Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Microorganisms ; 12(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39338440

ABSTRACT

Nematode-trapping (NT) fungi are a major resource for controlling parasitic nematodes. Arthrobotrys flagrans, as a typical NT fungus, can capture nematodes by producing three-dimensional nets. The APSES transcription factor Swi6 plays a vital role in fungal growth and the pathogenicity of pathogens. In this study, we characterized AfSwi6 via gene disruption using the homologous recombinant method and transcriptome sequencing. Knockout of the AfSwi6 gene caused defects in mycelial growth, trap formation and pathogenicity, chlamydospore production, and stress response. Moreover, the transcriptome data indicated that AfSwi6 was related to DNA repair, stress response, and plasma membrane fusion. The result showed that AfSwi6 has a significant effect on trap development and chlamydospore production in A. flagrans.

2.
Pharmaceutics ; 16(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38794267

ABSTRACT

BACKGROUND: Relapse of Candida albicans urinary tract infection (UTI) is frequent despite appropriate treatment, as commonly used antifungals such fluconazole and flucytosine are only fungistatics. To improve treatment of Candida UTI and decrease relapses, understanding the long-term metabolic activity and survival of C. albicans in urine containing antifungals at minimal inhibitory concentration (MIC) is needed. METHODS: we monitored the survival, metabolic activity and consumption of glucose and proteins by C. albicans using conventional methods and isothermal microcalorimetry (IMC). We also investigated the influence of dead Candida cells on the growth of their living counterparts. RESULTS: For 33 days, weak activity was observed in samples containing antifungals in which C. albicans growth rate was reduced by 48%, 60% and 88%, and the lag increased to 172 h, 168 h and 6 h for amphotericin, flucytosine and fluconazole, respectively. The metabolic activity peaks corresponded to the plate counts but were delayed compared to the exhaustion of resources. The presence of dead cells promoted growth in artificial urine, increasing growth rate and reducing lag in similar proportions. CONCLUSIONS: Even with antifungal treatment, C. albicans relapses are possible. The low metabolic activity of surviving cells leading to regrowth and chlamydospore formation possibly supported by autophagy are likely important factors in relapses.

3.
Pathogens ; 11(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36558767

ABSTRACT

Fusarium oxysporum f. sp. radicis-lycopersici (Forl) causes crown and root rot disease in tomato, effecting severe economic losses. However, research on the pathogenicity genes and infection strategy of Forl is limited compared to that on F. oxysporum f. sp. lycopersici (Fol). In this study, we characterized FoMC69 gene in Forl as a homolog of MC69 required for pathogenicity in rice blast pathogen-Magnaporthe oryzae. Gene expression analysis revealed that FoMC69 expressionin Forl is higher than that in Folin planta. FoMC69-knockout mutant of Forl had significantly reduced root rot symptoms compared to the wild-type strain, and full pathogenicity was restored by complementation. By contrast, ΔFoMC69 mutant of Fol presented the same symptoms as the wild type, suggesting that FoMC69 of Forl, but not of Fol, was essential for full virulence in tomato plants. Morphological differences between the Forl and ΔFoMC69 in the roots were observed by fluorescent labeling using WGA-FITC. Chlamydospores of the ΔFoMC69 mutant of Forlcontinuously increased during infection and were three times higher than that of the wild type at 21 days post-inoculation. These observations suggest that FoMC69 of Forl is required for virulence to tomato plants by involving the normal development and germination of chlamydospores.

4.
Viruses ; 14(7)2022 07 14.
Article in English | MEDLINE | ID: mdl-35891512

ABSTRACT

A new partititvirus isolated from a Trichoderma harzianum strain (T673), collected in China, was characterized and annotated as Trichoderma harzianum partitivirus 2 (ThPV2). The genome of ThPV2 consists of a 1693 bp dsRNA1 encoding a putative RNA-dependent RNA polymerase (RdRp) and a 1458 bp dsRNA2 encoding a hypothetical protein. In comparative studies employing the ThPV2-infected strain (T673) and a strain cured by ribavirin treatment (virus-free strain T673-F), we investigated biological effects of ThPV2 infection. While the growth rate of the virus-infected fungus differed little from that of the cured variant, higher mycelial density, conidiospore, and chlamydospore production were observed in the virus-infected strain T673. Furthermore, both the ThPV2-infected and the cured strain showed growth- and development-promoting activities in cucumber plants. In vitro confrontation tests showed that strains T673 and T673-F inhibited several important fungal pathogens and an oomycete pathogen in a comparable manner. Interestingly, in experiments with cucumber seeds inoculated with Fusarium oxysporum f. sp. cucumerinum, the ThPV2-infected strain T673 showed moderately but statistically significantly improved biocontrol activity when compared with strain T673-F. Our data broaden the spectrum of known mycoviruses and provide relevant information for the development of mycoviruses for agronomic applications.


Subject(s)
Fungal Viruses , Hypocreales , Trichoderma , Fungal Viruses/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Spores, Fungal
5.
Mycologia ; 114(4): 682-696, 2022.
Article in English | MEDLINE | ID: mdl-35679164

ABSTRACT

This study was conducted to elucidate evolutionary relationships and species diversity within the Fusarium buharicum species complex (FBSC). We also evaluate the potential of these species to produce mycotoxins and other bioactive secondary metabolites. Maximum likelihood and maximum parsimony analyses of sequences from portions of four marker loci (ITS rDNA, TEF1, RPB1, and RPB2) and the combined 4495 bp data set support recognition of seven genealogically exclusive species within the FBSC. Two of the three newly discovered species are formally described as F. abutilonis and F. guadeloupense based on concordance of gene genealogies and morphological data. Fusarium abutilonis induces leaf, stem, and root lesions on several weedy Malvaceae (Abution theophrasti, Anoda cristata, Sida spinosa) and a fabaceous host (Senna obtusifolia) in North America and also was recovered from soil in New Caledonia. Fusarium abutilonis, together with its unnamed sister, Fusarium sp. ex common marsh mallow (Hibiscus moscheutos) from Washington state, and F. buharicum pathogenic to cotton and kenaf in Russia and Iran, respectively, were strongly supported as a clade of malvaceous pathogens. The four other species of the FBSC are not known to be phytopathogenic; however, F. guadeloupense was isolated from human blood in Texas and soil in Guadeloupe. The former isolate is unique because it represents the only known case of a fusarial infection disseminated hematogenously by a species lacking microconidia and the only documented fusariosis caused by a member of the FBSC. Whole genome sequence data and extracts of cracked maize kernel cultures were analyzed to assess the potential of FBSC isolates to produce mycotoxins, pigments, and phytohormones.


Subject(s)
Fusarium , Mycotoxins , Humans , Mycotoxins/metabolism , Phylogeny , Plant Diseases , Soil , Texas
6.
Trop Anim Health Prod ; 54(3): 179, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35511381

ABSTRACT

We aimed to evaluate a Brazilian commercial formulation of the fungus Duddingtonia flagrans (Bioverm®) for controlling gastrointestinal nematodes in sheep kept on native pasture in the Caatinga biome, in the semiarid region of Brazil. Twenty ewes, aged between 12 and 18 months, were divided into two groups. In the treated group, each animal received 1 g of the Bioverm® product for each 10 kg of live weight, daily, together with commercial feed, for 6 months. In the control group, the animals received feed without Bioverm®. Each group remained throughout the experiment in a 1.2-ha paddock. Monthly counts of eggs per gram (EPG) of feces, fecal cultures, packed cell volume (PCV), weight measurements, and collection of leaf mass from the pasture were performed. There was greater reduction in EPG, greater weight gain, and less infestation by infective larvae in the paddock of the Bioverm® group, compared with the control group (p < 0.05). There was no significant difference (p ≥ 0.05) in the mean PCV percentage between the Bioverm® and control groups. In coprocultures, Haemonchus sp. was the most prevalent helminth. Bioverm® (D. flagrans) was efficient for biological control of sheep gastrointestinal nematodes in the semiarid region of Brazil.


Subject(s)
Nematoda , Sheep Diseases , Animals , Ascomycota , Brazil/epidemiology , Feces , Female , Larva , Ovum , Parasite Egg Count/veterinary , Pest Control, Biological , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/prevention & control
7.
J Fungi (Basel) ; 8(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35628735

ABSTRACT

Rice false smut, caused by Ustilaginoidea virens, is a serious disease of rice worldwide, severely reducing the quantity and quality of rice production. The conserved fungal velvet proteins are global regulators of diverse cellular processes. We identified and functionally characterized two velvet genes, UvVEA and UvVELB, in U. virens. The deletion of these genes affected the conidiation of U. virens but had no effect on the virulence of this pathogen. Interestingly, the ΔUvVEA mutants appeared in the form of smaller false smut balls with a reduced number of chlamydospores compared with the wide-type strains. In addition, the deletion of UvVEA affected the expression of some transmembrane transport genes during chlamydospore formation and rice false smut balls development. Furthermore, the ΔUvVEA mutants were shown to be defective in the utilization of glucose. These findings proved the regulatory mechanism underlying the formation of rice false smut balls and chlamydospores and provided a basis for the further exploration of the mechanism of these processes.

8.
Curr Biol ; 32(7): 1523-1533.e6, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35235767

ABSTRACT

Fungi and bacteria are ubiquitous constituents of all microbiomes, yet mechanisms of microbial persistence in polymicrobial communities remain obscure. Here, we examined the hypothesis that specialized fungal survival structures, chlamydospores, induced by bacterial lipopeptides serve as bacterial reservoirs. We find that symbiotic and pathogenic gram-negative bacteria from non-endosymbiotic taxa enter and propagate in chlamydospores. Internalized bacteria have higher fitness than planktonic bacteria when challenged with abiotic stress. Further, tri-cultures of Ralstonia solanacearum, Pseudomonas aeruginosa, and Aspergillus flavus reveal the unprecedented finding that chlamydospores are colonized by endofungal bacterial communities. Our work identifies a previously unknown ecological role of chlamydospores, provides an expanded view of microbial niches, and presents significant implications for the persistence of pathogenic and beneficial bacteria.


Subject(s)
Microbiota , Ralstonia solanacearum , Bacteria , Fungi , Housing , Symbiosis
9.
Exp Parasitol ; 230: 108156, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34534535

ABSTRACT

The nematophagous fungus Duddingtonia flagrans, used for the biological control of gastrointestinal nematodes in livestock, is fed to infected animals so its chlamydospores and the parasite eggs are voided together with faeces where the fungus preys on nematode larvae, thus reducing pasture infectivity. The number of chlamydospores needed for the fungus to be efficient in the presence of a wide range in numbers of parasitic eggs is largely unknown and a matter of discussion. The aim of this study was to determine the fungal efficacy of four different chlamydospore concentrations against three different levels of cattle faecal egg counts. Fungal concentrations of 11000, 6250, 3000 and 1000 chlamydospores/gram of faeces (cpg) were added to cultures containing 840, 480 or 100 eggs/gram of faeces (epg). After 14 days of incubation, the efficacy of D. flagrans, in decreasing order of chlamydospore concentrations, ranged from 100% (P < 0.0001) to 77% (P > 0.0999) in the 100 epg groups; 100% (P < 0.0001) to 92% (P = 0.4625) in the 480 epg groups and 100% (P < 0.0001) to 96% (P = 0.7081) in the 840 epg groups. The results indicate that the numbers of eggs in cattle faeces were not a determining factor on the fungal efficacy against gastrointestinal nematodes.


Subject(s)
Ascomycota/growth & development , Cattle Diseases/parasitology , Gastrointestinal Diseases/veterinary , Nematode Infections/veterinary , Animals , Ascomycota/physiology , Cattle , Cattle Diseases/microbiology , Feces/microbiology , Feces/parasitology , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/parasitology , Nematode Infections/microbiology , Nematode Infections/parasitology , Parasite Egg Count/veterinary
10.
Front Microbiol ; 12: 654855, 2021.
Article in English | MEDLINE | ID: mdl-34168625

ABSTRACT

Trichoderma spp. are widely used biocontrol agents which are antagonistic to a variety of plant pathogens. Chlamydospores are a type of propagules produced by many fungi that have thick walls and are highly resistant to adverse environmental conditions. Chlamydospore preparations of Trichoderma spp. can withstand various storage conditions, have a longer shelf life than conidial preparations and have better application potential. However, large-scale production of chlamydospores has proven difficult. To understand the molecular mechanisms governing chlamydospore formation (CF) in Trichoderma fungi, we performed a comprehensive analysis of transcriptome dynamics during CF across 8 different developmental time points, which were divided into 4 stages according to PCA analysis: the mycelium growth stage (S1), early and middle stage of CF (S2), flourishing stage of CF (S3), and late stage of CF and mycelia initial autolysis (S4). 2864, 3206, and 3630 DEGs were screened from S2 vs S1, S3 vs S2, and S4 vs S3, respectively. We then identified the pathways and genes that play important roles in each stage of CF by GO, KEGG, STC and WGCNA analysis. The results showed that DEGs in the S2 vs S1 were mainly enriched in organonitrogen compound metabolism, those in S3 vs S2 were mainly involved in secondary metabolite, cell cycle, and N-glycan biosynthesis, and DEGs in S4 vs S3 were mainly involved in lipid, glycogen, and chitin metabolic processes. We speculated that mycelial assimilation and absorption of exogenous nitrogen in the early growth stage (S1), resulted in subsequent nitrogen deficiency (S2). At the same time, secondary metabolites and active oxygen free radicals released during mycelial growth produced an adverse growth environment. The resulting nitrogen-deficient and toxin enriched medium may stimulate cell differentiation by initiating cell cycle regulation to induce morphological transformation of mycelia into chlamydospores. High expression of genes relating to glycogen, lipid, mannan, and chitin synthetic metabolic pathways during the flourishing (S3) and late stages (S4) of CF may be conducive to energy storage and cell wall construction in chlamydospores. For further verifying the functions of the amino sugar and nucleotide sugar metabolism (tre00520) pathway in the CF of T. virens GV29-8 strain, the chitin synthase gene (TRIVIDRAFT_90152), one key gene of the pathway, was deleted and resulted in the dysplasia of mycelia and an incapability to form normal chlamydospores, which illustrated the pathway affecting the CF of T. virens GV29-8 strain. Our results provide a new perspective for understanding the genetics of biochemical pathways involved in CF of Trichoderma spp.

11.
Vet Parasitol ; 295: 109458, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34029852

ABSTRACT

Equine gastrointestinal nematodiosis contributes to the lower productivity of these animals. There are growing reports of the emergence of nematodes resistant to the drugs used for decades in anthelmintic treatments. An alternative to the emergence of resistance may be the use of nematophagous fungi as a complementary method of treatment. Therefore, the objective was to evaluate the effects of the use of the product Bioverm® as a carrier of Duddingtonia flagrans, on pasture contamination level and equine parasitic burden. Sixteen mares were used, divided into two groups, one control and one treated, in which the treated animals received a dose of 1 g of Bioverm®, containing 105 chlamydospores per gram of the commercial product for each 10 kg of body weight, per day, for six months. Efficacy was evaluated by count of eggs per gram of faeces (EPG), coproculture and larval count on pastures and its correlation with climate, as well as weight gain evaluation. During the study, a significant influence of the formulation on weight gain and EPG was observed. The recovery of larvae from coprocultures revealed the predominance of small over large strongyles. There was a significant difference (p < 0.05) between the averages of the number of larvae of small strongyles recovered in the pasture at a distance of 0-20 cm from the faeces of treated and control groups. A correlation was also observed between the number of larvae recovered from the pasture and the average temperature during the experimental period, mainly in August and September. The ingestion of Bioverm® enhances the biological control of gastrointestinal nematodes of pasturing horses.


Subject(s)
Ascomycota/physiology , Gastrointestinal Diseases , Horse Diseases , Nematoda , Animals , Feces , Female , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/parasitology , Gastrointestinal Diseases/therapy , Gastrointestinal Diseases/veterinary , Horse Diseases/microbiology , Horse Diseases/parasitology , Horse Diseases/therapy , Horses , Larva , Nematoda/microbiology
12.
Biomolecules ; 11(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672420

ABSTRACT

The major intrinsic protein (MIP) superfamily is a key part of the fungal transmembrane transport network. It facilitates the transport of water and low molecular weight solutes across biomembranes. The fungal uncharacterized X-Intrinsic Protein (XIP) subfamily includes the full protein diversity of MIP. Their biological functions still remain fully hypothetical. The aim of this study is still to deepen the diversity and the structure of the XIP subfamily in light of the MIP counterparts-the aquaporins (AQPs) and aquaglyceroporins (AQGPs)-and to describe for the first time their function in the development, biomass accumulation, and mycoparasitic aptitudes of the fungal bioagent Trichoderma atroviride. The fungus-XIP clade, with one member (TriatXIP), is one of the three clades of MIPs that make up the diversity of T. atroviride MIPs, along with the AQPs (three members) and the AQGPs (three members). TriatXIP resembles those of strict aquaporins, predicting water diffusion and possibly other small polar solutes due to particularly wider ar/R constriction with a Lysine substitution at the LE2 position. The XIP loss of function in ∆TriatXIP mutants slightly delays biomass accumulation but does not impact mycoparasitic activities. ∆TriatMIP forms colonies similar to wild type; however, the hyphae are slightly thinner and colonies produce rare chlamydospores in PDA and specific media, most of which are relatively small and exhibit abnormal morphologies. To better understand the molecular causes of these deviant phenotypes, a wide-metabolic survey of the ∆TriatXIPs demonstrates that the delayed growth kinetic, correlated to a decrease in respiration rate, is caused by perturbations in the pentose phosphate pathway. Furthermore, the null expression of the XIP gene strongly impacts the expression of four expressed MIP-encoding genes of T. atroviride, a plausible compensating effect which safeguards the physiological integrity and life cycle of the fungus. This paper offers an overview of the fungal XIP family in the biocontrol agent T. atroviride which will be useful for further functional analysis of this particular MIP subfamily in vegetative growth and the environmental stress response in fungi. Ultimately, these findings have implications for the ecophysiology of Trichoderma spp. in natural, agronomic, and industrial systems.


Subject(s)
Aquaporins/chemistry , Aquaporins/physiology , Fungal Proteins/chemistry , Fungal Proteins/physiology , Hypocreales/metabolism , Biomass , Carbon/chemistry , Computer Simulation , Gene Deletion , Gene Expression Regulation, Fungal , Hyphae , Kinetics , Models, Biological , Mutation , Oligonucleotide Array Sequence Analysis , Pentose Phosphate Pathway , Phenotype , Phylogeny , Protein Conformation , Water/chemistry
13.
J Biol Inorg Chem ; 26(2-3): 299-311, 2021 05.
Article in English | MEDLINE | ID: mdl-33586048

ABSTRACT

In previous studies it was found that the antimicrobial properties of pulcherrimin-producing Metschnikowia species are related to the formation of a red pigment-pulcherrimin and sequestration of free iron from their growth medium. For strains of Metschnikowia pulcherrima, M. sinensis, M. shaxiensis, and M. fructicola, at a high, ≈80 mg/kg, elemental Fe concentration in agar growth media we observed the essentially different (metal luster, non-glossy rust like, and colored) yeast biomass coatings. For the studied strains the optical and scanning electron microscopies showed the increased formation of chlamydospores that accumulate a red pigment-insoluble pulcherrimin rich in iron. The chlamydospore formation and decay depended on the iron concentration. In this study pulcherrimin in biomass of the selected Metschnikowia strains was detected by Mössbauer spectroscopy. At ≈80 mg/kg elemental Fe concentration the Mössbauer spectra of biomass of the studied strains were almost identical to these of purified pulcherrimin. Iron in pulcherrimin reached ≈1% of biomass by weight which is very high in comparison with elemental Fe percentage in growth medium and is not necessary for yeast growth. The pulcherrimin in biomass was also observed by Mössbauer spectroscopy at lower, ≈5 mg/kg, elemental Fe concentration. Through chemical binding of iron pulcherrimin sequestrates the soluble Fe in the growth media. However, at high Fe concentrations, the chemical and biochemical processes lead to the pulcherrimin accumulation in biomass chlamydospores. When soluble iron is sequestrated or removed from the growth media in this way, it becomes inaccessible for other microorganisms.


Subject(s)
Amino Acids, Sulfur/biosynthesis , Biomass , Iron/metabolism , Metschnikowia/metabolism , Piperidines , Species Specificity
14.
Vet Parasitol ; 278: 109038, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32000048

ABSTRACT

Thirty-two Friesian cattle under a leaders/followers four-day rotation and passing eggs of trematodes and gastrointestinal nematodes (GIN) were studied in two trials for the integrated control of these helminths over two years. In the first trial, the effect of rotational pasturing was assessed on a group of leaders (milking cows, G-L1) and followers (dried-off cows and heifers, G-F1) supplemented daily with commercial nutritional pellets. In the second trial, leaders (G-L2) and followers (G-F2) were maintained under a rotational pasturing regime; the cows received daily commercial pelleted feed and heifers pellets manufactured with a blend of parasiticide fungi (3 × 105 chlamydospores of both Mucor circinelloides and Duddingtonia flagrans/kg pellet). Deworming via closantel and albendazole was performed in cows in each trial at the beginning of their drying periods, and fourteen days later, the fecal egg-count reductions (FECR) of Calicophoron daubneyi and GIN were from 94 to 100% (average 98 %), while the percentages of reduction of cattle shedding eggs (CPCR) were from 50 to 100% (average 77 % and 82 %, respectively). The heifers were dewormed one time only, at the beginning of each trial, and the values of FECR and CPCR were 100 % against C. daubneyi and 96 % and 83 %, respectively, against GIN. Over a period of 24 months, significantly higher numbers of helminth egg-output were observed in G-L1, with the lowest numbers in G-F2. C. daubneyi egg output was reduced by 5 % (G-L1) and 42 % (G-F1) at the end of trial 1 and by 83 % (G-L2) and 100 % (G-F2) at the end of trial 2; the numbers of GIN egg-output decreased by 13 % (G-L1) and 18 % (G-F1) at the end of trial 1, and by 72 % (G-L2) and 85 % (G-F2) at the end of trial 2. No adverse effects were detected in cattle taking pellets enriched with fungal spores (G-F2). It is concluded that long-term ingestion of spores of M. circinelloides and D. flagrans provides a valuable tool to improve the effect of rotational grazing and to lessen the risk of infection by C. daubneyi and GIN in dairy cattle, and accordingly, the performance of integrated control programs.


Subject(s)
Animal Husbandry/methods , Anthelmintics/administration & dosage , Cattle Diseases/prevention & control , Diet/veterinary , Helminthiasis, Animal/prevention & control , Spores, Fungal/chemistry , Animal Feed/analysis , Animals , Cattle , Duddingtonia/chemistry , Female , Mucor/chemistry , Spain
15.
MycoKeys ; 59: 95-131, 2019.
Article in English | MEDLINE | ID: mdl-31719781

ABSTRACT

Many species of Ganoderma exhibit a high phenotypic plasticity. Hence, particularly among them, the morphological species concept remains difficult to apply, resulting in a currently confused taxonomy; as a consequence, the geographical distribution range of many species also remains very uncertain. One of the areas with a strong uncertainty, as far as morphological species concept is concerned, is the Neotropics. It is common that names of species described from other regions, mainly from northern temperate areas, have been applied to Neotropical species. The aim of the present study was to determine which species might lay behind the G. weberianum complex in the Neotropics, using morphological studies and phylogenetic inferences based on both single (ITS) and multilocus (ITS, rpb2, and tef1-α) sequences. The results indicated that G. weberianum sensu Steyaert, which is the usually accepted concept for this taxon, was absent from the Neotropics. In this area, G. weberianum sensu Steyaert encompassed at least two phylogenetic species, which are tentatively, for the time being, identified as belonging to G. mexicanum and G. parvulum. These two species could be distinguished morphologically, notably by the ornamentation or its absence on their chlamydospores. The results also showed that additional species from the Neotropics might still exist, including, e.g., G. perzonatum, but their circumscription remains uncertain until now because of the paucity of material available. Furthermore, it was found that the current concept of G. resinaceum embraced a complex of species.

16.
FEMS Microbiol Lett ; 366(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31598721

ABSTRACT

This study mainly investigated the effects of environmental factors on the germination/dormancy, sporulation and resistance of Duddingtonia flagrans chlamydospores. Results showed that the germination temperature of chlamydospores was >10°C and ≤35°C. After the chlamydospores were treated at -20, -40 and -80°C for 12-24 h, they still had the ability to germinate. The chlamydospores germinated at pH 3-13 but did not germinate at pH 1-2 and pH 14. The chlamydospores could tolerate ultraviolet rays for 720 min, but visible light irradiation for 24 h significantly reduced their germination rate. The chlamydospores did not germinate under anaerobic conditions. After the chlamydospores were cultured on water agar (WA) containing 5, 10 and 20% NaCl, their germination rate was significantly inhibited. Once NaCl was removed, the chlamydospores almost completely recovered their germination ability. Among the nine kinds of additives used in the study, 0.3% arginine significantly promoted spore germination (P < 0.05) but 1% trehalose and 1% glycerine significantly inhibited spore germination during incubation from 24 h to 48 h (P < 0.05). This work indicated that D. flagrans chlamydospores are highly resistant to environmental variations and so could be used for biocontrol of animal parasites.


Subject(s)
Duddingtonia/physiology , Hydrogen-Ion Concentration , Temperature , Carbon/metabolism , Energy Metabolism , Nitrogen/metabolism , Oxygen/metabolism , Spores, Fungal
17.
Genes Genomics ; 41(6): 689-699, 2019 06.
Article in English | MEDLINE | ID: mdl-30968334

ABSTRACT

BACKGROUND: Trichoderma is one of the most important biocontrol fungi, which could produce mycelia, conidiospores, and chlamydospores three types of propagules under different conditions. Chlamydospores are produced in harsh conditions in various fungi, and may be more resistant to adverse conditions. However, the knowledge associated with the mechanism of chlamydospore formation remained unclear in Trichoderma. OBJECTIVES: This study is aimed to explore the essential genes and regulatory pathways associated with chlamydospore formation in Trichoderma. METHODS: The culture condition, survival rate, and biocontrol effects of chlamydospores and conidiospores from Trichoderma.harzianum Tr-92 were determined. Furthermore, the whole transcriptome profiles of T. harzianum Tr-92 under chlamydospore-producing and chlamydospore-nonproducing conditions were performed. RESULTS: T. harzianum Tr-92 produced chlamydospores under particular conditions, and chlamydospore-based formulation of T. harzianum Tr-92 exhibited higher biocontrol ability against Botrytis cinerea in cucumber than conidoiospore-based formulation. In the transcriptome analysis, a total of 2,029 differentially expressed genes (DEGs) were identified in T. harzianum Tr-92 under chlamydospore-producing condition, compared to that under chlamydospore-nonproducing condition. GO classification indicated that the DEGs were significantly enriched in 284 terms among biological process, cellular components and molecular function categories. A total of 19 pathways were observed with DEGs by KEGG analysis. Furthermore, fifteen DEGs were verified by quantitative real-time PCR, and the expression profiles were consistent with the transcriptome data. CONCLUSION: The results would provide a basis on the molecular mechanisms underlying Trichoderma sporulation, which would assist the development and application of fungal biocontrol agents.


Subject(s)
Spores, Fungal/genetics , Stress, Physiological , Transcriptome , Trichoderma/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Trichoderma/physiology
18.
Mycologia ; 111(1): 1-12, 2019.
Article in English | MEDLINE | ID: mdl-30676890

ABSTRACT

The cultural characteristics of fungi can provide useful information for studying the biology and ecology of a group of closely related species, but these features are often overlooked in the order Polyporales. Optimal temperature and growth rate data can also be of utility for strain selection of cultivated fungi such as reishi (i.e., laccate Ganoderma species) and potential novel management tactics (e.g., solarization) for butt rot diseases caused by Ganoderma species. Historically, the taxonomy of the laccate (shiny) Ganoderma species has been unresolved and many species have been treated together as G. lucidum. The cultural characteristics of Ganoderma species from the United States are needed to understand the biology of these unique species that have all been lumped under this name. Culture morphology, average growth rate, optimal temperatures, and resiliency to elevated temperature exposure were characterized for isolates of Ganodermataceae taxa from the eastern United States, including Ganoderma curtisii, G. martinicense, G. meredithiae, G. ravenelii, G. sessile, G. tsugae, G. tuberculosum, G. cf. weberianum, G. zonatum, and Tomophagus colossus. We documented differences in linear growth rates and optimal temperatures between taxa. Isolates of G. sessile and T. colossus grew the fastest, and isolates of G. meredithiae, G. ravenelii, and G. tsugae grew the slowest. Isolates of G. sessile, G. martinicense, G. cf. weberianum, and T. colossus constitutively produced chlamydospores on malt extract agar, and these species were the only species to survive long-term exposure (30 or 40 d) to 40 C. We hypothesize that chlamydospores function as survival structures that serve as propagules resilient to adverse temperature conditions, especially heat. Cultural characteristics of G. martinicense, G. ravenelii, G. tuberculosum, and G. cf. weberianum collected from the United States are described for the first time.


Subject(s)
Ganoderma/growth & development , Ganoderma/physiology , Ganoderma/classification , Temperature , United States
19.
Fungal Syst Evol ; 4: 183-200, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32467911

ABSTRACT

Fusarium chlamydosporum represents a well-defined morpho-species of both phytopathological and clinical importance. Presently, five phylo-species lacking Latin binomials have been resolved in the F. chlamydosporum species complex (FCSC). Naming these phylo-species is complicated due to the lack of type material for F. chlamydosporum. Over the years a number of F. chlamydosporum isolates (which were formerly identified based on morphology only) have been accessioned in the culture collection of the Westerdijk Fungal Biodiversity Institute. The present study was undertaken to correctly identify these 'F. chlamydosporum' isolates based on multilocus phylogenetic inference supported by morphological characteristics. Closer scrutiny of the metadata associated with one of these isolates allowed us to propose a neotype for F. chlamydosporum. Phylogenetic inference revealed the presence of nine phylo-species within the FCSC in this study. Of these, eight could be provided with names supported by subtle morphological characters. In addition, a new species, as F. nodosum, is introduced in the F. sambucinum species complex and F. chlamydosporum var. fuscum is raised to species level, as F. coffeatum, in the F. incarnatum-equiseti species complex (FIESC).

20.
Genome Biol Evol ; 9(7): 1971-1977, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28810711

ABSTRACT

Candida albicans is the most common cause of life-threatening fungal infections in humans, especially in immunocompromised individuals. Crucial to its success as an opportunistic pathogen is the considerable dynamism of its genome, which readily undergoes genetic changes generating new phenotypes and shaping the evolution of new strains. Candida africana is an intriguing C. albicans biovariant strain that exhibits remarkable genetic and phenotypic differences when compared with standard C. albicans isolates. Candida africana is well-known for its low degree of virulence compared with C. albicans and for its inability to produce chlamydospores that C. albicans, characteristically, produces under certain environmental conditions. Chlamydospores are large, spherical structures, whose biological function is still unknown. For this reason, we have sequenced, assembled, and annotated the whole transcriptomes obtained from an efficient C. albicans chlamydospore-producing clinical strain (GE1), compared with the natural chlamydospore-negative C. africana clinical strain (CBS 11016). The transcriptomes of both C. albicans (GE1) and C. africana (CBS 11016) clinical strains, grown under chlamydospore-inducing conditions, were sequenced and assembled into 7,442 (GE1 strain) and 8,370 (CBS 11016 strain) high quality transcripts, respectively. The release of the first assembly of the C. africana transcriptome will allow future comparative studies to better understand the biology and evolution of this important human fungal pathogen.


Subject(s)
Candida albicans/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Spores, Fungal/genetics , Transcriptome , Candida albicans/classification , Gene Expression Regulation, Fungal , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL