Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.048
Filter
1.
J Egypt Public Health Assoc ; 99(1): 17, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004690

ABSTRACT

BACKGROUND: Currently, tap water consumption is not highly preferred in Egypt and around the world. People prefer to consume bottled water because they believe that it is much safer and tastes better than tap water. Unfortunately, this preference can create an economic burden for many people, especially in developing countries. Clay pots can be used to provide cool, alkaline drinking water because of their porous micro-texture, which traps pollutants. This study aimed to investigate the use of clay pots to store tap water and its impact on the requirements for drinking water quality. This is done with the intent to decrease the need for bottled water as a means of offering a more sustainable and economical option. METHODS: In this study, the efficiency of clay pots as sustainable storage containers for drinking water was tested by measuring physicochemical parameters (pH, TDS, EC, turbidity, DO, ammonia, chloride, total hardness, Ca hardness, Mg hardness, chlorine, Zn, and CaCO3) and biological parameters (TPC and Legionella). RESULTS: After 7 days of storage, the quality of the water stored in clay pots met the standards set by the Egyptian law with a significant difference (p < 0.05) before and after the storage of water It was found that the dissolved oxygen increased from 6.17 ppm to 7.52 ppm after 7 days. As for total hardness, it declined from 195 to 178 ppm. There was also a significant drop in terms of TDS from 338 to 275 ppm. Furthermore, clay pots effectively filtered out both total viable bacteria and Legionella. CONCLUSION: This study proved the efficiency of using these containers with respect to some indicator values for tap water and tank water analysis. Clay pots are an excellent, cost-effective, and sustainable alternative for storing water.

2.
Sci Total Environ ; : 174776, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009143

ABSTRACT

Clay-size mineral is a vital ingredient of soil that influences various environment behaviors. It is crucial to establish a global distribution map of clay-size minerals to improve the recognition of environment variations. However, there is a huge gap of lacking some mineral contents in poorly accessible remote areas. In this work, machine learning (ML) approaches were conducted to predict the mineral contents and analyze their global abundance changes through the relationship between soil properties and mineral distributions. The average content of kaolinite, illite, smectite, vermiculite, chlorite, and feldspar were predicated to be 28.69 %, 22.30 %, 12.42 %, 5.43 %, 5.03 %, and 1.44 % respectively. Model interpretation showed that topsoil bulk density and drainage class were the most significant factors for predicting all six minerals. It could be seen from the feature importance analysis that bulk density notably reflected the distribution of 2:1 layered minerals more than that of 1:1 mineral. High drainage favored secondary minerals development, while low drainage was more benefited for primary minerals. Moreover, the content variation of different minerals aligned with the distribution of corresponding soil properties, which affirmed the accuracy of established models. This study proposed a new approach to predict mineral contents through soil properties, which filled a necessary step of understanding the geochemical cycles of soil-related processes.

3.
Sci Total Environ ; : 174489, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986689

ABSTRACT

This paper investigates the feasibility of using randomly collected fruit and vegetable (FV) waste as a cheap growing medium of bacteria for biocementation applications. Biocementation has been proposed in the literature as an environmentally-friendly ground improvement method to increase the stability of geomaterials, prevent erosion and encapsulate waste, but currently suffers from the high costs involved, such as bacteria cultivation costs. After analysis of FV waste of varied composition in terms of sugar and protein content, diluted FV waste was used to grow ureolytic (S. pasteurii, and B.licheniformis) and also an autochthonous heterotrophic carbonic anhydase (CA)-producing B.licheniformis strain, whose growth in FV media had not been attempted before. Bacterial growth and enzymatic activity in FV were of appropriate levels, although reduced compared to commercial media. Namely, the CA-producing B.licheniformis had a maximum OD600 of 1.799 and a CA activity of 0.817 U/mL in FV media. For the ureolytic pathway, B. licheniformis reached a maximum OD600 of 0.986 and a maximum urease activity of 0.675 mM urea/min, and S. pasteurii a maximum OD600 = 0.999 and a maximum urease activity of 0.756 mM urea/min. Biocementation of a clay and locomotive ash, a geomaterial specific to UK railway embankments, using precultured bacteria in FV was then proven, based on recorded unconfined compressive strengths of 1-3 MPa and calcite content increases of up to 4.02 and 8.62 % for the clay and ash respectively. Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS), attested the formation of bioprecipitates with characteristic morphologies and elementary composition of calcite crystals. These findings suggest the potential of employing FV to biocement these problematic geomaterials and are of wider relevance for environmental and geoenvironmental applications involving bioaugmentation. Such applications that require substrates in very large quantities can help tackle the management of the very voluminous fruit and vegetable waste produced worldwide.

4.
Sci Rep ; 14(1): 16216, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003395

ABSTRACT

This research delves into the intricate nexus of particle size, mineralogical composition, surface attributes, elemental mapping, and rare earth element (REE) adsorption mechanisms within an ion-adsorption clay sample from South America. The investigation entails the fractionation of the ion-adsorption clay into three size categories: S1 (< 0.25 mm), S2 (0.25-0.5 mm), and S3 (0.5-2 mm). Each fraction undergoes meticulous characterization to unveil its elemental composition, mineralogical composition, surface area, morphological characteristics, elemental mapping, and the mechanisms governing REE incorporation. The results indicate that S1 has 31% physiosorbed, 8% chemisorbed, and 61% mineralized REEs, while S2 has 40% physiosorbed, 5% chemisorbed, and 55% mineralized REEs, and S3 has 24% physiosorbed, 5% chemisorbed, and 71% mineralized REEs. The physisorbed REEs are attributed to the presence of kaolinite, conducive to mostly physisorption. In terms of grain size and REE content/type relationship, the results show that REE content decreases with increasing grain size; however, there is not a clear trend in terms of REE occurrence modes with grain size. Heavy rare earth elements (HREEs) are discernibly favored in adsorption over light rare earth elements (LREEs). This preference is underpinned by the weathering processes that led to the formation of ion-adsorption clay, which facilitated the transport and accumulation of HREEs. Notably, the ion-adsorption clay encompasses a substantial content of mineralized REEs, necessitating more demanding extraction methodologies, such as acid baking followed by water leaching if complete extraction of all REEs is desired. Among the desorbable REEs, physisorption dominates, encompassing over 80% of the total. Chemisorbed REEs exhibit versatility in association with various minerals, encompassing kaolinite, quartz, and goethite. In essence, this study unveils the intricate interplay between particle dimensions, mineralogical constitution, surface attributes, and REE adsorption modes within this ion-adsorption clay sample. The ion-adsorption clay in this study contains a significant portion of mineralized REEs that cannot be extracted using the mild conditions typically employed for the desorption process. Additionally, the REE concentration in this ion-adsorption clay is notably higher than the average found in clay deposits worldwide, reaching levels comparable to those of regolith deposits in China, which are a major global source of REEs. This remarkable concentration of REEs, along with the unique modes of their occurrence in this deposit, presents a significant interest to the scientific community.

5.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998230

ABSTRACT

The frequency domain characteristics of acoustic emission can reflect issues such as rock structure and stress conditions that are difficult to analyze in time domain parameters. Studying the influence of immersion time on the mechanical properties and acoustic emission frequency domain characteristics of muddy mineral rocks is of great significance for comprehensively analyzing rock changes under water-rock coupling conditions. In this study, uniaxial compression tests and acoustic emission tests were conducted on sandstones containing montmorillonite under dry, saturated, and different immersion time conditions, with a focus on analyzing the effect of immersion time on the dominant frequency of rock acoustic emission. The results indicated that immersion time had varying degrees of influence on compressive strength, the distribution characteristics of dominant acoustic emission frequencies, the frequency range of dominant frequencies, and precursor information of instability failure for sandstones. After initial saturation, the strength of the rock sample decreased from 53.52 MPa in the dry state to 49.51 MPa, and it stabilized after 30 days of immersion. Both dry and initially saturated rock samples exhibited three dominant frequency bands. After different immersion days, a dominant frequency band appeared between 95 kHz and 110 kHz. After 5 days of immersion, the dominant frequency band near 0 kHz gradually disappeared. After 60 days of immersion, the dominant frequency band between 35 kHz and 40 kHz gradually disappeared, and with increasing immersion time, the dominant frequency of the acoustic emission signals increased. During the loading process of dry rock samples, the dominant frequency of acoustic emission signals was mainly concentrated between 0 kHz and 310 kHz, while after saturation, the dominant frequencies were all below 180 kHz. The most significant feature before the rupture of dry rock samples was the frequent occurrence of high frequencies and sudden changes in dominant frequencies. Before rupture, the characteristics of precursor events for initially saturated and immersed samples for 5, 10, and 30 days were the appearance and rapid increase in sudden changes in dominant frequencies, as well as an enlargement of the frequency range of dominant frequencies. After 60 days of immersion, the precursor characteristics of rock sample rupture gradually disappeared, and sudden changes in dominant frequencies frequently occurred at various stages of sample loading, making it difficult to accurately predict the rupture of specimens based on these sudden changes.

6.
Environ Res ; : 119542, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969319

ABSTRACT

Wastewater textile dye treatment is a challenge that requires the development of eco-friendly technology to avoid the alarming problems associated with water scarcity and health-environment. This study investigated the potential of phengite clay as naturally low-cost abundant clay from Tamgroute, Morocco (TMG) that was activated with a 0.1M NaOH base (TMGB) after calcination at 850°C for 3 hours (TMGC) before its application in the Congo red (CR) anionic dye from the aqueous solution. The effect of various key operational parameters: adsorbent dose, contact time, dye concentration, pH, temperature, and the effect of salts, was studied by a series of adsorption experiments in a batch system, which affected the adsorption performance of TMG, TMGC, and TMGB for CR dye removal. In addition, the properties of adsorption kinetics, isotherms, and thermodynamics were also studied. Experimental results showed that optimal adsorption occurred at an acidic pH. At a CR concentration of 100 mg L-1, equilibrium elimination rates were 68%, 38%, and 92% for TMG, TMGC, and TMGB, respectively. The adsorption process is rapid, follows pseudo-second-order kinetics, and is best described by a Temkin and Langmuir isotherm. The thermodynamic parameters indicated that the adsorption of CR onto TMGB is endothermic and spontaneous. The experimental values of CR adsorption on TMGB are consistent with the predictions of the response surface methodology. These led to a maximum removal rate of 99.97% under the following conditions: pH =2, TMGB dose of 7g L-1, and CR concentration of 50 mg L-1. The adsorbent TMGB's relatively low preparation cost of around $2.629 g-1 and its ability to regenerate in more than 6 thermal calcination cycles with a CR removal rate of around 56.98%, stimulate its use for textile effluent treatment on a pilot industrial scale.

7.
J Colloid Interface Sci ; 675: 347-356, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972122

ABSTRACT

Clay-based marine sediments have great potential for safe and effective carbon dioxide (CO2) encapsulation by storing enormous amounts of CO2 in solid gas hydrate form. However, the aging of clay with time changes the surface properties of clay and complicates the CO2 hydrate formation behaviors in sediments. Due to the long clay aging period, it is difficult to identify the role of clay aging in the formation of CO2 hydrate in marine sediments. Here, we used ultrasonication and plasma treatment to simulate the breakage and oxidation of clay nanoflakes in aging and investigated the influence of clay aging on CO2 hydrate formation kinetics. We found that the breakage and oxidation of clay nanoflakes would disrupt the siloxane rings and graft hydroxyl on the clay nanoflakes. This decreased the negative charge density of clay nanoflakes and weakened the interfacial interaction of clay nanoflakes with the surrounding water. Therefore, the small clay nanoflakes enriched in hydroxyl would disrupt the surrounding tetrahedral water structure analogous to the CO2 hydrate, resulting in the prolongation of CO2 hydrate nucleation. These results revealed the influence of the structure-function relationship of clay nanoflakes with CO2 hydrate formation and are favorable for the development of hydrate-based CO2 storage.

8.
HardwareX ; 19: e00541, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38975029

ABSTRACT

Soil permeability tests require a time series of water level measurements to determine system losses, including both infiltration and evaporation. Laboratory measurements of flow are standardised by international regulations such as ASTM International, ISO or UNE, but field measurements are not as well described and in some cases may require definition and specification of test conditions. This is the case for geosynthetic clay liner (GCL) products, where permeability is assessed by a laboratory measurement using a flexible wall permeameter as defined in standard test method D 5887-04. This method is not able to evaluate the performance of such products in the field and therefore cannot guarantee their ability to be used for the repair of landfill liner overlays. For this reason, we have defined a field test in a confined steel ring and developed a real-time ultrasonic IoT device to evaluate water losses over a period of time. The test method was applied in Mallorca (Spain) and as a result the quality of a landfill cover repair solution was evaluated, the corresponding civil works were carried out and the basis for future field measurements of soil permeability tests on different materials and conditions was established.

9.
Colloids Surf B Biointerfaces ; 241: 114060, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38964275

ABSTRACT

The conventional silver nanoparticles (Ag NPs) are characterized with high loading rate and stacking phenomenon, leading to shedding caused biotoxicity and low catalytic efficiency. This seriously hinders their application in biomedicine. Here, we modified the highly dispersible Ag NPs and Ag single-atoms (SAs) synthesis by combining the halloysite clay nanotubes (HNTs) and dodecahydro-dodecaborate (closo-[B12H12]2-) to increase the biocompatible properties and decrease the loading rate. This novel Ag single-atom nanoenzyme alongside Ag NPs nanoenzyme avoid the elevated-temperature calcination while maintaining the exceptionally high-level efficiency of Ag utilization via the reducibility and coordination stabilization of closo-[B12H12]2- and HNTs. With theoretical calculation and electron paramagnetic resonance, we confirmed that both Ag SAzymes and Ag NPs in HNT@B12H12@Ag nanoenzyme are capable decompose the H2O2 into hydroxyl radical (·OH). For the application, we investigated the catalytic activity in the tumor cells and antitumor effects of HNT@B12H12@Ag nanoenzyme both in vitro and in vivo, and confirmed that it effectively suppressed melanoma growth through ·OH generation, with limited biotoxicity. This study provides a novel Ag nanoenzyme synthesis approach to increase the possibility of its clinical application.

10.
Biomater Adv ; 162: 213932, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917648

ABSTRACT

Clay minerals have attracted wide attention as biomedical materials due to the unique crystal structure, abundant morphology and good biocompatibility. However, the relevant studies on the abundant natural mixed clay deposits were scarcely reported. Herein, the hemostatic performance of natural mixed-dimensional attapulgite clay (MDAPT) composed of one-dimensional attapulgite and multiple two-dimensional clay were systematically investigated based on the structural evolution using oxalic acid for different time. The results of hemostatic evaluation showed that MDAPT leached by oxalic acid with 1 h presented the shortest clotting time (134 ± 12.17 s), a 15.09 % and 41.74 % reduction of relative hemoglobin absorbance at 180 s and 120 s when compared with the control group, respectively, and an increase of 19.45 % of the blood clotting index in vitro, as well as MDAPT obtained the shortest bleeding time (158.5 ± 6.9 s), nearly 66 % and 31 % reduction blood loss as compared to the blank group and the YNBY group in vivo. This improvement was primarily ascribed to the synergistic effect of lamellar non-expandable illite, and nano rod-like attapulgite. Furthermore, the rapid hemostasis of MDAPT was also due to the joint effect of superhydrophobic property toward blood, minimizing blood loss, surface negative charge, metal ions from MDAPT structural skeleton, promoting an average increase of 21 % for platelet activation. The results suggested that MDAPT could be served as a promising efficient inorganic hemostatic materials, which provided a feasible strategy to realize the high-valued utilization of natural mixed clay resources.


Subject(s)
Clay , Magnesium Compounds , Silicon Compounds , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Clay/chemistry , Animals , Silicon Compounds/chemistry , Hemostatics/pharmacology , Hemostatics/chemistry , Blood Coagulation/drug effects , Blood Coagulation/physiology , Hemostasis/drug effects , Hemostasis/physiology , Aluminum Silicates/chemistry , Humans
11.
ACS Appl Mater Interfaces ; 16(27): 34913-34922, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38924489

ABSTRACT

Lithium-ion batteries are the leading energy storage technology for portable electronics and vehicle electrification. However, demands for enhanced energy density, safety, and scalability necessitate solid-state alternatives to traditional liquid electrolytes. Moreover, the rapidly increasing utilization of lithium-ion batteries further requires that next-generation electrolytes are derived from earth-abundant raw materials in order to minimize supply chain and environmental concerns. Toward these ends, clay-based nanocomposite electrolytes hold significant promise since they utilize earth-abundant materials that possess superlative mechanical, thermal, and electrochemical stability, which suggests their compatibility with energy-dense lithium metal anodes. Despite these advantages, nanocomposite electrolytes rarely employ kaolinite, the most abundant variety of clay, due to strong interlayer interactions that have historically precluded efficient exfoliation of kaolinite. Overcoming this limitation, here we demonstrate a scalable liquid-phase exfoliation process that produces kaolinite nanoplatelets (KNPs) with high gravimetric surface area, thus enabling the formation of mechanically robust nanocomposites. In particular, KNPs are combined with a succinonitrile (SN) liquid electrolyte to form a nanocomposite gel electrolyte with high room-temperature ionic conductivity (1 mS cm-1), stiff storage modulus (>10 MPa), wide electrochemical stability window (4.5 V vs Li/Li+), and excellent thermal stability (>100 °C). The resulting KNP-SN nanocomposite gel electrolyte is shown to be suitable for high-rate rechargeable lithium metal batteries that employ high-voltage LiNi0.8Co0.15Al0.05O2 (NCA) cathodes. While the primary focus here is on solid-state batteries, our strategy for kaolinite liquid-phase exfoliation can serve as a scalable manufacturing platform for a wide variety of other kaolinite-based nanocomposite applications.

12.
Sci Rep ; 14(1): 12612, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824205

ABSTRACT

This study, using Jinan as a case study, systematically investigates the characteristics and geological genesis of loess-like silty clay in the middle and lower reaches of the Yellow River. The primary distribution of loess-like silty clay is revealed through field surveys, laboratory experiments, and previous literature reviews. The chemical and physical properties of the loess-like silty clay were examined, in addition to investigations into its mineral composition, microstructural characteristics, and engineering mechanical properties, in order to enhance comprehension of its attributes and formation mechanisms. The research suggests that the distinctive soil environment in the area has been influenced by numerous instances of the Yellow River overflow and channel shifts over its history, as well as the impacts of climate change, geological factors, and human activities. The primary sources of material for the loess-like silty clay consist of loess, Hipparion Red Clay, and paleosol layers. The discussion also addresses the impact of regional climate on the formation of mineral components. The aforementioned findings hold significant implications for advancing the understanding of historical climatic and paleogeographic shifts, as well as for addressing engineering challenges associated with the distribution of loess-like silty clay.

13.
Materials (Basel) ; 17(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930253

ABSTRACT

Cow dung (CD) is a material that has been used for millennia by humanity as a stabilizer in earth building techniques in vernacular architecture. However, this stabilization has been little addressed scientifically. In this study, the effect of CD additions was assessed on earth mortars produced with one type of earth from Brazil and two other types from Portugal (from Monsaraz and Caparica). The effect of two volumetric proportions of CD additions were assessed: 10% and 20% of earth + sand. The German standard DIN 18947 was used to perform the physical and mechanical tests, and classify the mortars. In comparison to the reference mortars without CD, the additions reduced linear shrinkage and cracking. An increase in flexural and compressive strengths was not observed only in mortars produced with earth from Monsaraz. In mortars produced with the earth from Caparica, the addition of 10% of CD increased flexural strength by 15% and compressive strength by 34%. For mortars produced with the earth from Brazil, the addition of 10% of CD increased these mechanical strengths by 40%. The increase in adhesive strength and water resistance promoted by the CD additions was observed in mortars produced with all three types of earth. Applied on ceramic brick, the proportion of 10% of CD increased the adherence by 100% for the three types of earth. Applied on adobe, the same proportion of CD also increased it more than 50%. For the water immersion test, the CD additions made possible for the mortar specimens not to disintegrate after a 30 min immersion, with the 20% proportion being more efficient. The effects of the CD on mechanical performance, including adhesion, were more significant on the tropical earth mortars but the effects on water resistance were more significant on the Mediterranean earthen mortars. CD has shown its positive effects and potential for both tropical and Mediterranean earthen plasters and renders tested, justifying being further studied as an eco-efficient bio-stabilizer.

14.
Materials (Basel) ; 17(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930260

ABSTRACT

The sol-gel state of smectite clay dispersions varies with the volume fraction of clay and electrolyte concentration. In this study, it was elucidated that the drying patterns of droplets from four types of smectite clay dispersions vary according to their sol-gel states. Droplets in the sol state exhibited a ring-shaped pattern, while those in the gel state showed a bump-shaped pattern. Near the boundary between the sol and gel states, patterns featuring both ring and bump structures were observed regardless of whether the droplets were on the sol or gel side. When guest particles or molecules were introduced into the clay dispersion, they dispersed uniformly within the system, and the drying pattern depended on the sol-gel state of the droplets. These findings suggest that the presence or absence of convection within the droplets during drying governs the drying pattern.

15.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930397

ABSTRACT

Modified clays with organic molecules have many applications, such as the adsorption of pollutants, catalysts, and drug delivery systems. Different methodologies for intercalating these structures with organic moieties can be found in the literature with many purposes. In this paper, a new methodology of modifying Sodium Montmorillonite clays (Na-Mt) with a faster drying time was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET, and thermogravimetric analysis (TG and DTG). In the modification process, a mixture of ethyl alcohol, DMSO, and Na-Mt were kept under magnetic stirring for one hour. Statistical analysis was applied to evaluate the effects of the amount of DMSO, temperature, and sonication time on the modified clay (DMSO-SMAT) using a 23-factorial design. XRD and FTIR analyses showed the DMSO intercalation into sodium montmorillonite Argel-T (SMAT). An average increase of 0.57 nm for the interplanar distance was found after swelling with DMSO intercalation. BET analysis revealed a decrease in the surface area (from 41.8933 m2/g to 2.1572 m2/g) of Na-Mt when modified with DMSO. The porosity increased from 1.74 (SMAT) to 1.87 nm (DMSO-SMAT) after the application of the methodology. Thermal analysis showed a thermal stability for the DMSO-SMAT material, and this was used to calculate the DMSO-SMAT formula of Na[Al5Mg]Si12O30(OH)6 · 0.54 DMSO. Statistical analysis showed that only the effect of the amount of DMSO was significant for increasing the interlayer space of DMSO-SMAT. In addition, at room temperature, the drying time of the sample using this methodology was 30 min.

16.
Toxins (Basel) ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38922175

ABSTRACT

The aim of this study was to evaluate the effectiveness of nine different biological compounds to reduce mycotoxins concentrations. The hypothesis of this study was that a static in vitro gastrointestinal tract model, as an initial screening tool, can be used to simulate the efficacy of Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus yeast cell walls and their polysaccharides, red and white clay minerals, and walnuts nutshells claiming to detoxify AFB1, ZEA, DON, and T-2 toxin mycotoxins. Mycotoxin concentrations were analyzed using high-performance liquid chromatography (HPLC) with fluorescent (FLD) and ultraviolet detectors (UV). The greatest effects on reducing mycotoxin concentrations were determined as follows: for AFB1, inserted G. fermentans cell wall polysaccharides and walnut nutshells; for ZEA, inserted R. rubra and G. fermentans cell walls and red clay minerals; for DON, R. rubra cell wall polysaccharides and red clay minerals; and for T-2 toxin, R. rubra cell walls, K. marxianus, and G. fermentans cell wall polysaccharides and walnut nutshells. The present study indicated that selected mycotoxin-detoxifying biological compounds can be used to decrease mycotoxin concentrations.


Subject(s)
Clay , Juglans , Mycotoxins , Rhodotorula , Juglans/chemistry , Rhodotorula/metabolism , Mycotoxins/analysis , Mycotoxins/chemistry , Clay/chemistry , Geotrichum/drug effects , Geotrichum/metabolism , Nuts/chemistry , Aluminum Silicates/chemistry , Minerals
17.
Sci Total Environ ; 945: 173996, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901600

ABSTRACT

The continental weathering is a key process that controls calcium (Ca) transportation from the continental crust to the waters. To elucidate the behavior of Ca isotopes during carbonate weathering, the concentrations and δ44/40Ca (relative to NIST SRM 915a) of bulk saprolites, exchangeable, acid-leachable and residual phases of a weathering profile developed on the marine carbonates, Guangdong province, South China, were investigated. Upwards the profile, δ44/40Ca values of the bulk saprolites systematically decrease from 0.77 ± 0.12 ‰ to -0.44 ± 0.12 ‰, suggesting that significant Ca isotope fractionation occurred during chemical weathering. The exchangeable fractions have δ44/40Ca values higher than those of the bulk saprolites with Δ44/40Caexchangeable-saprolite varying from -0.01 ‰ to 0.73 ‰, suggesting that heavy isotopes are preferentially adsorbed onto the clays. The acid-leachable phases display a relatively narrow δ44/40Ca range from 0.52 ‰ to 0.74 ‰ with Ca fractions varying from 7.4 % to 100.3 %, potentially indicating that limited Ca isotopic fractionation occurs during the dissolution of primary carbonates. The residual Ca pool is strongly fractionated with δ44/40Ca ranging from 0.64 ± 0.08 ‰ to -0.98 ± 0.02 ‰, systematically lower than their bulk saprolites, perhaps indicating light Ca isotopes are preferentially incorporated into the clay lattices. Altogether, it seems that the Ca isotopic fractionation directions are opposite between clay structural incorporation and adsorption. Our study provides important insight of Ca behavior and Ca isotopic fractionation during chemical weathering, which is critical to shape Ca isotopic compositions of the upper continental crust and trace the global biogeochemical cycle of Ca.

18.
Int J Biol Macromol ; 273(Pt 2): 132957, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848837

ABSTRACT

Food waste resulting from perishable fruits and vegetables, coupled with the utilization of non-renewable petroleum-based packaging materials, presents pressing challenges demanding resolution. This study addresses these critical issues through the innovative development of a biodegradable functional plastic wrap. Specifically, the proposed solution involves the creation of a κ-carrageenan/carboxymethyl chitosan/arbutin/kaolin clay composite film. This film, capable of rapid in-situ formation on the surfaces of perishable fruits, adeptly conforms to their distinct shapes. The incorporation of kaolin clay in the composite film plays a pivotal role in mitigating water vapor and oxygen permeability, concurrently bolstering water resistance. Accordingly, tensile strength of the composite film experiences a remarkable enhancement, escalating from 20.60 MPa to 34.71 MPa with the incorporation of kaolin clay. The composite film proves its efficacy by preserving cherry tomatoes for an extended period of 9 days at 28 °C through the deliberate delay of fruit ripening, respiration, dehydration and microbial invasion. Crucially, the economic viability of the raw materials utilized in the film, coupled with the expeditious and straightforward preparation method, underscores the practicality of this innovative approach. This study thus introduces an easy and sustainable method for preserving perishable fruits, offering a cost-effective and efficient alternative to petroleum-based packaging materials.


Subject(s)
Carrageenan , Chitosan , Clay , Food Packaging , Hydrogels , Kaolin , Solanum lycopersicum , Chitosan/chemistry , Chitosan/analogs & derivatives , Kaolin/chemistry , Carrageenan/chemistry , Clay/chemistry , Food Packaging/methods , Hydrogels/chemistry , Tensile Strength , Food Preservation/methods , Fruit/chemistry , Permeability
19.
Article in English | MEDLINE | ID: mdl-38922470

ABSTRACT

Biogas, as a sustainable energy source, encounters challenges in practical applications due to impurities, notably carbon dioxide (CO2), and nitrogen (N2). This study investigates the effect of metal/clay ratio on the adsorption selectivity of porous zirconium-pillared clay adsorbents for biogas upgradation. Comprehensive analyses including nitrogen adsorption/desorption, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were conducted to evaluate the physicochemical properties. Adsorption properties for Zr-pillared clays for biogas components such as CO2, CH4, and N2, at 25 °C under different pressures were investigated. The ideal adsorbed solution theory (IAST) was employed to assess selectivity for three binary gas mixtures (CO2/CH4, CO2/N2, and CH4/N2). Results revealed the substantial impact of Zr/Clay ratio on both adsorption capacity and selectivity of the prepared materials. For instance, the maximum adsorption capacity of gases varies as ZrPILC-4 > ZrPILC-2 > ZrPILC-8 > ZrPILC-1, whereas the adsorption selectivity for CO2/CH4 separation (at 1000 kPa) varies as ZrPILC-1 > ZrPILC-2 > ZrPILC-8 > ZrPILC-4. Interestingly, the ZrPILC-8 with maximum surface area (147 m2∙g-1) did not show maximum adsorption capacity for all the three gases, which was attributed to its lower pore volume, and basal spacing, as compared to ZrPILC-4. Amongst all the pillared samples, the ZrPILC-1 exhibited highest selectivity for all binary mixtures (at 1000 kPa), signifies increased nonspecific interactions due to its lower surface area. Its separation performance, particularly for CO2/CH4 mixture exceeded that of the parent clay by 1.5 times. A significant increase in the working capacity of the prepared samples underscores the efficacy of these pillared materials in separating biogas components. This study provides valuable insights into effects of Zr/clay ratio for developing robust pillared adsorbents, contributing to the advancement of sustainable biomethane production.

20.
Appl Radiat Isot ; 211: 111417, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38925036

ABSTRACT

Because radioactive 177Lu has a wide range of possible applications in radiopharmaceuticals, its removal from medical wastewater is particularly important. Montmorillonite clay was employed as an adsorbent in this study. Radioactive solutions were prepared with dilutions of the solution containing 177Lu at various concentrations, in which it was present as Lu3+. ULEGe detector in gamma spectrometer was used to measure 177Lu gamma rays emitted from the radioactive aqueous solutions. The results obtained showed that it is possible to remove 177Lu with a high yield of approximately 90% and it is effective in a period of 90 min under acidic conditions. From the findings, it can be argued that Montmorillonite clay, as an abundant and sustainable adsorbent, may also be suitable for the disposal of different radioactive medical wastes such as 131I and 99mTc, and also the technique based on gamma ray spectroscopy can be used for fast and practical measurements of radioactive material amounts.

SELECTION OF CITATIONS
SEARCH DETAIL
...