Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Pathogens ; 11(2)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35215080

ABSTRACT

African animal trypanosomosis (AAT), is an infectious parasitic disease of wildlife and livestock caused by multiple species and strains of Trypanosoma. In South Africa, it is restricted to northern KwaZulu-Natal (NKZN) and caused by Trypanosoma congolense and Trypanosoma vivax. A cross-sectional study was done to determine AAT prevalence in 384 goat samples and identify trypanosome species circulating in 60 cattle at dip tanks that are on the interface with the Hluhluwe-uMfolozi game reserve in NKZN. Both cattle and goat samples were analyzed using the buffy coat technique (BCT) and a polymerase chain reaction (PCR) assay targeting the internal transcribed spacer 1 (ITS) region. Cattle samples were further analyzed using an ITS quantitative real-time PCR (qPCR) assays designed for the detection of T. congolense, T. vivax, and T. brucei. None of the goat samples tested positive for Trypanosoma infections. The ITS qPCR assay detected Trypanosoma DNA in 30% of the cattle samples, while only 8.3% were positive with the ITS PCR and 11.7% were positive using BCT. Quantitative real-time PCR assays were designed to amplify a 98 bp, 137 bp, and 116 bp fragment of the cathepsin L-like (CATL) gene from T. brucei, T. theileri, and T. congolense, respectively. Each assay was shown to be efficient (>94%) and specific (109 to 102/101 copies/reaction) in the detection of Trypanosoma species. The CATL qPCR assays detected T. congolense and T. theileri infections in 33.3% of the cattle samples. The CATL qPCR assays also detected T. congolense infections in goats (23.1%) that were neither detected by BCT nor the ITS PCR. The CATL qPCR assays provide an additional, sensitive, and specific tool for Trypanosoma diagnostics. The presence of trypanosomes in goats suggests they might be potential reservoirs of infections to other livestock.

2.
Exp Appl Acarol ; 86(2): 283-298, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35133525

ABSTRACT

Hyalomma asiaticum and H. anatolicum are tick species in Eurasia and Africa with major medical and veterinary significance. Beside their direct pathogenic effects, H. asiaticum and H. anatolicum are vectors of important diseases of livestock and in some instances of zoonoses. In search of ways to address the increasing incidence of global acaricide resistance, tick control through vaccination is regarded as a sustainable alternative approach. Cathepsin L-like cysteine protease (CPL) is a potent hemoglobinase, and plays important roles in the digestion of blood acquired from a host. CPL from H. anatolicum (HanCPL) with high similarity (> 90%) for H. asiaticum CPL (HasCPL) were aligned by in silico analysis. After further in vitro validation, the anti-HasCPL sera have cross-reactivity between the different total native protein of life stages and tissues for H. asiaticum and H. anatolicum. Furthermore, we further confirmed that recombinant HasCPL (rHasCPL) immunized rabbits were partially cross-protected (54.8%) by H. anatolicum infestation.


Subject(s)
Acaricides , Ixodidae , Tick Infestations , Ticks , Animals , Antigens , Cathepsin L , Rabbits , Tick Infestations/veterinary
3.
Front Vet Sci ; 8: 599815, 2021.
Article in English | MEDLINE | ID: mdl-33585616

ABSTRACT

We clarified the genetic diversity of Trypanosoma spp. within the Kafue ecosystem, using PCR targeting the internal transcribed spacer 1 and the cathepsin L-like cysteine protease (CatL) sequences. The overall prevalence of Trypanosoma spp. in cattle and tsetse flies was 12.65 and 26.85%, respectively. Cattle positive for Trypanosoma vivax had a significantly lower packed cell volume, suggesting that T. vivax is the dominant Trypanosoma spp. causing anemia in this area. Among the 12 operational taxonomic units (OTUs) of T. vivax CatL sequences detected, one was from a known T. vivax lineage, two OTUs were from known T. vivax-like lineages, and nine OTUs were considered novel T. vivax-like lineages. These findings support previous reports that indicated the extensive diversity of T. vivax-like lineages. The findings also indicate that combining CatL PCR with next generation sequencing is useful in assessing Trypanosoma spp. diversity, especially for T. vivax and T. vivax-like lineages. In addition, the 5.42% prevalence of Trypanosoma brucei rhodesiense found in cattle raises concern in the community and requires careful monitoring of human African trypanosomiasis.

4.
Mol Immunol ; 131: 78-88, 2021 03.
Article in English | MEDLINE | ID: mdl-33376000

ABSTRACT

Cathepsin L protease belongs to the papain-like cysteine proteases family, plays indispensable roles in animals' pathological and physiological processes. However, little is known about Cathepsin L in silkworm, Bombyx mori. Herein, a novel Cathepsin L-like (Cat L-like) was cloned and identified from silkworm by the rapid amplification of cDNA ends (RACE). Cat L-like contains an intact open reading frame (ORF) of 1 668 bp and encodes 556 amino acid residues, consisting of a signal peptide, typical cathepsins' inhibitor_I29, and pept_C1 domain. Cat L-like is specifically and highly expressed in hemocytes. The cathepsin (including Cathepsin L, B, and H) crude extract from hemocytes had typical substrate specific catalytic activities and were sensitive to pH and temperature. Cat L-like up-regulated considerably after 20-hydroxyecdysone (20-E) administration, indicating that Cat L-like may be regulated by insect hormone. The responses of Cat L-like against bacterial infection suggest it may play essential roles in silkworm immunity. Overall, our studies provide a theoretical basis and insights to further investigate the functions of Cat L-like and in insects' innate immunity mechanisms.


Subject(s)
Bombyx/immunology , Cathepsin L/immunology , Cysteine Proteases/immunology , Ecdysterone/immunology , Hemocytes/immunology , Amino Acid Sequence , Animals , Base Sequence , Bombyx/genetics , Cathepsin L/genetics , Cysteine Proteases/genetics , DNA, Complementary/genetics , Immunity, Innate/genetics , Immunity, Innate/immunology , Insect Proteins/genetics , Insect Proteins/immunology , Open Reading Frames/genetics , Up-Regulation/genetics , Up-Regulation/immunology
5.
Int J Biol Macromol ; 158: 375-383, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32360970

ABSTRACT

Huanglongbing (HLB) is a devastating citrus disease associated with Candidatus Liberibacter asiaticus (CLas) and is transmitted by the psyllid Diaphorina citri Kuwayama. Diaphorina citri belongs to Hemiptera order, which has cysteine peptidases as the most abundant proteolytic enzymes present in digestive tract. As cysteine peptidases are involved in different insect development processes, this class of enzymes has acquired biotechnological importance. In this context, we identified a cathepsin L-like (DCcathL1) from the Diaphorina citri transcriptome database and expressed the enzyme in E. coli. Quantitative real-time RT-PCR was conducted to determine DCcathL1 gene expression in different parts and developmental phases of the insect. We observed that DCcathL1 expression in the gut was 2.59 and 2.87-fold higher than in the head and carcass, respectively. Furthermore, DCcathL1 expression was greater in eggs than in nymphs and adults, suggesting a putative role of the enzyme in the embryonic development. In addition, enzymatic inhibitory activity using four recombinant Citrus cystatins were performed. Among them, CsinCPI-2 was the strongest DCcathL1 inhibitor with a Ki value of 0.005 nM. Our results may contribute in the development of strategies for D. citri control, such as silencing the DCcathL1 gene and the use of transgenic plants that overexpress peptidase inhibitors.

6.
Parasitology ; 147(7): 760-774, 2020 06.
Article in English | MEDLINE | ID: mdl-32174285

ABSTRACT

Trichomonas vaginalis (Tv) induces host cell damage through cysteine proteinases (CPs) modulated by iron. An immunoproteomic analysis showed that trichomoniasis patient sera recognize various CPs, also some of them are present in vaginal washes (VWs). Thus, the goal of this work was to determine whether TvCP2 is expressed during infection and to assess the effect of iron on TvCP2 expression, localization and contribution to in vitro cellular damage. Western-blotting (WB) assays using TvCP2r and vaginitis patient serum samples showed that 6/9 Tv (+) but none of the Tv (-) patient sera recognized TvCP2r. WB using an anti-TvCP2r antibody and VWs from the same patients showed that in all of the Tv (+) but none of the Tv (-) VWs, the anti-TvCP2r antibody detected a 27 kDa protein band that corresponded to the mature TvCP2, which was confirmed by mass spectrometry analysis. Iron decreased the amount of TvCP2 mRNA and the protein localized on the parasite surface and cytoplasmic vesicles concomitant with the cytotoxic effect of TvCP2 on HeLa cells. Parasites pretreated with the anti-TvCP2r antibody also showed reduced levels of cytotoxicity and apoptosis induction in HeLa cell monolayers. In conclusion, these results show that TvCP2 is expressed during trichomonal infection and plays an important role in the in vitro HeLa cell cytotoxic damage under iron-restricted conditions.


Subject(s)
Cysteine Proteases/metabolism , Iron/administration & dosage , Protozoan Proteins/metabolism , Trichomonas vaginalis/drug effects , Vagina/parasitology , Bodily Secretions/parasitology , Female , Humans , Trichomonas vaginalis/enzymology
7.
BMC Infect Dis ; 19(1): 895, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31660874

ABSTRACT

BACKGROUND: Leishmania infantum, the etiological agent of visceral leishmaniasis, is a neglected zoonosis that requires validation and standardization of satisfactory diagnostic methodologies. Thus, the aim of the present study was to evaluate the effectiveness of cathepsin L-like protease as a target for making molecular diagnoses and as a phylogenetic marker enabling to understand the intraspecies variations and evolutionary history of L. infantum in Brazil. METHODS: We used 44 isolates of L. infantum. The cathepsin L-like gene fragments were amplified, sequenced, manually aligned and analyzed using inference methods. The sequences generated were used to search and design oligonucleotide primers to be used in reactions specific to the target parasite. RESULTS: The cathepsin L-like gene did not show any intraspecies variability among the isolates analyzed. The pair of primers proposed amplified the target deoxyribonucleic acid (DNA) of L. infantum isolates and were effective for DNA amplification at concentrations of as low as 10- 11 ng/µl. The proposed marker did not present cross-reactions with other hemoparasites. When used for making the diagnosis in a panel of clinical samples from dogs, a positivity rate of 49.03% (102/208) was obtained, versus 14.42% (30/208) for a ribosomal internal transcribed spacer (ITS) marker. In samples from sandflies, the rate was 6.25% and from humans, 14.28%. CONCLUSIONS: The results described in this work allow us to infer that CatLeish-PCR is a sensitive and specific marker for use in diagnostic trials of L. infantum and in clinical and epidemiological surveys.


Subject(s)
Cathepsins/genetics , Leishmania infantum/enzymology , Leishmaniasis, Visceral/diagnosis , Phylogeny , Animals , Base Sequence , Biomarkers , Brazil , Clinical Enzyme Tests/standards , Cross Reactions/immunology , DNA Primers/genetics , DNA, Protozoan/genetics , Dog Diseases/parasitology , Dogs , Humans , Leishmania infantum/classification , Neglected Diseases , Polymerase Chain Reaction , Psychodidae/parasitology , Reference Standards , Zoonoses/parasitology
8.
Parasitol Res ; 118(3): 829-835, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30689051

ABSTRACT

Cathepsin L-like protease is an important member of the papain-like cysteine protease and plays numerous indispensable roles in the biology of parasitic organisms. In a previous study, we identified a gene encoding a cathepsin L-like protease of Clonorchis sinensis (CsCPL) that was detected in the cercaria, metacercaria, and adult worm stages by immunolocalization, suggesting that this cysteine protease may be important and involved in the development of C. sinensis. In this study, the mature domain of CsCPL (CsCPL-m) was cloned and expressed in the form of inclusion bodies in Escherichia coli. After refolding, the recombinant CsCPL-m displayed optimal protease activity towards Z-Phe-Arg-AMC substrates but not towards Z-Arg-Arg-AMC, and the activity of the protease was inhibited completely by the cysteine protease-specific inhibitors E-64 and IAA, which further demonstrated that CsCPL belongs to the cathepsin L-like cysteine protease family. Recombinant CsCPL-m exhibited considerable activity at temperatures ranging from 28 to 42 °C, with the highest activity observed at 42 °C. Furthermore, recombinant CsCPL-m exhibited activity across a broad range of pH values (pH 4.0-8.0), with an optimal pH of 5.5. The Km and Vmax of the recombinant CsCPL-m towards Z-Phe-Arg-AMC were determined to be 5.71 × 10-6 M and 0.6 µM/min, respectively, at 37 °C and pH 5.5. The recombinant CsCPL-m could degrade BSA and gelatine, but could not degrade human hemoglobin and human immunoglobulin G. These results implied that CsCPL might participate in the catabolism of host proteins for nutrition during the parasitic life cycle of C. sinensis; thus, CsCPL could be used as a potential vaccine antigen and drug target against C. sinensis infection.


Subject(s)
Cathepsin L/metabolism , Clonorchis sinensis/enzymology , Cysteine Proteases/metabolism , Recombinant Proteins/metabolism , Amino Acid Sequence , Animals , Cathepsin L/antagonists & inhibitors , Cathepsin L/genetics , Cloning, Molecular , Cysteine Proteases/genetics , Cysteine Proteinase Inhibitors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gelatin/metabolism , Humans , Protein Folding , Recombinant Proteins/genetics , Serum Albumin, Bovine/metabolism
9.
Insect Biochem Mol Biol ; 106: 19-27, 2019 03.
Article in English | MEDLINE | ID: mdl-30639702

ABSTRACT

Fibroinase, a cathepsin L-like cysteine protease, was previously identified in the silk gland of the silkworm, Bombyx mori. It shows high degradation activity during the pre-pupa period, when the silk gland undergoes apoptosis and remodeling. Here, we recombinantly expressed pro-fibroinase and activated it in vitro. Fibroinase showed optimal hydrolytic activity at pH 4.0 and its optimum temperature was about 42 °C. One physiological inhibitor, B. mori cysteine protease inhibitor (BCPI) was found, which showed strong inhibitory activity against fibroinase. The inhibitory reaction was caused by the formation of a non-covalent complex; this is in contrast to a previously reported mode of fibroinase inhibition by Serpin18. Expression profiles and immunolocalization analysis demonstrated that fibroinase was involved in silk gland development by degrading silk proteins and apoptosis/remodeling of silk glands at specific points. Furthermore, the comparison of the temporal expression of fibroinase and its inhibitors, BCPI and Serpin18, indicated that these inhibitors were involved in the silk gland development by regulating the activity of fibroinase from the fifth instar until the early spinning stage. These findings improve our understanding of the mechanism of protease regulation and its inhibitors in silk gland development.


Subject(s)
Bombyx/growth & development , Bombyx/genetics , Insect Proteins/genetics , Animals , Bombyx/metabolism , Exocrine Glands/growth & development , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serpins/genetics , Serpins/metabolism , Silk
10.
Mol Biochem Parasitol ; 223: 50-54, 2018 07.
Article in English | MEDLINE | ID: mdl-29990512

ABSTRACT

African animal trypanosomosis (nagana) is caused by tsetse-transmitted protozoan parasites. Their cysteine proteases are potential chemotherapeutic and diagnostic targets. The N-glycosylated catalytic domain of Trypanosoma vivax cathepsin L-like cysteine protease, rTviCATLcat, was recombinantly expressed and purified from culture supernatants while native TviCATL was purified from T. vivax Y486 parasite lysates. Typical of Clan CA, family C1 proteases, TviCATL activity is sensitive to E-64 and cystatin and substrate specificity is defined by the S2 pocket. Leucine was preferred in P2 and basic and non-bulky, hydrophobic residues accepted in P1 and P3 respectively. Reversible aldehyde inhibitors, antipain, chymostatin and leupeptin, with Arg in P1 and irreversible peptidyl chloromethylketone inhibitors with hydrophobic residues in P2 inhibited TviCATL activity. TviCATL digested host proteins: bovine haemoglobin, serum albumin, fibrinogen and denatured collagen (gelatine) over a wide pH range, including neutral to slightly acidic pH. The recombinant catalytic domain of TviCATL showed promise as a diagnostic target for detecting T. vivax infection in cattle in an indirect antibody detection ELISA.


Subject(s)
Cattle Diseases/diagnosis , Cysteine Proteases/metabolism , Immunoassay/methods , Recombinant Proteins/metabolism , Trypanosoma vivax/enzymology , Trypanosomiasis, African/diagnosis , Animals , Binding Sites , Cattle , Cysteine Proteases/genetics , Cysteine Proteases/immunology , DNA Mutational Analysis , Enzyme-Linked Immunosorbent Assay/methods , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Substrate Specificity , Trypanosoma vivax/genetics , Trypanosoma vivax/immunology , Trypanosomiasis, African/veterinary
11.
Data Brief ; 18: 404-408, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29896525

ABSTRACT

The recombinant TvCP4 prepro region (ppTvCP4r) acts as an exogenous inhibitor of cathepsin L-like CPs from Trichomonas vaginalis (Cárdenas-Guerra et al., 2015 [1]). Here, we present the dataset of the trichomonad ppTvCP4r inhibitory effect against the CP proteolytic activities from other microorganisms, such as Naegleria fowleri and Acanthamoeba castellanii free-living amoeba. The proteolytic activity inhibition of total crude extracts (TCEs) of N. fowleri and A. castellanii was determined and recorded using a fluorogenic substrate specific for cathepsin L CPs without or with a ppTvCP4r treatment at different concentrations and pH.

12.
Parasitol Res ; 117(3): 737-746, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29340783

ABSTRACT

Several bat species can be infected by trypanosomes, but there is not much information about which of these parasites infect bats from Triângulo Mineiro and Alto Paranaíba, Minas Gerais state, Brazil, a formerly endemic region for Trypanosoma cruzi, the causative agent of Chagas disease. The aim of this study was to describe, characterize, and identify the presence of trypanosomes in bats. The captured bats (448) belong to four families and to 19 different species. Of those, 37 bats were found to be positive for trypanosomes by microhematocrit, (infection rate 8.3%) and 27 were positive after hemoculture analysis. Initially, the isolates were identified by PCR (18S rDNA, 24Sα rDNA, spliced leader, COII RFLP-PCR) using primers originally designed for T. cruzi. PCRs (18S rDNA, 24Sα rDNA) showed compatible bands for TcI, whereas COII RFLP-PCR showed a similar pattern associated to TcII. However, there was no DNA amplification using spliced leader as a target, revealing a discrepancy between the results. Phylogenetic analysis of Cathepsin L-like and 18S rDNA sequences proved that 15 of the isolates corresponded to Trypanosoma cruzi marinkellei and one to Trypanosoma dionisii. These results revealed that the diversity of trypanosome species in a region considered endemic for Chagas disease is greater than previous descriptions. All this can confirm the necessity of using DNA sequencing approaches in order to determinate trypanosomes species isolated from bats.


Subject(s)
Chiroptera/parasitology , Trypanosoma/isolation & purification , Animals , Brazil/epidemiology , Cathepsin L/genetics , Chagas Disease/epidemiology , Chagas Disease/parasitology , DNA, Protozoan , DNA, Ribosomal/genetics , Phylogeny , Sequence Analysis, DNA , Trypanosoma/classification , Trypanosoma/genetics , Trypanosoma cruzi/genetics
13.
Dev Comp Immunol ; 78: 114-123, 2018 01.
Article in English | MEDLINE | ID: mdl-28958702

ABSTRACT

Cathepsins are a group of protease, located in lysosome and play a vital role in physiological process. Here, we reported cathepsin L-like protease (Ap-cathL), which contained an open reading frame of 1155 bp and encoding 385 amino acid residues protein. The I29 inhibitor domain and peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) putative conserved domains were detected in Ap-cathL. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ap-cathL highly expressed in the fat body and midgut. The high expression during the molting stage, pupal stage and following 20E (20-hydroxyecdysone) treatment indicated that it maybe involved in the process of molting and metamorphosis. In addition, depletion of Ap-cathL influenced the expression of apoptosis pathway related genes. The protease inhibitor and RNA interference experiments showed that Ap-cathL was involved in the fat body dissociation of A. pernyi. These results suggest that Ap-cathL may involve in the process of metamorphosis and fat body dissociation of A. pernyi.


Subject(s)
Cathepsin L/metabolism , Fat Body/physiology , Insect Proteins/metabolism , Metamorphosis, Biological/genetics , Molting/genetics , Moths/physiology , Peptide Hydrolases/metabolism , Animals , Apoptosis/genetics , Cathepsin L/genetics , Cells, Cultured , Cloning, Molecular , Ecdysterone/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Peptide Hydrolases/genetics , RNA, Small Interfering/genetics
14.
Insect Biochem Mol Biol ; 89: 17-30, 2017 10.
Article in English | MEDLINE | ID: mdl-28838758

ABSTRACT

Cathepsins L are the major digestive peptidases in the beetle Tenebrio molitor. Two digestive cathepsins L (TmCAL2 and TmCAL3) from it had their 3D structures solved. The aim of this paper was to study in details TmCAL3 specificity and properties and relate them to its 3D structure. Recombinant TmCAL3 was assayed with 64 oligopeptides with different amino acid replacements in positions P2, P1, P1' and P2'. Results showed that TmCAL3 S2 specificity differs from the human enzyme and that its specificities also explain why on autoactivation two propeptide residues remain in the enzyme. Data on free energy of binding and of activation showed that S1 and S2' are mainly involved in substrate binding, S1' acts in substrate binding and catalysis, whereas S2 is implied mainly in catalysis. Enzyme subsite residues were identified by docking with the same oligopeptide used for kinetics. The subsite hydrophobicities were calculated from the efficiency of hydrolysis of different amino acid replacements in the peptide and from docking data. The results were closer for S1 and S2' than for S1' and S2, indicating that the residue subsites that were more involved in transition state binding are different from those binding the substrate seen in docking. Besides TmCAL1-3, there are nine other cathepsins L, most of them more expressed at midgut. They are supposed to be directed to lysosomes by a Drosophila-like Lerp receptor and/or motifs in their prodomains. The mannose 6-phosphate lysosomal sorting machinery is absent from T. molitor transcriptome. Cathepsin L direction to midgut contents seems to depend on overexpression.


Subject(s)
Cathepsin L/metabolism , Tenebrio/enzymology , Amino Acid Sequence , Animals , Catalysis , Cathepsin L/chemistry , Gastrointestinal Tract/enzymology , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/metabolism , Lysosomes/enzymology , Molecular Docking Simulation , Protein Sorting Signals , Substrate Specificity
15.
Aquat Toxicol ; 189: 159-169, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28644993

ABSTRACT

Plastic pollution has been globally recognized as a critical issue for marine ecosystems and nanoplastics constitute one of the last unexplored areas to understand the magnitude of this threat. However, current difficulties in sampling and identifying nano-sized debris make hard to assess their occurrence in marine environment. Polystyrene nanoparticles (PS NPs) are largely used as nanoplastics in ecotoxicological studies and although acute exposures have been already investigated, long-term toxicity on marine organisms is unknown. Our study aims at evaluating the effects of 40nm PS anionic carboxylated (PS-COOH) and 50nm cationic amino-modified (PS-NH2) NPs in two planktonic species, the green microalga Dunaliella tertiolecta and the brine shrimp Artemia franciscana, respectively prey and predator. PS NP behaviour in exposure media was determined through DLS, while their toxicity to microalgae and brine shrimps evaluated through 72h growth inhibition test and 14 d long-term toxicity test respectively. Moreover, the expression of target genes (i.e. clap and cstb), having a role in brine shrimp larval growth and molting, was measured in 48h brine shrimp larvae. A different behaviour of the two PS NPs in exposure media as well as diverse toxicity to the two planktonic species was observed. PS-COOH formed micro-scale aggregates (Z-Average>1µm) and did not affect the growth of microalgae up to 50µg/ml or that of brine shrimps up to 10µg/ml. However, these negatively charged NPs were adsorbed on microalgae and accumulated (and excreted) in brine shrimps, suggesting a potential trophic transfer from prey to predator. On the opposite, PS-NH2-formed nano-scale aggregates (Z-Average<200nm), caused inhibition of algal growth (EC50=12.97µg/ml) and mortality in brine shrimps at 14 d (LC50=0.83µg/ml). Moreover, 1µg/ml PS-NH2 significantly induced clap and cstb genes, explaining the physiological alterations (e.g. increase in molting) previously observed in 48h larvae, but also suggesting an apoptotic pathway triggered by cathepsin L-like protease in brine shrimps upon PS-NH2 exposure. These findings provide a first insight into long-term toxicity of nanoplastics to marine plankton, underlining the role of the surface chemistry in determining the behaviour and effects of PS NPs, in terms of adsorption, growth inhibition, accumulation, gene modulation and mortality. The use of long-term end-point has been identified as valuable tool for assessing the impact of nanoplastics on marine planktonic species, being more predictable of real exposure scenarios for risk assessment purposes.


Subject(s)
Artemia/drug effects , Chlorophyta/drug effects , Microalgae/drug effects , Nanoparticles/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Artemia/metabolism , Cations/chemistry , Cations/toxicity , Chlorophyta/metabolism , Ecotoxicology , Larva/drug effects , Larva/metabolism , Microalgae/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Particle Size , Polystyrenes/chemistry , Polystyrenes/metabolism , Surface Properties , Time Factors , Toxicity Tests , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
16.
J Fish Dis ; 40(2): 205-217, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27334368

ABSTRACT

The histiophagous scuticociliate Philasterides dicentrarchi is the aetiological agent of scuticociliatosis, a parasitic disease of farmed turbot. Curcumin, a polyphenol from Curcuma longa (turmeric), is known to have antioxidant and anti-inflammatory properties. We investigated the in vitro effects of curcumin on the growth of P. dicentrarchi and on the production of pro-inflammatory cytokines in turbot leucocytes activated by parasite cysteine proteases. At 100 µm, curcumin had a cytotoxic effect and completely inhibited the growth of the parasite. At 50 µm, curcumin inhibited the protease activity of the parasite and expression of genes encoding two virulence-associated proteases: leishmanolysin-like peptidase and cathepsin L-like. At concentrations between 25 and 50 µm, curcumin inhibited the expression of S-adenosyl-L-homocysteine hydrolase, an enzyme involved in the biosynthesis of the amino acids methionine and cysteine. At 100 µm, curcumin inhibited the expression of the cytokines tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) produced in turbot leucocytes activated by parasite proteases. Results show that curcumin has a dual effect on scuticociliatosis: an antiparasitic effect on the catabolism and anabolism of ciliate proteins, and an anti-inflammatory effect that inhibits the production of proinflammatory cytokines in the host. The present findings suggest the potential usefulness of this polyphenol in treating scuticociliatosis.


Subject(s)
Antiprotozoal Agents/pharmacology , Ciliophora Infections/veterinary , Curcumin/pharmacology , Fish Diseases/immunology , Flatfishes , Oligohymenophorea/physiology , Amino Acids/metabolism , Animals , Ciliophora Infections/immunology , Ciliophora Infections/parasitology , Fish Diseases/parasitology , Immunity, Innate , Peptide Hydrolases/metabolism , Protozoan Proteins/metabolism
17.
J Exp Bot ; 65(17): 5093-107, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24996653

ABSTRACT

Cystatins are tightly bound and reversible inhibitors of cysteine proteases in C1A and C13 peptidase families, which have been identified in several species and shown to function in vegetative development and response to biotic/abiotic stresses in plants. Recent work revealed their critical role in regulating programmed cell death during embryogenesis in tobacco and suggested their more comprehensive roles in the process of sexual plant reproduction, although little is known about cystatin family genes in the processes. Here, 10 cystatin family genes in Nicotiana tabacum were identified using an expressed sequence tag (EST)-based gene clone strategy. Analysis of their biochemical properties showed that nine of them have the potency to inhibit the activities of both commercial cathepsin L-like proteases and extracted cysteine proteases from seeds, but with different K i values depending on the types of proteases and the developmental stages of the seed tested. This suggests that cystatin-dependent cathepsin L-like proteolytic pathways are probably important for early seed development. Comprehensive expression profile analysis revealed that cystatin family genes showed manifold variations in their transcription levels in different plant cell types, including the sperm, egg, and zygote, especially in the embryo and seed at different developmental stages. More interestingly, intracellular localization analysis of each cystatin revealed that most members of cystatin families are recognized as secretory proteins with signal peptides that direct them to the endoplasmic reticulum. These results suggest their widespread roles in cell fate determination and cell-cell communication in the process of sexual reproduction, especially in gamete and embryo development, as well as in seed formation.


Subject(s)
Cystatins/genetics , Nicotiana/physiology , Plant Proteins/genetics , Amino Acid Sequence , Cystatins/metabolism , Expressed Sequence Tags , Gametogenesis, Plant , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , Reproduction , Seeds/embryology , Seeds/growth & development , Seeds/metabolism , Sequence Alignment , Nicotiana/genetics , Nicotiana/growth & development
18.
Food Chem ; 158: 192-9, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24731331

ABSTRACT

A cathepsin L-like proteinase (CLP) with molecular weight of 30.9 kDa from the gut of sea cucumber (Stichopus japonicas, S. japonicus) was isolated and purified to homogeneity by several chromatographic procedures. The enzyme exhibited optimum activity at pH 5.0-5.5 and 50 °C, and showed thermostability up to 40 °C. The enzyme activity was completely inhibited by Zn(2+), strongly inhibited by Fe(2+) and Cu(2+), drastically reduced by cysteine proteinase inhibitors, but slightly enhanced by thiol-activating agents. The enzyme efficiently hydrolysed the specific substrate of cathepsin L, but hardly hydrolysed the specific substrates for cathepsin B, cathepsin H and cathepsin K. Immunohistochemical studies indicated that the CLP was more abundant in the epidermis rather than in the dermis of S. japonicus body wall. The distribution of CLP showed positive correlation with autolysis rate. Therefore, the relationship between CLP and autolysis deserved further study.


Subject(s)
Cathepsin L/chemistry , Sea Cucumbers/chemistry , Animals , Autolysis , Immunohistochemistry , Tissue Distribution
19.
Parasitol Int ; 63(2): 359-65, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24361286

ABSTRACT

Philasterides dicentrarchi is a causative agent of scuticociliatosis in olive flounder Paralichthys olivaceus, aquaculture in Korea. In this study, a cDNA encoding a cathepsin L-like cysteine protease (PdCtL) of P. dicentrarchi (synonym Miamiensis avidus) was identified. To express the PdCtL recombinant protein in a heterologous system, 10 codons were redesigned to conform to the standard eukaryotic genetic code using polymerase chain reaction (PCR)-based site-directed mutagenesis. The recombinant P. dicentrarchi procathepsin L (proPdCtL) was expressed at high levels in E. coli Rosetta (DE3) pLysS with a pPET21a vector, and successfully refolded, purified, and activated into a functional and enzymatically active form. The optimal pH for protease activity was 5. Similar to other cysteine proteases, enzyme activity was inhibited by E64 and leupeptin. Immunogenicity of recombinant PdCtL was assessed by enzyme-linked immunosorbent assay, western blot, and specific anti-recombinant PdCtL antibodies were detected. Our results suggest that the biochemical characteristics of the recombinant ciliate proPdCtL protein are similar to those of the cathepsin L-like cysteine protease, that the PCR-based site-direct mutated ciliate gene was successfully expressed in a biochemically active form, and that the recombinant PdCtL acted as a specific epitope in olive flounder.


Subject(s)
Ciliophora/enzymology , Cysteine Proteases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Amino Acid Sequence , Animals , Cysteine Proteases/genetics , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL