Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.125
Filter
1.
Appl Spectrosc ; : 37028241267900, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094003

ABSTRACT

The conditions for the smart colorimetric determination of cetylpyridinium chloride and sodium dodecyl sulfate by reaction with Coomassie brilliant blue G (CBBG) have been proposed. The nature of the absorption and fluorescence spectra of aqueous solutions of CBBG as a function of acidity has been investigated. A variety of reagent forms and associations with ionic surfactants have been demonstrated. The composition of the associates formed in the CBBG-cationic surfactant system has been established. The increase in the analytical signal of the cationic surfactant and the stabilization of the colloid-chemical state of the system during reactions in the organized medium of the nonionic surfactant Triton X-100 has been demonstrated. These effects are realized through association in premicellar solutions and as a result of the solubilization of components in Triton X-100 micellar solutions. The addition of long-chain cationic surfactants to the reagent occurs with the replacement of the heteroatom proton. The absorption of CBBG-cationic surfactant associates solutions increases with the length of the cationic surfactant hydrocarbon chain. Ethanol additives decrease the aggregation of CBBG. The technique of cationic surfactant determination has been tested in the analysis of the pharmaceutical. The results show that the simplicity of analytical signal registration with satisfactory correctness and acceptably high sensitivity of determination is an advantage of the developed technique.

2.
Nucl Med Biol ; 136-137: 108943, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094425

ABSTRACT

INTRODUCTION: Zirconium-89 (89Zr) is a positron emitter with several advantages over other shorter-lived positron emission tomography (PET) compatible radiometals such as gallium-68 or copper-64. These include practically unlimited availability, extremely low cost, greatly facilitated distribution logistics, positron energy fit for medical PET imaging, and sufficiently long physical half-life to enable PET imaging at later time points for patient-specific dosimetry estimations. Despite these apparent benefits, the reception of 89Zr in the nuclear medicine community has been tepid. The driving factor for the absence of broader adaptation is mostly routed in its final formulation - [89Zr]zirconium oxalate. While serving as a suitable precursor solution for the gold standard chelator deferoxamine (DFO), [89Zr]Zr-oxalate is inaccessible for the most commonly used chelators, such as the macrocyclic DOTA, due to its pre-chelated state. Consequently, pioneering work has been conducted by multiple research groups to create oxalate-free forms of [89Zr]Zr4+, either via chemical conversion of oxalate into other counterion forms or via direct radiochemical isolation of [89Zr]ZrCl4, showing that [89Zr]Zr-DOTA complexes are possible and stable. However, this success was accompanied by challenges, including complex and labor-intensive radiochemical processing and radiolabeling procedures as well as the relatively minuscule conversion rates. Here, we report on the direct production of [89Zr]ZrCl4 avoiding oxalate and metal contaminants to enable efficient radiolabeling of DOTA constructs. METHODS: We based our direct production of [89Zr]ZrCl4 on previously reported methods and further optimized its quality by including an additional iron-removing step using the TK400 Resin. Here, we avoided using oxalic acid and effectively minimized the content of trace metal contaminants. Our two-step purification procedure was automated, and we confirmed excellent radionuclide purity, minimal trace metals content, great reactivity over time, and high specific molar activity. In addition, DOTA-based PSMA-617 and DOTAGA-based PSMA-I&T were radiolabeled to demonstrate the feasibility of direct radiolabeling and to estimate the maximum apparent specific activities. Lastly, the biodistribution of [89Zr]Zr-PSMA-617 was assessed in mice bearing PC3-PIP xenografts, and the results were compared to the previously published data. RESULTS: A total of 18 batches, ranging from 6.9 to 20 GBq (186 to 541 mCi), were produced. The specific molar activity for [89Zr]ZrCl4 exceeded 0.96 GBq (26 mCi) per nanomole of zirconium. The radionuclidic purity was >99 %, and the trace metals content was in the <1 ppm range. The [89Zr]ZrCl4 remained in its reactive chemical form for at least five days when stored in cyclic olefin polymer (COP) vials. Batches of 11.1 GBq (300 mCi) of [89Zr]Zr-PSMA-617 and 14.4 GBq (390 mCi) of [89Zr]Zr-PSMA-I&T, corresponding to specific activities of 11.1 MBq/µg (0.3 mCi/µg), and 14.4 MBq/µg (0.39 mCi/µg), respectively, were produced. [89Zr]Zr-PSMA-617 animal PET imaging results were in agreement with the previously published data. CONCLUSION: In this work, we report on a suitable application of TK400 Resin to remove iron during [89Zr]ZrCl4 radiochemical isolation. The breakthrough allows for direct radiolabeling of DOTA-based constructs with [89Zr]ZrCl4, leading to high apparent molar activities and excellent conversion rates.

3.
J Food Sci ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086064

ABSTRACT

An organic solvent-free method based on limited dosing options (biocatalyst and zinc chloride) for the quick and mild recovery of chlorophyll (Chl) from spinach has been proposed. This tailored, custom-made protocol has been designed to produce stable green natural colorants. The kinetics of pigment extraction turned out to be a very useful tool to identify the proper conditions, in terms of biocatalyst dose (0.10-50 U/g), extraction time (1-48h), and ZnCl2 amount (50-300ppm), both for enhancing the recovery yield and preserving the green color. Considering the extraction kinetics, the recovery yield, and the colorimetric data, the suitable conditions to produce stable green and food-grade colorants are 0.10 U/g of enzyme, 3h, and 150ppm of ZnCl2 at 25°C. The extraction yield of Chl (4863µg/U) was about 51% greater than control, with a higher extraction rate constant (5.43 × 10-4 g/(µg min)). Considering the impact of ZnCl2 amount on Chl, its protective action resulted to be more noticeable toward Chl a: at 150ppm, an increased amount of about 2.5 and 1.5 times was found for Chl a and Chl b, respectively, in comparison to the reference (0ppm ZnCl2). PRACTICAL APPLICATION: This research demonstrates how a suitable kinetic approach helps to provide a tailored protocol, customized for the vegetable matrix, to produce stable green natural colorants from spinach. Lowering enzyme dosage and ZnCl2 amount during the extraction of chlorophyll at low temperature is crucial for its potential use as a colorant in food industry, providing high economic values through saving time and environmental protection.

4.
Toxicol Mech Methods ; : 1-10, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087424

ABSTRACT

Sanguinarine (SAN) is an alkaloid with multiple biological activities, mainly extracted from Sanguinaria canadensis or Macleaya cordata. The low bioavailability of SAN limits its utilization. At present, the nature and mechanism of SAN intestinal absorption are still unclear. The pharmacokinetics, single-pass intestinal perfusion test (SPIP), and equilibrium solubility test of SAN in rats were studied. The absorption of SAN at 20, 40, and 80 mg/L in different intestinal segments was investigated, and verapamil hydrochloride (P-gp inhibitor), celecoxib (MPR2 inhibitor), and ko143 (BCRP inhibitor) were further used to determine the effect of efflux transporter proteins on SAN absorption. The equilibrium solubility of SAN in three buffer solutions (pH 1.2, 4.5 and 6.8) was investigated. The oral pharmacokinetic results in rats showed that SAN was rapidly absorbed (Tmax=0.5 h), widely distributed (Vz/F = 134 L/kg), rapidly metabolized (CL = 30 L/h/kg), and had bimodal phenomena. SPIP experiments showed that P-gp protein could significantly affect the effective permeability coefficient (Peff) and apparent absorption rate constant (Ka) of SAN. Equilibrium solubility test results show that SAN has the best solubility at pH 4.5. In conclusion, SAN is a substrate of P-gp, and its transport modes include efflux protein transport, passive transport and active transport.

5.
APMIS ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092470

ABSTRACT

Sweat chloride concentration, a diagnostic feature in cystic fibrosis (CF), reflects CF transmembrane conductance regulator (CFTR) activity. CFTR modulator therapies, especially elexacaftor/tezacaftor/ivacaftor (ETI), has improved CF outcomes. We report nationwide, real-world data on sweat chloride concentration in people with CF (pwCF) with and without modulator therapies. All Danish pwCF with a minimum of one F508del allele were included. Sweat chloride measurements were stratified by genotype and modulator treatment. Differences were assessed using mixed-effects models. We included 977 sweat chloride measurements from 430 pwCF, 71% of which were F508del homozygous. Heterozygous and homozygous ETI-treated pwCF had an estimated mean sweat chloride concentration of 43 mmol/L (95% confidence interval: 39; 48) and 43 mmol/L (39; 47), respectively-48% and 59% lower than those without treatment. High variation in concentrations remained regardless of treatment status. Despite ETI treatment, 27% heterozygous and 23% homozygous pwCF had elevated concentrations (≥60 mmol/L). These real-world data confirm a substantial decrease in sweat chloride concentration during modulator treatment, especially ETI, where mean concentrations halved. However, large variation remained, including persistently high concentrations. These findings emphasize the potential of sweat chloride concentration as a treatment response biomarker and the need to explore its heterogeneity and relationship with clinical outcomes.

6.
Front Oral Health ; 5: 1412751, 2024.
Article in English | MEDLINE | ID: mdl-39108636

ABSTRACT

This paper serves as a Part II follow-up of our research investigations performed on the molecular structures of silver(I)-fluoride (SF) and diammine-silver(I) fluoride (SDF) complexes in solution-based commercial products for clinical application, their precise chemical compositions, and their nature in aqueous solution, the latter including rapid fluoride-exchange processes at the silver(I) ion centre monitored by 19F NMR analysis (Part I). Part I of this series also explores the mechanisms of action (MoA) of these complexes, and is therefore largely focused on their chemical reactions with constituents of human saliva, which has access to their sites of application. Such reactions were found to slowly promote the generation of potentially physiologically-active Ag/AgCl nanoparticles from primarily-generated discoloured silver(I) chloride (AgCl) precipitates, a process involving salivary electron-donors such as thiocyanate and L-cysteine. Since this research has shed new light on potential MoAs for these products, in this accompanying report (Part II), we have performed a critical review of scientific literature in order to rationalize our results in relation to current views on these mechanisms for SF and SDF products employed for the successful clinical arrest of dental caries. Following an Introduction to the subject matter ( Section 1), this paper comprises a generalized overview of silver coordination chemistry ( Section 2), which is followed by a section focused on the aqueous solution status and equilibria involved in SF chemistry ( Section 3), the latter including results acquired from an original simulation of the electronic absorption spectra of coloured SF complexes in aqueous solution (Section 3.1). Section 4 then investigates detailed rationales for the biologically-relevant ligand-exchange and redox chemistries, disposition and fates of SF, SDF and silver(I)-nitrate when employed for the treatment of dental caries, with emphasis placed on their therapeutic MoAs. This Section is supported by the provision of valuable information centralized on (1) relevant biomolecular chemistry involved in solution- and solid-state matrices ( Section 4.1); (2) SF and perhaps silver(I)-nitrate as more cost-effective alternatives to SDF therapies ( Section 4.2); and (3) the potential therapeutic benefits and effects offered by silver-based nanoparticles and their associated MoAs ( Section 4.3). Recommendations for future investigations in this area are proposed.

7.
Mikrochim Acta ; 191(9): 524, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112828

ABSTRACT

An electrochemical platform for signal amplification probing chloride ions (Cl-) is constructed by the composite integrating core-shell structured nitrogen-doped porous carbon@Ag-based metal-organic frameworks (NC@Ag-MOF) with polypyrrole (PPy). It is based on the signal of solid-state AgCl derived from Ag-MOF, since both NC and PPy have good electrical conductivity and promote the electron transport capacity of solid-state AgCl. NC@Ag-MOF was firstly synthesized with NC as the scaffold and then, PPy was anchored on NC@Ag-MOF by chemical polymerization. The composite NC@Ag-MOF-PPy was utilized to modify the electrode, which exhibited a higher peak current and lower peak potential during Ag oxidation compared with those of Ag-MOF and NC@Ag-MOF-modified electrodes. More importantly, in the coexistence of chloride (Cl-) ions in solution, the NC@Ag-MOF-PPy-modified electrode displayed a fairly stable and sharp peak of solid-state AgCl with the peak potentials gradually approaching zero, which might effectively overcome the background interference caused by electroactive substances. The oxidation peak currents of solid-state AgCl increased linearly with the concentration of  Cl- ions in a broad range of 0.15 µM-40 mM and 40-250 mM, with detection limits of 0.10 µM and 40 mM, respectively. The practical applicability for Cl- ions determination was demonstrated using human serum and urine samples. The results suggest that NC@Ag-MOF-PPy composite could be a promising candidate for the construction of the electrochemical sensor.

8.
BMC Plant Biol ; 24(1): 745, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098917

ABSTRACT

BACKGROUND: Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C. sinensis under salt stress in greenhouse conditions. The grafted seedlings of C. sinensis cv. Valencia after adapting to the greenhouse condition, were imposed with 0, 50, and 100 mM NaCl. After two weeks, the plants were foliar sprayed with distilled water (control), CS (0.1% w/v), Se NPs (20 mg L- 1), and CS + Se NPs (10 and 20 mg L- 1). Three months after treatment, the levels of photosynthetic pigments, leaf gas exchange, and chlorophyll fluorescence in the treated plants were evaluated. RESULTS: Under salinity stress, total chlorophyll, carotenoid, and SPAD values decreased by 31%, 48%, and 28% respectively, and Fv/Fm also decreased compared to the control, while the ratio of absorption flux (ABS), dissipated energy flux (DI0) and maximal trapping rate of PSII (TR0) to RC (a measure of PSII apparent antenna size) were increased. Under moderate (50 mM NaCl) and intense (100 mM NaCl) salinity stress, the application of CS + Se NPs significantly increased the levels of photosynthetic pigments and the Fv/Fm value compared to plants treated with distilled water. CONCLUSIONS: It may be inferred that foliar treatment with CS + Se NPs can sustain the photosynthetic ability of C. sinensis under salinity stress and minimize its deleterious effects on photosynthesis.


Subject(s)
Chitosan , Citrus sinensis , Nanocomposites , Photosynthesis , Salt Stress , Selenium , Photosynthesis/drug effects , Salt Stress/drug effects , Citrus sinensis/drug effects , Citrus sinensis/physiology , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology
9.
Int J Dermatol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108222

ABSTRACT

Occupational dermatitis (OD) is an inflammatory skin disease stemming from exposure to specific substances within a work setting. As the second most prevalent occupational health concern in 2020, affecting 1.8 per 10,000 workers, OD poses a significant challenge to workforce well-being and imposes a substantial economic burden through lost wages, decreased productivity, and increased healthcare spending. Dermatologists emerge as pivotal figures in recognizing risk factors and delivering essential care to individuals with OD. This review focuses on chemical hazards and toxic substances regulated by the Occupational Safety and Health Administration across general industry, maritime, and construction sectors. It explores the background of each hazard, pathophysiology to dermatitis, and human cases reported between 2017 and 2023 for formaldehyde, chromium, vinyl chloride, and cadmium.

10.
Tissue Cell ; 90: 102509, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39098258

ABSTRACT

Heat stress from varicocele can heighten oxidative stress in the testes, impacting sperm function and male fertility. Antioxidant therapy is explored as a remedy for varicocele, while dietary factors like processed foods, sugar, and saturated fats correlate with male infertility. Advanced glycation end products (AGEs), generated through glycation processes, can provoke oxidative stress, inflammation, and adverse health consequences. Alpha-lipoic acid (ALA), a versatile antioxidant, may alleviate oxidative stress and counteract the impact of AGEs, potentially by enhancing glucose reabsorption. Alagebrium chloride (ALT711), an anti-AGE compound, exhibits promise in cardiovascular disease by disrupting AGE cross-links. This study investigates the effects of ALA and ALT-711 on testicular function in varicocele and AGEs animal models. Both AGE and varicocele were found to alter the natural trends, leading to abnormal patterns in sperm parameters, testicular functional tests, as well as the expression of CML, RAGE, and TNF-α proteins. However, the administration of ALA or ALT711 helped mitigate these effects. While ALA demonstrated a slightly greater overall benefit compared to ALT, the difference was not statistically significant.

11.
Water Environ Res ; 96(8): e11089, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39101386

ABSTRACT

In the frame of bioeconomy and circular economy, wastewater sludge (WS) could be a good candidate for its use in agriculture as fertilizer, due to its high content of organic matter, N and P, but on the other hand, it is full of toxicants such as heavy metal, microplastics, detergent, antibiotics, and so on that can reach groundwater and water bodies in leachate form. In this study, we have investigated different sludge concentrations in the eluate form, combined and not with PVC on two different freshwater organisms Selenastrum capricornutum and Daphnia magna, using ecotoxicity tests. At the endpoint, we have evaluated inhibition growth rate, oxidative stress, and pigments production for S. capricornutum, while in case of D. magna, we have assessed organism immobilization and development. From our results, it emerged that at the higher WS concentration, there was not inhibition growth rate, while at oxidative stress, it was higher in algae treated with WS and PVC. Higher Chl-a production was shown for algae treated with 0.3 g/L of sludge coupled with PVC, where higher phaeopigments production were recorded for algae treated with 0.3 g/L of WS. D. magna has shown an opposite trend when compared with algae, where at the highest WS concentrations supplied was corresponding to an increased mortality explaned as the highest immobility percentage. PRACTITIONER POINTS: Wastewater sludge is used in agriculture as fertilizer. PVC microplastic presence and associate ecotoxicity was tested. PVC presence increased oxidative stress in S. capricornutum. D. magna was significantly affected by sludge concentrations supplied.


Subject(s)
Daphnia , Ecotoxicology , Polyvinyl Chloride , Sewage , Water Pollutants, Chemical , Animals , Sewage/chemistry , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Wastewater/chemistry , Fresh Water/chemistry , Diatoms/drug effects , Oxidative Stress/drug effects
12.
Small ; : e2402852, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118552

ABSTRACT

The seawater electrolysis to produce hydrogen is a significant topic on alleviating the energy crisis. Here, the Fe, Nb-Ni3S2 catalyst is prepared by metal-doping strategy, and it shows high oxygen evolution reaction (OER) activity in alkaline medium, and only needs 1.491 V to deliver a current density of 100 mA cm-2 in simulated seawater. Using Fe, Nb-Ni3S2 as a bifunctional catalyst, the two-electrode electrolyzer only requires a voltage of 1.751 V (without impedance compensation) to drive the current density of 50 mA cm-2, and can run over 150 h stably in the simulated seawater. Importantly, In situ Raman test demonstrates that the outstanding performance of Fe, Nb-Ni3S2 in simulated seawater is ascribed to the in situ formed sulfate protective layer induced by Nb doping, which can effectively inhibit the corrosion of chloride ion, while the protective layer is absent for Fe-Ni3S2. The stable operation of simulated seawater electrolysis under industrial current density further confirms the stability improvement mechanism of forming protective layer. In short, this study provides a new strategy of using Nb dopants inducing the formation of protective layer to enhance the stability of seawater electrolysis.

13.
Front Plant Sci ; 15: 1411572, 2024.
Article in English | MEDLINE | ID: mdl-39114473

ABSTRACT

The management of nitrogen (N) fertilization is of fundamental importance in hydroponics. To reduce the supply of nitrate (NO3 -) in fertigation recipes for Batavia lettuce crops grown in closed hydroponics, partial replacement of nitrate by chloride (NO3 -/Cl-) at different ratios but with the same equivalent sum was experimentally tested. The experiment included four nutritional treatments in the replenishment nutrient solution, particularly T1; 0.7 mM Cl-/19 mM NO3 -, T2; 2 mM Cl-/17.7 mM NO3 -, T3; 4 mM Cl-/15.7 mM NO3 - and T4; 6 mM Cl-/13.7 mM NO3 -. The results showed that reducing nitrate supply combined with equivalent increase in chloride application gradually reduced the gap between nitrate input and nitrogen uptake concentrations, with the smallest differences occurring in T4 treatment, which reduced the nitrate concentration in the drainage by 50%. The tested treatments led to very small variations in plant water uptake, production of fresh biomass and nutritional quality, which is justified by the proper functioning of key physiological mechanisms, such as stomatal conductance, which was followed by an increased efficiency of nitrogen use up to 25% (kg fresh biomass kg-1 N supply). The steady level of C/N ratio in the plant tissue irrespective of NO3 -/Cl- supply ratio points to sufficiency in photosynthetic products and adequacy in the supply of nitrogen, although leaf Cl- content increased up to 19.6 mg g-1 dry weight in the lowest NO3 -/Cl- treatment. Nutrient uptake concentrations were determined as follows: 13.4 (N), 1.72 (P), 10.2 (K), 3.13 (Ca), 0.86 (Mg, mmol L-1), 27.8 (Fe), 5.63 (Mn), 5.45 (Zn) and 0.72 (Cu, µmol L-1). This study suggests that replacing 30% of NO3 - supply with Cl- in fertigation recipes for hydroponic lettuce crops reduces leaf nitrate content without affecting physiological processes, growth, and quality, verifying in parallel the role of chloride as a beneficial macronutrient. Finally, a relationship between Cl- uptake and its concentration in the root zone solution was established enabling the simulation of chloride to water consumption.

14.
Int J Biol Macromol ; 277(Pt 4): 134362, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089552

ABSTRACT

Healing diabetic ulcers with chronic inflammation is a major challenge for researchers and professionals, necessitating new strategies. To rapidly treat diabetic wounds in rat models, we have fabricated a composite scaffold composed of alginate (Alg) and silk fibroin (SF) as a wound dressing that is laden with molecules of lithium chloride (LC). The physicochemical, bioactivity, and biocompatibility properties of Alg-SF-LC scaffolds were investigated in contrast to those of Alg, SF, and Alg-SF ones. Afterward, full-thickness wounds were ulcerated in diabetic rats in order to evaluate the capacity of LC-laden scaffolds to regenerate skin. The characterization findings demonstrated that the composite scaffolds possessed favorable antibacterial properties, cell compatibility, high swelling, controlled degradability, and good uniformity in the interconnected pore microstructure. Additionally, in terms of wound contraction, re-epithelialization, and angiogenesis improvement, LC-laden scaffolds revealed better performance in diabetic wound healing than the other groups. This research indicates that utilizing lithium chloride molecules loaded in biological materials supports the best diabetic ulcer regeneration in vivo, and produces a skin replacement with a cellular structure comparable to native skin.

15.
Environ Toxicol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105374

ABSTRACT

Mercuric chloride (HgCl2) is extremely toxic to both humans and animals. It could be absorbed via ingestion, inhalation, and skin contact. Exposure to HgCl2 can cause severe health effects, including damages to the gastrointestinal, respiratory, and central nervous systems. The purpose of this work was to explore if carvacrol (CRV) could protect rats lungs from damage caused by HgCl2. Intraperitoneal injections of HgCl2 at a dose of 1.23 mg/kg body weight were given either alone or in conjunction with oral CRV administration at doses of 25 and 50 mg/kg body weight for 7 days. The study included biochemical and histological techniques to examine the lung tissue's oxidative stress, apoptosis, inflammation, and autophagy processes. HgCl2-induced reductions in GSH levels and antioxidant enzymes (SOD, CAT, and GPx) activity were enhanced by CRV co-administration. Furthermore, MDA levels were lowered by CRV. The inflammatory mediators NF-κB, IκB, NLRP3, TNF-α, IL-1ß, IL6, COX-2, and iNOS were all reduced by CRV. When exposed to HgCl2, the levels of apoptotic Bax, caspase-3, Apaf1, p53, caspase-6, and caspase-9 increased, but the levels of antiapoptotic Bcl-2 reduced after CRV treatment. CRV decreased levels of Beclin-1, LC3A, and LC3B, which in turn decreased HgCl2-induced autophagy damage. After HgCl2 treatment, higher pathological damage was observed in terms of alveolar septal thickening, congestion, edema, and inflammatory cell infiltration compared to the control group while CRV ameliorated these effects. Consequently, by preventing HgCl2-induced increases in oxidative stress and the corresponding inflammation, autophagy, apoptosis, and disturbance of tissue integrity in lung tissues, CRV might be seen as a useful therapeutic alternative.

16.
Membranes (Basel) ; 14(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39195428

ABSTRACT

The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm-2. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%.

17.
Biology (Basel) ; 13(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39194498

ABSTRACT

The limited self-repair capacity of articular cartilage is a challenge for healing injuries. While mesenchymal stem/stromal cells (MSCs) are a promising approach for tissue regeneration, the criteria for selecting a suitable cell source remain undefined. To propose a molecular criterion, dental pulp stem cells (DPSCs) with a Hox-negative expression pattern and bone marrow mesenchymal stromal cells (BMSCs), which actively express Hox genes, were differentiated towards chondrocytes in 3D pellets, employing a two-step protocol. The MSCs' response to preconditioning by cobalt chloride (CoCl2), a hypoxia-mimicking agent, was explored in an assessment of the chondrogenic differentiation's efficiency using morphological, histochemical, immunohistochemical, and biochemical experiments. The preconditioned DPSC pellets exhibited significantly elevated levels of collagen II and glycosaminoglycans (GAGs) and reduced levels of the hypertrophic marker collagen X. No significant effect on GAGs production was observed in the preconditioned BMSC pellets, but collagen II and collagen X levels were elevated. While preconditioning did not modify the ALP specific activity in either cell type, it was notably lower in the DPSCs differentiated pellets compared to their BMSCs counterparts. These results could be interpreted as demonstrating the higher plasticity of DPSCs compared to BMSCs, suggesting the contribution of their unique molecular characteristics, including their negative Hox expression pattern, to promote a chondrogenic differentiation potential. Consequently, DPSCs could be considered compelling candidates for future cartilage cell therapy.

18.
J Funct Biomater ; 15(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39194644

ABSTRACT

Bismuth lipophilic nanoparticles (BisBAL NPs) and cetylpyridinium chloride (CPC) are antineoplastic and antimicrobial in vitro. As a next pre-clinical step, a clinically viable dosage form for vaginal application was developed. Compendial pharmacopeial tests (mass uniformity, disintegration, and compressive mechanics) and inductively coupled plasma optical emission spectroscopy were conducted on in-house developed glycerinated gelatin (60:15 v/w) vaginal ovules containing BisBAL NP-CPC. The antimycotic activity of BisBAL NP-CPC vaginal ovules was analyzed using disk diffusion and cell viability XTT assays. The antitumor properties of BisBAL NP-CPC vaginal ovules were assessed by cell viability MTT tests. BisBAL NP-CPC and drug-free vaginal ovules deposited into ex vivo porcine vaginas disaggregated without signs of adverse cytotoxicity within the timespan of clinical efficacy. BisBAL NP-CPC vaginal ovules demonstrated antifungal efficacy comparable to miconazole: C. albicans growth inhibition haloes in diffusion tests were 23 ± 0.968 mm (n = 3) for BisBAL NP-CPC and 20.35 ± 0.899 mm (n = 3) for miconazole. Likewise, BisBAL NP-CPC vaginal ovules reduced HeLa cell growth by 81%, outperforming the clinical reference of 500 µM 5-fluouracil, which induced a 70% growth inhibition. BisBAL NP-CPC incorporated into glycerinated gelatin vaginal ovules constitute an innovative drug delivery system for topical antimycotic and anti-cervical carcinoma treatments.

19.
J Fungi (Basel) ; 10(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39194854

ABSTRACT

Oral candidiasis is an opportunistic infection caused by fungi of the genus Candida. Nystatin, fluconazole, and miconazole are the most widely used antifungal drugs in dentistry, but in recent years, they have been shown to be less effective due to the increase in the resistance to antifungal drugs. The growing challenge of antifungal resistance emphasizes the importance of exploring not only alternative strategies in the fight against Candida spp. infections but also supportive treatment for pharmacological treatment for oral candidiasis. This review aims to evaluate and compare the in vitro reports on antifungal efficacy against Candida spp. exhibited by mouthwashes distributed on the European market. The research question was elaborated through the PEO framework recommended by PRISMA 2020. A bibliographic search strategy was developed for the scientific online databases Pubmed and ScienceDirect. According to the eligibility criteria, 21 papers were included in this study over a 27-year period. Mouthwashes containing chlorhexidine digluconate, cetylpyridinium chloride, hexetidine, and fluorine compounds among others, and natural antimicrobials, such as menthol, thymol, eucalyptol, and Glycyrrhiza glabra extracts, have demonstrated antifungal effectiveness. Nonetheless, the methodological variance introduces ambiguity concerning the comparative efficacy of distinct molecules or mouthwash formulations and complicates the evaluation and the comparison of results between studies. Some mouthwashes commercially available in Europe have the potential to be used in anti-Candida therapy and prevention since they have shown antifungal effect.

20.
Exp Eye Res ; 247: 110030, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127236

ABSTRACT

PURPOSE: Benzalkonium chloride (BAC) is commonly used as a preservative in ophthalmic medications, despite its potential to induce chemical injury. Extensive research has demonstrated that BAC can lead to adverse effects, including injuries to the ocular surface. Our study aimed to elucidate the underlying mechanism of necroptosis induced by BAC. METHODS: Human corneal epithelial (HCE) cells and mouse corneas were subjected to chemical injury, and the necrostatin-1 (Nec1) group was compared to the dimethylsulfoxide (DMSO) group. The extent of damage to HCE cells was assessed using CCK-8 and flow cytometry. Hematoxylin and eosin staining, as well as fluorescein sodium staining, were used to detect and characterize corneal injury. The activation of inflammatory cytokines and necroptosis-related proteins and genes was evaluated using Western blotting, immunofluorescence staining, and quantitative RT‒PCR. RESULTS: In our study, the induction of necroptosis by a hypertonic solution was not observed. However, necroptosis was observed in HCE cells exposed to NaOH and BAC, which activated the receptor-interacting protein kinase 1 (RIPK1) - receptor-interacting protein kinase 3 (RIPK3) - mixed lineage kinase domain-like protein (MLKL) signaling pathway. In mouse corneal tissues, BAC could induce necroptosis and inflammation. The administration of Nec1 mitigated the inflammatory response and ocular surface damage caused by BAC-induced necroptosis in our experimental models. Furthermore, our in vivo experiments revealed that the severity of necroptosis was greater in the 3-day group than in the 7-day group. CONCLUSIONS: Necroptosis plays a role in the pathological development of ocular surface injury caused by exposure to BAC. Furthermore, our study demonstrated that the administration of Nec1 could mitigate the pathological effects of necroptosis induced by BAC in clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL