in a synchronous state. These results strongly suggested the uncoupling of cellular behavior between these circadian reporters. This dual-color bioluminescence monitoring system is a powerful tool to analyze various stochastic phenomena accompanying large cell-to-cell variation in gene expression.


Subject(s)
Araceae/physiology , Circadian Rhythm/physiology , Luminescent Measurements/methods , Araceae/cytology , Caulimovirus/genetics , Genes, Reporter , Luciferases/genetics , Luciferases/metabolism , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection
16.
J Basic Microbiol ; 61(4): 315-329, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33616231

ABSTRACT

Rice (Oryza sativa L.) plant growth and productivity is adversely affected by various stress factors. Overexpression of drought tolerance-related genes is one of the best approaches for developing drought-resistant transgenics. Agrobacterium tumefaciens has been widely used in generating transgenic plants through plasmid vector to obtain desired characteristics and to know the specific expression profiles of genes in the plant. The enhancer trap method was developed to know the specific expression of genes at different stages of growth by entrapping the genes of an organism. In the present study, we designed a vector molecule with a feature of promoting the expression of a specific gene more than four times than its normal expression and it is useful for efficient transformation to higher plants by utilizing the trans configuration of vir genes of the plasmid A. tumefaciens, to transfer right and left sequence bordered of transferred DNA (T-DNA) into the nuclear genome of plants. We developed a binary vector consisting of 1.8-kb green fluorescent protein (GFP) cassette as a reporter gene and 1.4-kb tetramer of CaMv35S enhancer (4XEn) were cloned at HindIII site of pSB11 bar intermediate vector to tag and know the genes and their expression profiles, then mobilized into A. tumefaciens to produce a super-binary vector pSB111-bar-4XEn-GFP. The resultant construct was confirmed by polymerase chain reaction and restriction digestion methods. Finally, we discuss the role of overexpressed ascorbate peroxidase in drought stress.


Subject(s)
Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Droughts , Gene Expression Regulation, Plant , Genetic Vectors , Oryza/embryology , Oryza/genetics , Agrobacterium tumefaciens/genetics , Cell Line , Chlorophyll , Genes, Reporter , Green Fluorescent Proteins/genetics , Oryza/growth & development , Plants, Genetically Modified , Plasmids , Polymerase Chain Reaction , Stress, Physiological , Transformation, Genetic
17.
Mol Biol Rep ; 48(3): 2235-2241, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33630207

ABSTRACT

The cauliflower mosaic virus (CaMV) 35S promoter is known as the most frequently used promoter in plant biotechnology. Although it is widely considered to be a strong constitutive promoter exhibiting high transcriptional activity, the transcriptional stability of CaMV 35S has not been extensively studied. Using the model plant species Arabidopsis thaliana, this study aimed for a comprehensive expression analysis of two widely used plant transgenes, neomycin phosphotransferase II (NPTII) and enhanced green fluorescent protein (EGFP), regulated by a double CaMV 35S promoter depending on the organ type, time of day, plant age, and in response to abiotic stress conditions. Quantitative real-time PCR (qRT-PCR) analysis revealed that the NPTII and EGFP transcript levels were markedly higher in the cotyledons, young leaves, and roots than in the inflorescences, stems, and adult leaves of three independent transgenic A. thaliana lines. The expression of NPTII and EGFP varied during the day and was elevated with the plant age. Drought and cold stress considerably affected the expression of the transgenes, while heat, high salinity, and wounding had no significant effect. This study shows that transgenes driven by a common constitutive promoter can exhibit marked variations in transcriptional activity depending on plant organ, physiological conditions, and in response to abiotic stress. Therefore, to ensure high and stable transgene activity, considerable attention should be given to the transgenic plant material and incubation conditions before harvesting the plant material.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Caulimovirus/genetics , Gene Expression Regulation, Plant , Organ Specificity/genetics , Promoter Regions, Genetic , Stress, Physiological/genetics , Transgenes , Cold Temperature , Droughts , Green Fluorescent Proteins/metabolism , Hot Temperature , Plant Leaves/genetics , Plants, Genetically Modified , Sodium Chloride/pharmacology
18.
Front Genet ; 12: 798107, 2021.
Article in English | MEDLINE | ID: mdl-34976025

ABSTRACT

To change the expression of the flanking genes by inserting T-DNA into the genome is commonly used in rice functional gene research. However, whether the expression of a gene of interest is enhanced must be validated experimentally. Consequently, to improve the efficiency of screening activated genes, we established a model to predict gene expression in T-DNA mutants through machine learning methods. We gathered experimental datasets consisting of gene expression data in T-DNA mutants and captured the PROMOTER and MIDDLE sequences for encoding. In first-layer models, support vector machine (SVM) models were constructed with nine features consisting of information about biological function and local and global sequences. Feature encoding based on the PROMOTER sequence was weighted by logistic regression. The second-layer models integrated 16 first-layer models with minimum redundancy maximum relevance (mRMR) feature selection and the LADTree algorithm, which were selected from nine feature selection methods and 65 classified methods, respectively. The accuracy of the final two-layer machine learning model, referred to as TIMgo, was 99.3% based on fivefold cross-validation, and 85.6% based on independent testing. We discovered that the information within the local sequence had a greater contribution than the global sequence with respect to classification. TIMgo had a good predictive ability for target genes within 20 kb from the 35S enhancer. Based on the analysis of significant sequences, the G-box regulatory sequence may also play an important role in the activation mechanism of the 35S enhancer.

19.
New Phytol ; 229(3): 1650-1664, 2021 02.
Article in English | MEDLINE | ID: mdl-32945560

ABSTRACT

Viral infections are accompanied by a massive production of small interfering RNAs (siRNAs) of plant origin, such as virus-activated (va)siRNAs, which drive the widespread silencing of host gene expression, and whose effects in plant pathogen interactions remain unknown. By combining phenotyping and molecular analyses, we characterized vasiRNAs that are associated with typical mosaic symptoms of cauliflower mosaic virus infection in two crops, turnip (Brassica rapa) and oilseed rape (Brassica napus), and the reference plant Arabidopsis thaliana. We identified 15 loci in the three infected plant species, whose transcripts originate vasiRNAs. These loci appear to be generally affected by virus infections in Brassicaceae and encode factors that are centrally involved in photosynthesis and stress response, such as Rubisco activase (RCA), senescence-associated protein, heat shock protein HSP70, light harvesting complex, and membrane-related protein CP5. During infection, the expression of these factors is significantly downregulated, suggesting that their silencing is a central component of the plant's response to virus infections. Further findings indicate an important role for 22 nt long vasiRNAs in the plant's endogenous RNA silencing response. Our study considerably enhances knowledge about the new class of vasiRNAs that are triggered in virus-infected plants and will help to advance strategies for the engineering of gene clusters involved in the development of crop diseases.


Subject(s)
Arabidopsis , Plant Viruses , Arabidopsis/genetics , Gene Expression Regulation, Plant , Photosynthesis , Plant Diseases/genetics , Plant Viruses/genetics , RNA, Small Interfering
20.
Plant Cell Rep ; 39(12): 1743-1753, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32959125

ABSTRACT

KEY MESSAGE: Genetic analysis identifies multiple, potential protein binding sites important for insulator function in Arabidopsis thaliana: Rap1 site in UASrpg, Su(Hw) site in UASrpg, and CTCF site in BEAD1c. Three non-plant insulators UASrpg, BEAD1c, and gypsy isolated from Ashbya gossypii, Homo sapiens and Drosophila melanogaster gypsy retrotransposon, respectively, demonstrate insulator function in transgenic Arabidopsis thaliana. Here, the hypothesis that DNA sequences functional in A. thaliana are the same as those in the original host as previously assumed, was tested. Genetic analyses of the cloned fragments in an enhancer blocking assay system was performed through deletions and mutations to identify more precisely which sequences within the cloned fragments function as insulators. Significant loss of insulator activity was observed when the UASrpg Rap1 binding site R2 was mutated but not R1. Cloned fragments containing BEAD1c are effective insulators in our assay system and the previously investigated gypsy insulator is non-functional. Further analyses identified potential Su(Hw) and CTCF sites within UASrpg, of which only the Su(Hw) site was functional. Thus, the activity of non-plant insulators in A. thaliana is context dependent. These results support the hypothesis that insulator function is conserved across kingdoms.


Subject(s)
Arabidopsis/genetics , Insulator Elements/genetics , Animals , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Humans , Plants, Genetically Modified , Retroelements , Shelterin Complex , Telomere-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL