Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Eur J Pharm Sci ; 201: 106866, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39067533

ABSTRACT

Retinoblastoma is the most common pediatric intraocular malignant tumor affecting 1:15 000-1:20 000 live births. Even though the survival rate in developed countries is over 90 %, more efficient treatment options are needed for better vision salvage and reduction of the adverse effects. Therefore, we investigated fluorescein-labeled PL3 peptide targeting properties towards the Y79 retinoblastoma cell line in vitro. Through the application of cellular imaging and flow cytometry techniques, the PL3 peptide exhibited a rapid and specific internalization within Y79 cells, with subsequent translocation to the cell nuclei, showcasing notable accumulation in the nucleoli. This phenomenon was not present in other investigated cell lines and was not observable with similarly charged and length control peptide. However, the exact mechanism behind this Y79 cell line-specific nuclear and nucleolar targeting pattern remains elusive. In the future, this targeting process could facilitate specific treatment modalities of retinoblastoma with PL3 peptide-coupled drug delivery technologies.


Subject(s)
Cell Nucleolus , Retinoblastoma , Retinoblastoma/metabolism , Retinoblastoma/drug therapy , Humans , Cell Line, Tumor , Cell Nucleolus/metabolism , Cell Nucleolus/drug effects , Peptides/pharmacology , Retinal Neoplasms/metabolism , Retinal Neoplasms/drug therapy , Cell-Penetrating Peptides/pharmacology
2.
Mol Pharm ; 20(2): 942-952, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36574345

ABSTRACT

The application of drug delivery systems based on ferritin nanocarrier has been developed as a potential strategy in cancer therapy. The limited permeability of ferritin remains a challenge for drug penetration into the deeper tumor tissues. CendR peptides have been reported to bear tumor-specific penetration by recognizing neuropilin (NRP-1) receptor that overexpressed on a wide range of cancer cells. Herein, we modified CendR peptide L(RGERPPR), its retro-inverso peptide D(RPPREGR), and inverso peptide D(RGERPPR) on the outer surface of human H chain ferritin by sulfhydryl-maleimide coupling reaction. Approximately 45 paclitaxel (PTX) molecules could be loaded into each ferritin inner cavity by a thermal-triggered method at a specific ionic strength. The penetration ability of three peptide-modified ferritin constructs showed that D(RGERPPR)-modified HFtn was able to be engulfed by A549 and MCF-7 tumor cells and spheroids at the highest level. Due to the dual-targeting effect of ferritin and modified peptides, the PTX-loaded nanocomposites could effectively enter the cells with high expression of TfR1 and NRP-1 receptors and enhanced the cytotoxicity against tumor cells. Remarkably, H-D(RGE)-PTX displayed a superior tumor growth suppression efficacy in A549 tumor-bearing nude mice. The inverso CendR peptide-modified HFtn nanocarrier was first generated and could provide an effective dual-targeting platform for treatment of cancers.


Subject(s)
Neoplasms , Paclitaxel , Mice , Animals , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Paclitaxel/chemistry , Ferritins , Mice, Nude , Cell Line, Tumor , Peptides/chemistry , Drug Delivery Systems , Mice, Inbred BALB C , Neoplasms/drug therapy
3.
Infect Dis Rep ; 14(2): 243-249, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35447881

ABSTRACT

The Omicron variant of SARS-CoV-2 bears peptide sequence alterations that correlate with a higher infectivity than was observed in the original SARS-CoV-2 isolated from Wuhan, China. We analyzed the CendR motif of spike protein and performed in silico molecular docking with neuropilin-1 (Nrp1), a receptor-ligand interaction known to support infection by the original variant. Our analysis predicts conserved and slightly increased energetic favorability of binding for Omicron CendR:Nrp1. We propose that the viral spike:Nrp1 coreceptor pathway may contribute to the infectivity of the Omicron variant of SARS-CoV-2.

4.
Mol Med ; 27(1): 162, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34961486

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel type b coronavirus responsible for the COVID-19 pandemic. With over 224 million confirmed infections with this virus and more than 4.6 million people dead because of it, it is critically important to define the immunological processes occurring in the human response to this virus and pathogenetic mechanisms of its deadly manifestation. This perspective focuses on the contribution of the recently discovered interaction of SARS-CoV-2 Spike protein with neuropilin 1 (NRP1) receptor, NRP1 as a virus entry receptor for SARS-CoV-2, its role in different physiologic and pathologic conditions, and the potential to target the Spike-NRP1 interaction to combat virus infectivity and severe disease manifestations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Neuropilin-1/chemistry , Neuropilin-1/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/etiology , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/virology , Female , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Infant , Molecular Targeted Therapy/methods , Neuropilin-1/immunology , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/virology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
5.
Acta Biotheor ; 70(1): 4, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34902063

ABSTRACT

Viruses are the simplest of pathogens, but possess sophisticated molecular mechanisms to manipulate host behavior, frequently utilizing molecular mimicry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to bind to the host receptor neuropilin-1 in order to gain entry into the cell. To do this, the virus utilizes its spike protein polybasic cleavage site (PCS), which mimics the CendR motif of neuropilin-1's endogenous ligands. In addition to facilitating cell entry, binding to neuropilin-1 has analgesic effects. We discuss the potential impact of neuropilin-1 binding by SARS-CoV-2 in ameliorating sickness behavior of the host, and identify a convergent evolutionary strategy of PCS cleavage and subsequent neuropilin binding in other human viruses. In addition, we discuss the evolutionary leap of the ancestor of SARS-COV-2, which involved acquisition of the PCS thus faciliting binding to the neuropilin-1 receptor. Acquisition of the PCS by the ancestor of SARS-CoV-2 appears to have led to pleiotropic beneficial effects including enhancement of cell entry via binding to ACE2, facilitation of cell entry via binding to neuropilin-1, promotion of analgesia, and potentially the formation of decoy epitopes via enhanced shedding of the S1 subunit. Lastly, other potential neuromanipulation strategies employed by SARS-CoV-2 are discussed, including interferon suppression and the resulting reduction in sickness behavior, enhanced transmission through neurally mediated cough induction, and reduction in sense of smell.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
6.
Heliyon ; 7(10): e08251, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34722943

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health concern. It is now well established that the spike (S) protein of SARS-CoV-2 interacts with its primary host receptor, the angiotensin converting enzyme 2 (ACE2). Additionally, the interaction of S with the neuropilin (NRP) receptor has been reported to facilitate viral entry. SARS-CoV-2 S protein binds to neuropilin-1 (NRP1) by virtue of a CendR motif which terminates with either an arginine or lysine. Furthermore, a number of different peptide sequences have been reported to bind to the same site in NRP1 including vascular endothelial growth factor A and other viral proteins. To gain a deeper understanding of additional factors besides the C-terminal arginine that may favour high NRP1 binding, several modelled peptides were investigated using triplicate 1 µs molecular dynamics simulations. A C-end histidine failed to exhibit strong NRP1 affinity. Some previously reported factors that increase binding affinity and secure NRP1 receptor activation was observed in the NRP1-peptide complexes studied and such complexes had higher molecular mechanics-generalized Born surface area based free energy of binding. Additionally, the results also highlight the relevance of an exposed arginine at its canonical location as capping it blocked arginine from engaging key residues at the NRP1 receptor site that are indispensable for functional binding; and that the presence of proline reinforces the C-terminal arginine. Given that stable NRP1 binding is crucial for viral uptake, stable interactions should be accounted for in the design of potential drugs and treatment routes to target or disrupt this interface, considering the S1-NRP1 interaction as well as its endogenous VEGF-A ligand that is associated with nociception.

7.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140708, 2021 11.
Article in English | MEDLINE | ID: mdl-34343702

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) infection of host cells is mainly mediated by interactions with the viral envelope glycoprotein surface unit (SU) and three host receptors: heparan sulfate proteoglycan, neuropilin-1 (Nrp1), and glucose transporter type 1. Residues 90-94 of SU are considered as a Nrp1 binding site, and our previous results show that an SU peptide consisting of residues 85-94 can bind directly to the Nrp1 b1 domain with a binding affinity of 7.4 µM. Therefore, the SU peptide is expected to be a good model to investigate the SU-Nrp1 interaction. Recently, the N93D mutation in the Nrp1 b1 binding region of the SU was identified in symptomatic patients with HTLV-1 infections in the Brazilian Amazon. However, it remains unclear how the SU-N93D mutation affects Nrp1 b1 binding. To elucidate the impact of the substituted Asp93 of SU on Nrp1 b1 binding, we analyzed the interaction between the SU-N93D peptide and Nrp1 b1 using isothermal titration calorimetry and nuclear magnetic resonance. The SU-N93D peptide binds directly to Nrp1 b1 with a binding affinity of 3.5 µM, which is approximately two-fold stronger than wild-type. This stronger binding is likely a result of the interaction between the substituted residue Asp93 of the N93D peptide and the four residues Trp301, Lys347, Glu348, and Thr349 of Nrp1 b1. Our results suggest that the interaction of SU Asp93 with the four residues of Nrp1 b1 renders the high affinity of the N93D mutant for Nrp1 b1 binding during HTLV-1 entry.


Subject(s)
HTLV-I Infections/virology , Human T-lymphotropic virus 1/pathogenicity , Mutation, Missense , Neuropilin-1/metabolism , Viral Envelope Proteins/metabolism , Binding Sites , Gene Products, env , HTLV-I Infections/metabolism , Human T-lymphotropic virus 1/isolation & purification , Humans , Neuropilin-1/chemistry , Protein Binding , Retroviridae Proteins, Oncogenic , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
8.
J Mol Liq ; 335: 116537, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34031621

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for causing the current coronavirus 2019 (COVID-19) pandemic, uses its spike (S1) protein for host cell attachment and entry. Apart from angiotensin-converting enzyme 2, neuropilin-1 (NRP1) has been recently found to serve as another host factor for SARS-CoV-2 infection; thus, blocking S1-NRP1 interaction can be a potential treatment for COVID-19. Herein, molecular recognition between SARS-CoV-2 S1 C-end rule (CendR) heptapeptide including small-molecule antagonists (EG00229 and EG01377) and the NRP1 was investigated using molecular dynamics simulations and binding free energy calculations based on MM-PBSA method. The binding affinity and the number of hot-spot residues of EG01377/NRP1 complex were higher than those of CendR/NRP1 and EG00229/NRP1 systems, in line with the reported experimental data as well as with the lower water accessibility at the ligand-binding site. The (i) T316, P317, and D320 and (ii) S346, T349, and Y353 residues of NRP1 were confirmed to respectively form H-bonds with the positively charged guanidinium group and the negatively charged carboxyl moiety of all studied ligands. Moreover, Rosetta protein design was employed to improve the binding affinity between CendR peptide and NRP1. The newly designed peptides, especially R683G and A684M, exhibited higher binding efficiency than the native CendR heptapeptide as well as the small-molecule EG00229 by forming more H-bonds and hydrophobic interactions with NPR1, suggesting that these designed peptides could be promising NRP1 inhibitors to combat SARS-CoV-2 infection.

9.
Polymers (Basel) ; 12(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847045

ABSTRACT

The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood-brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability.

10.
Mol Ther ; 28(8): 1833-1845, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32497513

ABSTRACT

Systemic skin-selective therapeutics would be a major advancement in the treatment of diseases affecting the entire skin, such as recessive dystrophic epidermolysis bullosa (RDEB), which is caused by mutations in the COL7A1 gene and manifests in transforming growth factor-ß (TGF-ß)-driven fibrosis and malignant transformation. Homing peptides containing a C-terminal R/KXXR/K motif (C-end rule [CendR] sequence) activate an extravasation and tissue penetration pathway for tumor-specific drug delivery. We have previously described a homing peptide CRKDKC (CRK) that contains a cryptic CendR motif and homes to angiogenic blood vessels in wounds and tumors, but it cannot penetrate cells or tissues. In this study, we demonstrate that removal of the cysteine from CRK to expose the CendR sequence confers the peptide novel ability to home to normal skin. Fusion of the truncated CRK (tCRK) peptide to the C terminus of an extracellular matrix protein decorin (DCN), a natural TGF-ß inhibitor, resulted in a skin-homing therapeutic molecule (DCN-tCRK). Systemic DCN-tCRK administration in RDEB mice led to inhibition of TGF-ß signaling in the skin and significant improvement in the survival of RDEB mice. These results suggest that DCN-tCRK has the potential to be utilized as a novel therapeutic compound for the treatment of dermatological diseases such as RDEB.


Subject(s)
Epidermolysis Bullosa/etiology , Epidermolysis Bullosa/metabolism , Peptides/metabolism , Protein Interaction Domains and Motifs , Animals , Biomarkers , Disease Models, Animal , Epidermolysis Bullosa/pathology , Fibrosis , Immunohistochemistry , Mice , Mice, Knockout , Neuropilin-1/metabolism , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Recombinant Fusion Proteins/pharmacology , Skin/drug effects , Skin/metabolism , Transforming Growth Factor beta/metabolism , Wound Healing/drug effects
11.
Nanomaterials (Basel) ; 10(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32013041

ABSTRACT

Growth factors, chemokines and cytokines guide tissue regeneration after injuries. However, their applications as recombinant proteins are almost non-existent due to the difficulty of maintaining their bioactivity in the protease-rich milieu of injured tissues in humans. Safety concerns have ruled out their systemic administration. The vascular system provides a natural platform for circumvent the limitations of the local delivery of protein-based therapeutics. Tissue selectivity in drug accumulation can be obtained as organ-specific molecular signatures exist in the blood vessels in each tissue, essentially forming a postal code system ("vascular zip codes") within the vasculature. These target-specific "vascular zip codes" can be exploited in regenerative medicine as the angiogenic blood vessels in the regenerating tissues have a unique molecular signature. The identification of vascular homing peptides capable of finding these unique "vascular zip codes" after their systemic administration provides an appealing opportunity for the target-specific delivery of therapeutics to tissue injuries. Therapeutic proteins can be "packaged" together with homing peptides by expressing them as multi-functional recombinant proteins. These multi-functional recombinant proteins provide an example how molecular engineering gives to a compound an ability to home to regenerating tissue and enhance its therapeutic potential. Regenerative medicine has been dominated by the locally applied therapeutic approaches despite these therapies are not moving to clinical medicine with success. There might be a time to change the paradigm towards systemically administered, target organ-specific therapeutic molecules in future drug discovery and development for regenerative medicine.

12.
J Control Release ; 300: 73-80, 2019 04 28.
Article in English | MEDLINE | ID: mdl-30831135

ABSTRACT

In theranostics, peptide-based platforms have widely been exploited owing to their unique biological functions and chemical versatilities. As a tumor-homing ligand, internalizing RGD peptide (iRGD), composed of a tumor-targeting sequence (RGD) and a cell-penetrating C-end Rule (CendR) motif, is known to facilitate the tumor-specific delivery of payloads that are covalently conjugated on its N-terminal fragment or co-administered without any covalent linkages. However, theranostic uses of the iRGD-based platform remain in its infancy with its full potential unexplored; for instance, detailed mechanism of iRGD fragmentation during internalization, strategies for the tumor-specific release of payloads from iRGD and the role of the C-terminal iRGD fragment in delivery have yet to be revealed. In this study, we designed a dual-channel fluorescent cyclic iRGD (TAMRA-iRGDC-Cy5.5) to track each of the N- and C-terminal fragments separately during the tumor internalization process. It turned out that both fragments undergo translocation into cancer cells together and are localized within endosomal-lysosomal compartments. The resulting co-internalization of both iRGD fragments allowed us to develop a new theranostic peptide platform (Cy5.5-iRGDC-Pt(IV)) by conjugating a fluorescent dye and a cisplatin prodrug on each terminus of cyclic iRGD for simultaneous cancer-targeted imaging and therapy. Compared to a control peptide having a non-iRGD sequence, the Cy5.5-iRGDC-Pt(IV) did not only provide a better tumor imaging contrast but also induced tumor-specific apoptosis leading to efficacious tumor suppression. Besides the outstanding cancer imaging and therapeutic performance, the Cy5.5-iRGDC-Pt(IV) revealed negligible systemic toxicity, holding potential to be applied for theranostic uses.


Subject(s)
Antineoplastic Agents/administration & dosage , Cisplatin/administration & dosage , Drug Delivery Systems , Oligopeptides/administration & dosage , Prodrugs/administration & dosage , Animals , Cell Line, Tumor , Cell Survival/drug effects , Humans , Male , Mice, Inbred BALB C , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/metabolism , Theranostic Nanomedicine
13.
Acta Pharm Sin B ; 8(5): 825-832, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30245969

ABSTRACT

The dense extracellular matrix and high interstitial fluid pressure of tumor tissues prevent the ability of anti-tumor agents to penetrate deep into the tumor parenchyma for treatment effects. C-end rule (CendR) peptides can enhance the permeability of tumor blood vessels and tumor tissues via binding to neuropilin-1 (NRP-1), thus aiding in drug delivery. In this study, we selected one of the CendR peptides (sequence RGERPPR) as the parent l-peptide and substituted d-amino acids for the l-amino acids to synthesize its inverso peptide D(RGERPPR). We investigated the NRP-1 binding activity and tumor-penetrating ability of D(RGERPPR). We found that the binding affinity of D(RGERPPR) with NRP-1 and the cellular uptake was significantly higher than that of RGERPPR. Evans Blue tests revealed that D(RGERPPR) exhibited improved tumor-penetrating ability in C6, U87 and A549 tumor-bearing nude mice. Using nude mice bearing A549 xenograft tumors as a model, we found that the rate of tumor growth in the group co-administered with D(RGERPPR) and gemcitabine (Gem) was significantly lower than the gemcitabine-treated group with a tumor suppression rate (TSR%) of 55.4%. Together, our results demonstrate that D(RGERPPR) is a potential tumor-penetrating peptide.

14.
Biochim Biophys Acta Proteins Proteom ; 1866(4): 541-548, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29458191

ABSTRACT

Entry of human T-cell lymphotropic virus type 1 (HTLV-1) into host cells is mainly mediated by interactions between the viral envelope glycoprotein surface unit (SU) and three host receptors: glucose transporter type 1, heparin/heparan sulfate proteoglycan, and neuropilin-1 (Nrp1). Here, we analyzed the interaction between HTLV-1 SU and Nrp1 using nuclear magnetic resonance and isothermal titration calorimetry. We found that two SU peptides, residues 85-94 and residues 304-312, bound directly to the Nrp1 b1 domain with affinities of 7.4 and 17.7 µM, respectively. The binding modes of both peptides were almost identical to those observed for Tuftsin and vascular endothelial growth factor A binding to the Nrp1 b1 domain. These results suggest that the C-terminal region of HTLV-1 SU contains a novel site for direct binding of virus to the Nrp1 b1 domain. Our biophysical characterization of the SU peptides may help in developing inhibitors of HTLV-1 entry.


Subject(s)
Gene Products, env/chemistry , Human T-lymphotropic virus 1/chemistry , Neuropilin-1/chemistry , Retroviridae Proteins, Oncogenic/chemistry , Binding Sites , Gene Products, env/genetics , Gene Products, env/metabolism , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans , Neuropilin-1/genetics , Neuropilin-1/metabolism , Protein Binding , Retroviridae Proteins, Oncogenic/genetics , Retroviridae Proteins, Oncogenic/metabolism
15.
Acta Pharmaceutica Sinica B ; (6): 825-832, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-690860

ABSTRACT

The dense extracellular matrix and high interstitial fluid pressure of tumor tissues prevent the ability of anti-tumor agents to penetrate deep into the tumor parenchyma for treatment effects. C-end rule (CendR) peptides can enhance the permeability of tumor blood vessels and tumor tissues binding to neuropilin-1 (NRP-1), thus aiding in drug delivery. In this study, we selected one of the CendR peptides (sequence RGERPPR) as the parent l-peptide and substituted d-amino acids for the l-amino acids to synthesize its inverso peptide (RGERPPR). We investigated the NRP-1 binding activity and tumor-penetrating ability of (RGERPPR). We found that the binding affinity of (RGERPPR) with NRP-1 and the cellular uptake was significantly higher than that of RGERPPR. Evans Blue tests revealed that (RGERPPR) exhibited improved tumor-penetrating ability in C6, U87 and A549 tumor-bearing nude mice. Using nude mice bearing A549 xenograft tumors as a model, we found that the rate of tumor growth in the group co-administered with (RGERPPR) and gemcitabine (Gem) was significantly lower than the gemcitabine-treated group with a tumor suppression rate (TSR%) of 55.4%. Together, our results demonstrate that (RGERPPR) is a potential tumor-penetrating peptide.

16.
Adv Drug Deliv Rev ; 110-111: 3-12, 2017 02.
Article in English | MEDLINE | ID: mdl-27040947

ABSTRACT

In vivo screening of phage libraries in tumor-bearing mice has been used to identify peptides that direct phage homing to a tumor. The power of in vivo phage screening is illustrated by the recent discovery of peptides with unique tumor-penetrating properties. These peptides activate an endocytic transport pathway related to but distinct from macropinocytosis. They do so through a complex process that involves binding to a primary, tumor-specific receptor, followed by a proteolytic cleavage, and binding to a second receptor. The second receptor, neuropilin-1 (or neuropilin-2) activates the transport pathway. This trans-tissue pathway, dubbed the C-end Rule (CendR) pathway, mediates the extravasation transport through extravascular tumor tissue of payloads ranging from small molecule drugs to nanoparticles. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. Targeted delivery with tumor-penetrating peptides has been shown to specifically increase the accumulation of drugs, antibodies and nanotherapeutics in experimental tumors in vivo, and in human tumors ex vivo. Remarkably the payload does not have to be coupled to the peptide; the peptide activates a bulk transport system that sweeps along a drug present in the blood. Treatment studies in mice have shown improved anti-tumor efficacy and less damage to normal tissues with drugs ranging from traditional chemotherapeutics to antibodies, and to nanoparticle drugs.


Subject(s)
Drug Delivery Systems/methods , Peptides/administration & dosage , Peptides/pharmacokinetics , Animals , Cell Line, Tumor , Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/pharmacokinetics , Humans , Nanoparticles/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neuropilin-1/metabolism , Neuropilin-2/metabolism , Peptide Library , Pinocytosis
17.
Tumour Biol ; 37(9): 12123-12131, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27220318

ABSTRACT

The aim of the study is to evaluate the efficacy of 68Ga-labeled iNGR, containing Asn-Gly-Arg (NGR) homing sequence and CendR (R/KXXR/K) penetrating motif, as a new molecular probe for microPET imaging of CD13-positive xenografts. The synthesized iNGR and NGR peptides were conjugated with DOTA and then labeled with 68Ga. 68Ga-iNGR and 68Ga-NGR were compared in the performance of the in vitro stability, partition coefficient, binding affinity, cell uptake analysis, in vivo microPET imaging, and biodistribution studies in CD13-positive HT-1080 and CD13-negative HT-29 cell lines. The in vitro results revealed that both probes exhibited high radiochemical purity and stability, and no significant difference between two probes was observed in terms of the binding affinity to CD13. In vivo microPET/CT imaging showed that the uptake of 68Ga-iNGR in HT-1080 tumor was significantly higher than that of 68Ga-NGR. Moreover, tumor 68Ga-iNGR uptake could be completely blocked by cold NGR and partially blocked by neutralizing NRP-1 antibody. We concluded that 68Ga-iNGR has a higher tumor uptake and better tumor retention than 68Ga-NGR through NRP-1, indicating that CendR motif modification is a promising method for improving NGR peptide performance.


Subject(s)
CD13 Antigens/analysis , Gallium Radioisotopes , Neoplasms, Experimental/diagnostic imaging , Oligopeptides/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals , Animals , Cell Line, Tumor , Female , Heterografts , Humans , Mice , Mice, Inbred BALB C
18.
Sci Adv ; 1(10): e1500821, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26601141

ABSTRACT

Cell-penetrating peptides (CPPs) have been widely used to deliver nanomaterials and other types of macromolecules into mammalian cells for therapeutic and diagnostic use. Cationic CPPs that bind to heparan sulfate (HS) proteoglycans on the cell surface induce potent endocytosis; however, the role of other surface receptors in this process is unclear. We describe the convergence of an HS-dependent pathway with the C-end rule (CendR) mechanism that enables peptide ligation with neuropilin-1 (NRP1), a cell surface receptor known to be involved in angiogenesis and vascular permeability. NRP1 binds peptides carrying a positive residue at the carboxyl terminus, a feature that is compatible with cationic CPPs, either intact or after proteolytic processing. We used CPP and CendR peptides, as well as HS- and NRP1-binding motifs from semaphorins, to explore the commonalities and differences of the HS and NRP1 pathways. We show that the CendR-NRP1 interaction determines the ability of CPPs to induce vascular permeability. We also show at the ultrastructural level, using a novel cell entry synchronization method, that both the HS and NRP1 pathways can initiate a macropinocytosis-like process and visualize these CPP-cargo complexes going through various endosomal compartments. Our results provide new insights into how CPPs exploit multiple surface receptor pathways for intracellular delivery.

19.
J Control Release ; 178: 108-17, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24434424

ABSTRACT

Advancements in liposomal drug delivery have produced long circulating and very stable drug formulations. These formulations minimize systemic exposure; however, unfortunately, therapeutic efficacy has remained limited due to the slow diffusion of liposomal particles within the tumor and limited release or uptake of the encapsulated drug. Here, the carboxyl-terminated CRPPR peptide, with affinity for the receptor neuropilin-1 (NRP), which is expressed on both endothelial and cancer cells, was conjugated to liposomes to enhance the tumor accumulation. Using a pH sensitive probe, liposomes were optimized for specific NRP binding and subsequent cellular internalization using in vitro cellular assays. Liposomes conjugated with the carboxyl-terminated CRPPR peptide (termed C-LPP liposomes) bound to the NRP-positive primary prostatic carcinoma cell line (PPC-1) but did not bind to the NRP-negative PC-3 cell line, and binding was observed with liposomal peptide concentrations as low as 0.16mol%. Binding of the C-LPP liposomes was receptor-limited, with saturation observed at high liposome concentrations. The identical peptide sequence bearing an amide terminus did not bind specifically, accumulating only with a high (2.5mol%) peptide concentration and adhering equally to NRP positive and negative cell lines. The binding of C-LPP liposomes conjugated with 0.63mol% of the peptide was 83-fold greater than liposomes conjugated with the amide version of the peptide. Cellular internalization was also enhanced with C-LPP liposomes, with 80% internalized following 3h incubation. Additionally, fluorescence in the blood pool (~40% of the injected dose) was similar for liposomes conjugated with 0.63mol% of carboxyl-terminated peptide and non-targeted liposomes at 24h after injection, indicating stable circulation. Prior to doxorubicin treatment, in vivo tumor accumulation and vascular targeting were increased for peptide-conjugated liposomes compared to non-targeted liposomes based on confocal imaging of a fluorescent cargo, and the availability of the vascular receptor was confirmed with ultrasound molecular imaging. Finally, over a 4-week course of therapy, tumor knockdown resulting from doxorubicin-loaded, C-LPP liposomes was similar to non-targeted liposomes in syngeneic tumor-bearing FVB mice and C-LPP liposomes reduced doxorubicin accumulation in the skin and heart and eliminated skin toxicity. Taken together, our results demonstrate that a carboxyl-terminated RXXR peptide sequence, conjugated to liposomes at a concentration of 0.63mol%, retains long circulation but enhances binding and internalization, and reduces toxicity.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Neoplasms/drug therapy , Neuropilin-1/metabolism , Oligopeptides/administration & dosage , Animals , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/administration & dosage , Contrast Media/chemistry , Doxorubicin/chemistry , Female , Gadolinium/administration & dosage , Gadolinium/chemistry , Heterocyclic Compounds/administration & dosage , Heterocyclic Compounds/chemistry , Humans , Liposomes , Mice , Neoplasms/metabolism , Neoplasms/pathology , Neuropilin-1/chemistry , Oligopeptides/chemistry , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Polyethylene Glycols/chemistry , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL