Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.049
Filter
1.
J Environ Sci (China) ; 148: 451-467, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095179

ABSTRACT

After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.


Subject(s)
Construction Materials , Catalysis , Air Pollutants/chemistry , Power Plants , China
2.
Polymers (Basel) ; 16(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274027

ABSTRACT

The utilization of biopolymers incorporated with antimicrobial agents is extremely interesting in the development of environmentally friendly functional materials for food packaging and other applications. In this study, the effect of calcium oxide (CaO) on the morphological, mechanical, thermal, and hydrophilic properties as well as the antimicrobial activity of carboxymethyl chitosan (CMCH) bio-composite films was investigated. The CMCH was synthesized from shrimp chitosan through carboxymethylation, whereas the CaO was synthesized via a co-precipitation method with polyethylene glycol as a stabilizer. The CMCH-CaO bio-composite films were prepared by the addition of synthesized CaO into the synthesized CMCH using a facile solution casting method. As confirmed by XRD and SEM, the synthesized CaO has a cubic shape, with an average crystalline size of 25.84 nm. The synthesized CaO exhibited excellent antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (>99.9% R). The addition of CaO into CMCH improved the mechanical and hydrophobic properties of the CMCH-CaO films. However, it resulted in a slight decrease in thermal stability. Notably, the CMCH-CaO10% films exhibited exceptional antimicrobial activity against E. coli (98.8% R) and S. aureus (91.8% R). As a result, such bio-composite films can be applied as an active packaging material for fruit, vegetable, or meat products.

3.
Materials (Basel) ; 17(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274619

ABSTRACT

In this study, xCaO‧5Fe2O3‧(95-x)Pb glasses and vitroceramics containing various concentrations of calcium ions (from 0 to 50 mol% CaO) were prepared using the spent anodic plate of a car battery. X-ray diffraction analysis revealed changes in the network structure as a function of CaO content. The intensities of the IR bands due to the sulfate and sulfite units were lowered, indicating a decrease in the sulfurization degree within the lead network. In the UV-vis spectra, the presence of electronic transitions of the Fe3+, Pb2+, and Fe2+ ions were identified. The EPR spectra were characterized by resonance signals centered at about g ~ 2 and 4.3, corresponding to the trivalent iron ions. For the samples with 5 ≤ x ≤ 12, the signals decreased abruptly, suggesting a Fe3+→Fe2+ interconversion and the formation of the Fe3O4 crystalline phase. A considerable increase in the intensity of the signal centered around g ~ 2 was observed as the CaO concentration increased to 30% in the host matrix. Our results confirm that the higher CaO levels of 3 mol% are responsible for the increase in the radius of curvature of the semicircle arcs in the EIS plots and the decrease in their conductivity.

4.
Materials (Basel) ; 17(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39274819

ABSTRACT

The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and lapilli, which were later altered to form deposits of zeolites and bentonites. This work has focused on an area located on the northern flank of the San José-Los Escullos zeolite deposit, the only one of its kind with industrial capacity in Spain. The main objective of this research is to characterize the zeolite (SZ) of this new area from the mineral, chemical, and technical points of view and establish its possible use as a natural pozzolan. In the first stage, a study of the mineralogical and chemical composition of the selected samples was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and thermogravimetric analysis (TGA); in the second stage, chemical-qualitative and pozzolanicity technical tests were carried out at 8 and 15 days. In addition, a chemical analysis was performed using XRF on the specimens of mortars made with a standardized mixture of Portland cement (PC: 75%) and natural zeolite (SZ: 25%) at the ages of 7, 28, and 90 days. The results of the mineralogical analyses indicated that the samples are made up mainly of mordenite and subordinately by smectite, plagioclase, quartz, halloysite, illite, and muscovite. Qualitative chemical assays indicated a high percentage of reactive silica and reactive CaO and also negligible contents of insoluble residues. The results of the pozzolanicity test indicate that all the samples analyzed behave like natural pozzolans of good quality, increasing their pozzolanic reactivity from 8 to 15 days of testing. Chemical analyses of PC/SZ composite mortar specimens showed how a significant part of SiO2 and Al2O3 are released by zeolite while it absorbs a large part of the SO3 contained in the cement. The results presented in this research could be of great practical and scientific importance as they indicate the continuation of zeolitic mineralization beyond the limits of the San José-Los Escullos deposit, which would result in an increase in geological reserves and the extension of the useful life of the deposit, which is of vital importance to the local mining industry.

5.
Discov Nano ; 19(1): 147, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264511

ABSTRACT

A nanocomposite of CaO:MgAl2O4 was synthesized through a straightforward and cost-effective sol-gel method. The investigation of the novel CaO:MgAl2O4 nanocomposite encompassed an examination of its morphological and structural alterations, as well as an exploration of its photocatalytic activities and electrochemical characteristics. XRD analysis revealed a nanocomposite size of 24.15 nm. The band gap, determined through UV studies, was found to be 3.83 eV, and scanning electron microscopy (SEM) illustrated flake-like morphological changes in the CaO:MgAl2O4 samples. TEM, HRTEM, and SAED studies of a CaO:MgAl2O4 nanocomposite would reveal important details about its morphology, crystallography, and nanostructure. Photocatalytic activity was quantified by studying the degradation of Acid Red-88 (AR-88) dye in a deionized solution, achieving a 70% dye degradation under UV irradiation in 120 min. Plant growth examinations were carried out using dye degraded water to test its suitability for agriculture. The electrochemical energy storage and sensing applications of the prepared nanocomposite were examined using CaO:MgAl2O4 modified carbon paste electrode through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In conclusion, the synthesized CaO:MgAl2O4 nanocomposite demonstrated promising morphological and structural characteristics, efficient photocatalytic activity, and potential applications in electrochemical energy storage, highlighting its versatility for various technological and environmental applications.

6.
Bioresour Technol ; 413: 131479, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39265754

ABSTRACT

The current research studied how Fe3O4 nanomaterials (NMs) and CaO2 affect humification and Cr(VI) immobilization and reduction during the composting of oil-tea Camellia meal and Cr-contaminated soil. The results showed that Fe3O4 NMs and CaO2 successfully construct a Fenton-like reaction in this system. The excitation-emission matrix-parallel factor (EEM-PARAFAC) demonstrated that this Fenton-like treatment increased the generation of humic acids and accelerated the humification. Meantime, RES-Cr increased by 5.91 % and Cr(VI) decreased by 16.36 % in the treatment group with CaO2 and Fe3O4 NMs after 60 days. Moreover, the microbial results showed that Fe3O4 NMs and CaO2 could promote the enrichment of Cr(VI) reducing bacteria, e.g., Bacillus, Pseudomonas, and Psychrobacter, and promote Cr(VI) reduction. This study gives a novel view and theoretical reference to remediate Cr(VI) pollution through composting.

7.
J Hazard Mater ; 479: 135709, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39236536

ABSTRACT

Ultrafiltration (UF) is widely employed for harmful algae rejection, whereas severe membrane fouling hampers its long-term operation. Herein, calcium peroxide (CaO2) and ferrate (Fe(VI)) were innovatively coupled for low-damage removal of algal contaminants and fouling control in the UF process. As a result, the terminal J/J0 increased from 0.13 to 0.66, with Rr and Rir respectively decreased by 96.74 % and 48.47 %. The cake layer filtration was significantly postponed, and pore blocking was reduced. The ζ-potential of algal foulants was weakened from -34.4 mV to -18.7 mV, and algal cells of 86.15 % were removed with flocs of 300 µm generated. The cell integrity was better remained in comparison to the Fe(VI) treatment, and Fe(IV)/Fe(V) was verified to be the dominant reactive species. The membrane fouling alleviation mechanisms could be attributed to the reduction of the fouling loads and the changes in the interfacial free energies. A membrane fouling prediction model was built based on a long short-term memory deep learning network, which predicted that the filtration volume at J/J0= 0.2 increased from 288 to 1400 mL. The results provide a new routine for controlling algal membrane fouling from the perspective of promoting the generation of Fe(IV)/Fe(V) intermediates.

8.
Adv Sci (Weinh) ; : e2406095, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099408

ABSTRACT

Catalytic activation of Caryl-O bonds is considered as a powerful strategy for the production of aromatics from lignin. However, due to the high reduction potentials of diaryl ether 4-O-5 linkage models, their single electron reduction remains a daunting challenge. This study presents the blue light-induced bifunctional N-heterocyclic carbene (NHC)-catalyzed one-electron reduction of diaryl ether 4-O-5 linkage models for the synthesis of trivalent phosphines. The H-bond between the newly devised bifunctional NHC and diaryl ethers is responsible for the success of the single electron transfer. Furthermore, this approach demonstrates selective one-electron reduction of unsymmetric diaryl ethers, oligomeric phenylene oxide, and lignin model.

9.
Small ; : e2406165, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126365

ABSTRACT

The calcium looping technology employing CaO-based sorbents is pivotal for capturing CO2 from flue gas. However, the intrinsic low thermodynamic stability of CaO-based sorbents and the requisite molding step induce severe sintering issues, diminishing their cyclic stability. Herein, a high-entropy fluorite oxide (HEFO) inert stabilizer premised on entropy stabilization and synergistic effect strategies is introduced. HEFO-modified, CaO-based sorbent pellets are synthesized via a rapid cigarette butt-assisted combustion process (15 min) combined with the graphite molding method. Post-multiple cycles, their CO2 capture capacity reaches 0.373 g g-1, which is 2.6-fold superior to that of pure CaO, demonstrating markedly enhanced anti-sintering properties. First, the subtle morphological and crystallographic modifications suggest that the inherent entropy stability of HEFO imparts robust thermal resistance. Concurrently, the disordered structure of single-phase HEFO exhibits a high affinity for CaO, resulting in an interface binding energy of -1.83 eV, in sharp contrast to the -0.112 eV of pure CaO, thereby restricting CaO migration. Additionally, the multi-element synergistic effect of HEFO reduces the energy barrier by 0.15 eV, leading to a 40% and 140% increase in carbonation and calcination rates, respectively. This work presents highly efficient and rapidly synthesized CaO-based sorbent pellets, showcasing promising potential for industrial application.

10.
Water Sci Technol ; 90(4): 1267-1279, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39215737

ABSTRACT

The study investigates the effect of the oxidant calcium oxide (CaO) on the codigestion of excess sludge (ES) and plant waste (PW) under mesophilic anaerobic conditions to enhance methane production. The findings indicate that CaO significantly elevated methane yield in the codigestion system, with an optimum CaO addition of 6% resulting in a maximum methane production of 461 mL/g volatile solids, which is approximately 1.3 times that of the control group. Mechanistic exploration revealed that CaO facilitated the disintegration of organic matter, enhanced the release of soluble chemical oxygen demand, and increased the concentrations of soluble proteins and polysaccharides within the codigestion substrate. The presence of CaO was conducive to the generation and biological transformation of volatile fatty acids, with a notable accumulation of acetic acid, a smaller carboxylic acid within the VFAs. The proportion of acetate in the CaO-amended group increased to 32.6-36.9%. Enzymatic analysis disclosed that CaO enhanced the activity of hydrolytic and acidogenic enzymes associated with the ES and PW codigestion process but suppressed the activity of coenzyme F420. Moreover, CaO augmented the nutrient load in the fermentation liquid. The study provides an alternative scheme for the efficient resource utilization of ES and PW.


Subject(s)
Calcium Compounds , Oxides , Sewage , Calcium Compounds/chemistry , Anaerobiosis , Oxides/chemistry , Methane/metabolism , Waste Disposal, Fluid/methods , Bioreactors , Fatty Acids, Volatile/metabolism , Biological Oxygen Demand Analysis
11.
J Environ Manage ; 368: 122222, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39153321

ABSTRACT

With the increasing demand for Li, the recovery of Li from solid waste, such as Li-containing Al electrolytes, is receiving growing attention. However, Li-containing Al electrolytes often contain large amounts of F, leading to environmental pollution. Herein, a new method for preparing water-soluble Li salt from waste Li-containing Al electrolytes with high F and Na contents is proposed based on CaO roasting and water leaching. The effects of different roasting and leaching conditions on the Li leaching efficiency and reaction pathway were systematically investigated. Under the optimum processing conditions, the Li leaching efficiency reached 98%, while those of Na and F were 98.41% and 0.24%, respectively. Phase evolution analysis showed that the addition of CaO promoted the conversion of LiF and Na2LiAlF6 to Li2O, whereas F entered the slag phase as CaF2, which could be reused as a raw material for steel refinement. Overall, this study proposes an efficient and environmentally friendly method for the treatment and resource utilization of waste Al electrolytes with high F and Na contents.


Subject(s)
Electrolytes , Lithium , Lithium/chemistry , Aluminum/chemistry , Water/chemistry , Sodium/chemistry , Sodium/analysis , Solid Waste/analysis
12.
Bioresour Technol ; 410: 131310, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39163948

ABSTRACT

CaO modified with acetic acid solution or sodium hydroxide (H-CaO/OH-CaO) was used to explore the relationship between the physical and chemical properties of CaO and the components of bio-oil during the pyrolysis of rice straw (RS) and model compounds via experiment and density functional theory(DFT) simulation. The results showed that the modification changed the properties of CaO, and thus the catalytic performance on production of bio-oil components. H-CaO with the larger number of strong basic sites (1.10 âˆ¼ 2 times than commercial CaO) and the longer Ca-O bond length showed the better selectivity and performance on formation of ketones (the maximum relative content in bio-oil reached 43 %). The conversion pathway of cellulose/hemicellulose was changed by H-CaO, which promoted the formation of ketones. The easier combining of H-CaO with the pyrolysis primary products due to the longer Ca-O bond was the key to its better performance.


Subject(s)
Biomass , Calcium Compounds , Density Functional Theory , Ketones , Oxides , Pyrolysis , Ketones/chemistry , Oxides/chemistry , Calcium Compounds/chemistry , Catalysis , Oryza/chemistry , Biofuels , Computer Simulation
13.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998734

ABSTRACT

The reuse of waste materials has recently become appealing due to pollution and cost reduction factors. Using waste materials can reduce environmental pollution and product costs, thus promoting sustainability. Approximately 95% of calcium carbonate-containing waste eggshells end up in landfills, unused. These eggshells, a form of bio-waste, can be repurposed as catalytic electrode material for various applications, including supercapacitors, after being converted into CaO. Similarly, used waste battery electrode materials pose environmental hazards if not properly recycled. Various types of batteries, particularly lithium-ion batteries, are extensively used worldwide. The recycling of used lithium-ion batteries has become less important considering its low economic benefits. This necessitates finding alternative methods to recover and reuse the graphite rods of spent batteries. Therefore, this study reports the conversion of waste eggshell into calcium oxide by high-temperature calcination and extraction of nanographite from spent batteries for application in energy storage fields. Both CaO and CaO/graphite were characterized for their structural, morphological, and chemical compositions using XRD, SEM, TEM, and XPS techniques. The prepared CaO/graphite nanocomposite material was evaluated for its efficiency in electrochemical supercapacitor applications. CaO and its composite with graphite powder obtained from used lithium-ion batteries demonstrated improved performance compared to CaO alone for energy storage applications. Using these waste materials for electrochemical energy storage and conversion devices results in cheaper, greener, and sustainable processes. This approach not only aids in energy storage but also promotes sustainability through waste management by reducing landfills.

14.
Water Res ; 261: 122013, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981354

ABSTRACT

Ultrafiltration (UF) is increasingly used in the pretreatment of shale gas produced water (SGPW), whereas severe membrane fouling hampers its actual operation. In this work, ferrate(VI)-based oxidation was proposed for membrane fouling alleviation in SGPW pretreatment, and the activation strategies of calcium peroxide (CaO2) and ultraviolet (UV) were selected for comparison. The findings indicated that UV/Fe(VI) was more effective in removing fluorescent components, and the concentration of dissolved organic carbon was reduced by 24.1 %. With pretreatments of CaO2/Fe(VI) and UV/Fe(VI), the terminal specific membrane flux was elevated from 0.196 to 0.385 and 0.512, and the total fouling resistance diminished by 52.7 % and 76.2 %, respectively. Interfacial free energy analysis indicated that the repulsive interactions between pollutants and membrane were notably enhanced by Fe(VI)-based oxidation, thereby delaying the deposition of cake layers on the membrane surface. Quenching and probe experiments revealed that high-valent iron intermediates (Fe(IV)/Fe(V)) played significant roles in both CaO2/Fe(VI) and UV/Fe(VI) processes. Besides, hydroxyl radicals (•OH) were also important reactive species in the UV/Fe(VI) treatment, and the synergistic effect of Fe(IV)/Fe(V) and •OH showed a positive influence on SGPW fouling mitigation. In general, these findings establish a theoretical underpinning for the application of Fe(VI)-based oxidation for UF membrane fouling mitigation in SGPW pretreatment.


Subject(s)
Hydroxyl Radical , Iron , Membranes, Artificial , Oxidation-Reduction , Ultrafiltration , Iron/chemistry , Hydroxyl Radical/chemistry , Water Purification/methods
15.
Cureus ; 16(6): e62380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006557

ABSTRACT

Background In the face of the escalating COVID-19 pandemic amid shortages of medications and vaccines, a Vietnamese herbal formula known as Shen Cao Gan Jiang Tang (SCGJT) has been put into use for non-severe COVID-19 patients. This study aims to assess its efficacy and safety. Methods A multicenter, open-label, randomized controlled trial was conducted on 300 patients with non-severe COVID-19, randomly assigned into two groups: 150 receiving standard care (control group) and 150 receiving additional SCGJT for 10 days (SCGJT group). Time to resolution of symptoms, symptom severity, disease progression, time to discharge, the National Early Warning Score 2 (NEWS2) score, usage of Western drugs, time to viral clearance, and safety outcomes were continuously monitored. Results The SCGJT group exhibited faster symptom resolution (median: 9 vs. 13 days) and improved symptom severity, including cough, fatigue, hypogeusia, muscle aches, nasal congestion, runny nose, and sore throat, compared to the control group. Although there was a lower rate of severe progression in the SCGJT group (0.7% vs. 4.7%), the difference was not statistically significant. The time to discharge was significantly shorter in the SCGJT group (median: 7 vs. 8 days). Changes in the NEWS2 score did not show significant differences between groups. SCGJT has been demonstrated to reduce the need for symptomatic relief medications and hasten SARS-CoV-2 viral clearance. No adverse events were reported, and routine tests showed no significant differences. Conclusions SCGJT is safe and has potential clinical efficacy in non-severe COVID-19 patients. However, data regarding preventing severe progression remains inconclusive. Further studies should be conducted in light of the current state of the COVID-19 pandemic.

16.
Curr Issues Mol Biol ; 46(7): 7187-7218, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39057069

ABSTRACT

The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.

17.
Heliyon ; 10(13): e33790, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39044969

ABSTRACT

Brassica carinata seed is a non-edible oil containing crop grown for oil-based product development like biodiesel synthesis. However, recently technical challenges such as availability of feedstock, type of catalyst, cost, and quality of biodiesel hindered the feasibility and utilization of biodiesel. Thus, this study addressed those problems under the production of fatty acid methyl ester through trans-esterification reaction in the presence of heterogeneous catalyst ( CaO ), and methanol alcohol from Ethiopian brassica carinata seed oil. The synergetic and antagonistic effects of selected parameters (temperature, methanol to oil molar ratio, and amount of catalyst) on the yield of FAME were analyzed. Box-Behnken response surface methodology statistical analysis was applied to examine the parametric interaction effect, and optimization of reaction conditions. Accordingly, 90 % of fatty acid methyl ester (FAME) yield was achieved at the optimum value of 65 °C temperature, 14.85: 1 methanol to oil molar ratio, and 13.77 % catalyst load. The fuel properties of the resulted biodiesel were determined following standard procedures, and the results were within the standard limits (ASTM D6751). This implies that brassica carinata oil over heterogeneous catalyzed reaction medium under optimum reaction conditions provides higher biodiesel yield.

18.
Environ Res ; 260: 119626, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39019143

ABSTRACT

The utilization of bio-oil derived from biomass presents a promising alternative to fossil fuels, though it faces challenges when directly applied in diesel engines. Microemulsification has emerged as a viable strategy to enhance bio-oil properties, facilitating its use in hybrid fuels. This study explores the microemulsification of Jatropha bio-oil with ethanol, aided by a surfactant, to formulate a hybrid liquid fuel. Additionally, a bio-nano CaO heterogeneous catalyst synthesized from eggshells is employed to catalyse the production of Jatropha biodiesel from the microemulsified fuel using microwave irradiation. The catalyst is characterized through UV-Vis, XRD, and SEM analysis. The investigation reveals a significant reduction in CO, CO2, and NOX emissions with the utilization of microemulsion-based biodiesel blends. Various blends of conventional diesel, Jatropha biodiesel, and ethanol are prepared with different ethanol concentrations (5, 10, and 20 wt%). Engine performance parameters, including fuel consumption, NOX emission, and brake specific fuel consumption, are analyzed. Results indicate that the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend exhibits superior performance compared to conventional diesel, Jatropha biodiesel, and other blends. The fuel consumption of the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend is measured at 554.6 g/h, surpassing that of conventional diesel and other biodiesel blends. The presence of water (0.14 %) in the blend reduces the heating value, consequently increasing the energy requirement. CO and CO2 emissions for the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend are notably lower compared to conventional C-18 hydrocarbons and various biodiesel blends. These findings accentuate the efficacy of the microemulsion process in enhancing fuel characteristics and reducing emissions. Further investigations could explore optimizing the emulsifying agents and their impact on engine performance and emission characteristics, contributing to the advancement of sustainable fuel technologies.


Subject(s)
Biofuels , Egg Shell , Jatropha , Oxides , Biofuels/analysis , Egg Shell/chemistry , Jatropha/chemistry , Catalysis , Oxides/chemistry , Animals , Emulsions , Calcium Compounds/chemistry , Ethanol/chemistry , Vehicle Emissions/analysis
19.
Environ Sci Pollut Res Int ; 31(27): 39823-39838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833049

ABSTRACT

Sea surface temperature (SST), with its complex and dynamic behavior, is a major driver of ocean-atmosphere interactions. The purpose of this study is to investigate the behavior of SST and its prediction using a chaotic approach. Average mutual information (AMI) and Cao methods were used to reconstruct the phase space. The Lyapunov exponent and correlation dimension were used to investigate chaos. The Lyapunov exponent index was used to predict SST with a 5-year average prediction horizon using the local prediction method between 2023 and 2027. The results showed a 3-month delay time for the Pacific and Antarctic Oceans, and a 2-month delay time for the Atlantic, Indian, and Arctic Oceans. The optimal embedding dimension for all oceans is between 6 and 7. Our analysis reveals that the dynamics of SST in all oceans exhibit varying degrees of chaos, as indicated by the correlation dimension. The local prediction method achieves relatively accurate short-term SST predictions due to the clustering of SST points around specific attractors in the phase space. However, in the long term, the accuracy of this method decreases as the points in the phase space of SST can spread randomly. The model performance ranking with a Percent Mean Relative Absolute Error shows that the Indian Ocean has the best performance compared to other oceans, while the Atlantic, Pacific, and Antarctic and Arctic Oceans are in the next ranks. This study contributes to understanding the dynamics of SST and has practical value for use in the development of climate models.


Subject(s)
Temperature , Models, Theoretical , Oceans and Seas
20.
RECIIS (Online) ; 18(2)abr.-jun. 2024.
Article in Portuguese | LILACS, Coleciona SUS | ID: biblio-1561667

ABSTRACT

A pandemia gerou impactos sociais e econômicos, como o trabalho informal dos que se ocupam do serviço de café de rua, ampliado na retomada pós-isolamento. O artigo analisa as significações construídas pelas instalações do serviço nas ruas de São Paulo (SP) e Vitória (ES), enquanto manifestações do empreendedo-rismo por necessidade. O corpus foi coletado em dias úteis, no início das manhãs, em diversos pontos das capitais. A semiótica discursiva sustentou a análise, e o seu método permitiu traçar isotopias conectoras de figuras e temas. Os resultados apontam para comunicação dos sentidos da informalidade, casualidade e familiaridade, marcados pela presença feminina, pela autonomia imposta aos sujeitos produtor/vendedor e consumidor e pela conexão entre a energia proporcionada pela bebida e o trabalho. Esses significadosvêm embebidos no risco vivido por esses sujeitos, aconchegados entre si e alijados da proteção de políticas públicas de trabalho, condições sanitárias, serviços de transporte e saúde.


The pandemic has generated social and economic impacts, such as the informal work of those who sell coffee on the streets, expanded in the post-isolation resumption. The article analyzes the meanings constructed by the service facilities in São Paulo (SP) and Vitória (ES), as demonstrations of the entrepreneurship by necessity. The corpus was collected on weekdays, in places of the state capitals. Discursive semiotics underpins the analysis, suggesting connective isotopies of figures and themes. The results point to the communication of the senses of informality, casualness and familiarity, marked by the female presence, by the autonomy imposed on the subjects producer/seller and consumer and by the connection between the energy given by the drink and the work. These meanings are embedded in the risk experienced by these subjects, snuggled among themselves and excluded from the protection of public policies of work, sanitary conditions, transportation and health services.


La pandemia generó impactos sociales y económicos, como el trabajo informal de quienes se ocupan del servicio de café en las calles, ampliado en la reanudación post-aislamiento. El artículo analiza los signifi-cados construidos por las instalaciones de servicios en las calles de São Paulo (SP) y Vitória (ES), como manifestaciones de emprendimiento por necesidad. El corpus fue recolectado entresemana, en puntos de las capitales. La semiótica discursiva sustenta el análisis y permitió trazar isotopías conectoras de figuras y temas. Los resultados apuntan para la comunicación de los significados de informalidad, marcados por la presencia femenina, por la autonomía impuesta a los sujetos productor/vendedor y consumidor, y por la conexión entre la energía dada por la bebida y el trabajo. Estos significados están incrustados en el riesgo vivido por estos sujetos, y excluidos de la protección de las políticas públicas laborales, las condiciones sanitarias, los servicios de transporte y salud.


Subject(s)
Social Change , Socioeconomic Factors , Entrepreneurship , Coffee , Right to Work , Unemployment , Sanitary Profiles , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL