Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11158, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750135

ABSTRACT

Examples of symbiotic relationships often include cleaning mutualisms, typically involving interactions between cleaner fish and other fish, called the clients. While these cleaners can cooperate by removing ectoparasites from their clients, they can also deceive by feeding on client mucus, a behavior usually referred to as "cheating behavior" that often leads to a discernible jolt from the client fish. Despite extensive studies of these interactions, most research has focused on the visual aspects of the communication. In this study, we aimed to explore the role of acoustic communication in the mutualistic relationship between cleaner fishes and nine holocentrid client species across four regions of the Indo-Pacific Ocean: French Polynesia, Guam, Seychelles, and the Philippines. Video cameras coupled with hydrophones were positioned at various locations on reefs housing Holocentridae fish to observe their acoustic behaviors during interactions. Our results indicate that all nine species of holocentrids can use acoustic signals to communicate to cleaner fish their refusal of the symbiotic interaction or their desire to terminate the cooperation. These sounds were predominantly observed during agonistic behavior and seem to support visual cues from the client. This study provides a novel example of acoustic communication during a symbiotic relationship in teleosts. Interestingly, these vocalizations often lacked a distinct pattern or structure. This contrasts with numerous other interspecific communication systems where clear and distinguishable signals are essential. This absence of a clear acoustic pattern may be because they are used in interspecific interactions to support visual behavior with no selective pressure for developing specific calls required in conspecific recognition. The different sound types produced could also be correlated with the severity of the client response. There is a need for further research into the effects of acoustic behaviors on the quality and dynamics of these mutualistic interactions.


Subject(s)
Symbiosis , Animals , Symbiosis/physiology , Fishes/physiology , Sound , Acoustics , Vocalization, Animal/physiology , Animal Communication , Coral Reefs , Pacific Ocean , Polynesia , Perciformes/physiology
2.
Microbiol Resour Announc ; 13(6): e0016524, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38682771

ABSTRACT

Thirteen bacterial isolates of Tenacibaculum maritimum were sequenced and assembled. The strains were isolated from four disease outbreaks in farmed marine fish in Norway. Eight isolates were from Cyclopterus lumpus (lumpfish), and five were from Scophthalmus maximus (turbot). Overall, sequence similarity did not correlate with host species or geographic location.

3.
J Fish Biol ; 104(6): 1813-1823, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38486407

ABSTRACT

Lumpfish (Cyclopterus lumpus) mortalities have been reported during the summer at some North Atlantic salmon cage-sites where they serve as "cleaner fish." To better understand this species' physiology and whether limitations in their metabolic capacity and thermal tolerance can explain this phenomenon, we compared the aerobic scope (AS) of 6°C-acclimated lumpfish (~50 g and 8.8 cm in length at the beginning of experiments) when all individuals (N = 12) were given a chase to exhaustion, a critical swim speed (Ucrit) test, and a critical thermal maximum (CTMax) test (rate of warming 2°C h-1). The Ucrit and CTMax of the lumpfish were 2.36 ± 0.08 body lengths per second and 20.6 ± 0.3°C. The AS of lumpfish was higher during the Ucrit test (206.4 ± 8.5 mg O2 kg-1 h-1) versus that measured in either the CTMax test or after the chase to exhaustion (141.0 ± 15.0 and 124.7 ± 15.5 mg O2 kg-1 h-1, respectively). Maximum metabolic rate (MMR), AS, and "realistic" AS (ASR) measured using the three different protocols were not significantly correlated, indicating that measurements of metabolic capacity using one of these methods cannot be used to estimate values that would be obtained using another method. Additional findings include that (1) the lumpfish's metabolic capacity is comparable to that of Atlantic cod, suggesting that they are not as "sluggish" as previously suggested in the literature, and (2) their CTMax (20.6°C when acclimated to 6°C), in combination with their recently determined ITMax (20.6°C when acclimated to 10°C), indicates that high sea-cage temperatures are unlikely to be the primary cause of lumpfish mortalities at salmon sea-cages during the summer.


Subject(s)
Oxygen Consumption , Swimming , Animals , Energy Metabolism , Perciformes/physiology , Temperature , Acclimatization , Basal Metabolism
4.
Animals (Basel) ; 13(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38066974

ABSTRACT

This study aimed to expand knowledge on lumpfish stress physiology by investigating the effects of acute stress on primary (i.e., cortisol) and secondary (e.g., metabolites) stress responses, as well as oxidative stress biomarkers, from stress exposure to a recovery phase. The results showed that the lumpfish physiological response to 1 min air exposure is mild, in line with recent studies, and comparable to that described for white sturgeons. Cortisol seems to be the most reliable acute stress biomarker in lumpfish, with a significant increase in plasma 30 min after stress exposure, returning to resting levels 2 h after exposure. In contrast, glucose and lactate were not significantly altered by short-term air exposure. Effects on hepatic energy mobilisation were also detected following the acute stress. This study showed that acute 1 min air exposure seems tolerable, allowing a swift recovery. However, more studies on the impacts of air exposure and repeated acute stressors on lumpfish stress and immune responses are required to develop industry standards for lumpfish health and welfare monitoring.

5.
Genes (Basel) ; 14(10)2023 09 26.
Article in English | MEDLINE | ID: mdl-37895225

ABSTRACT

Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for "cleaner fish" to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype-environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our 'global' sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.


Subject(s)
Gene Flow , Perciformes , Animals , Larva , Fishes , Genomics
6.
Evol Appl ; 16(9): 1619-1636, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37752959

ABSTRACT

Lumpfish, Cyclopterus lumpus, have historically been harvested throughout Atlantic Canada and are increasingly in demand as a solution to controlling sea lice in Atlantic salmon farms-a process which involves both the domestication and the transfer of lumpfish between geographic regions. At present, little is known regarding population structure and diversity of wild lumpfish in Atlantic Canada, limiting attempts to assess the potential impacts of escaped lumpfish individuals from salmon pens on currently at-risk wild populations. Here, we characterize the spatial population structure and genomic-environmental associations of wild populations of lumpfish throughout the Northwest Atlantic using both 70K SNP array data and whole-genome re-sequencing data (WGS). At broad spatial scales, our results reveal a large environmentally associated genetic break between the southern populations (Gulf of Maine and Bay of Fundy) and northern populations (Newfoundland and the Gulf of St. Lawrence), linked to variation in ocean temperature and ice cover. At finer spatial scales, evidence of population structure was also evident in a distinct coastal group in Newfoundland and significant isolation by distance across the northern region. Both evidence of consistent environmental associations and elevated genome-wide variation in F ST values among these three regional groups supports their biological relevance. This study represents the first extensive description of population structure of lumpfish in Atlantic Canada, revealing evidence of broad and fine geographic scale environmentally associated genomic diversity. Our results will facilitate the commercial use of lumpfish as a cleaner fish in Atlantic salmon aquaculture, the identification of lumpfish escapees, and the delineation of conservation units of this at-risk species throughout Atlantic Canada.

7.
J Fish Biol ; 103(5): 906-923, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37321978

ABSTRACT

Concerns have long been raised about the welfare of ballan wrasse (Labrus bergylta) used for the biological control of sea lice in Atlantic salmon (Salmo salar) aquaculture. This study assessed the effect of increased dietary eicosapentaenoic acid (EPA) levels and initial condition factor (CF) on the subsequent performance and welfare of ballan wrasse farmed in high and low water temperatures. Fish were fed a diet with either commercial or high EPA levels for 3 months at 15°C. Subsequently, fish were tagged with a passive integrated transponder, measured for their CF and divided into two groups consisting of fish from both treatments and reared for 4.5 months at either 15 or 6°C fed a commercial diet. Each fish was categorized as high (≥2.7) or low CF (<2.7) fish based on the calculated average CF of the population. Dietary composition influenced the fatty acid (FA) profile of the stored lipids without affecting the growth or welfare of ballan wrasse. Fish reared at 15°C showed higher growth, more fat and energy reserves and less ash content. Fish reared at 6°C lost weight, using up their body lipids at the end of the temperature trial. Gene expression analyses showed upregulation of the positive growth marker (GHrα) and two genes involved in the synthesis and oxidation of FAs (elovl5, cpt1) and downregulation of the negative growth marker (mstn) in fish reared at 15°C compared to those reared at 6°C. Fish reared at 6°C showed upregulated levels of il-6 compared to those reared at 15°C, suggesting an enhanced immune reaction in response to low temperature. Fish with high CF showed better survival, growth and performance compared to those with low CF. External welfare scoring showed higher prevalence and severity in emaciation, scale loss and the sum index score (of all measured welfare parameters) in fish reared at 6°C compared to those reared at 15°C and better welfare in fish with high CF compared to those with low CF. Histological examination of the skin showed that fish reared at 6°C had decreased epidermal thickness, a lower overall number of mucous cells in the inner and outer epidermis and a different organization of mucous cells compared to fish reared at 15°C, indicating stress in fish reared at 6°C. Overall, low water temperatures had profound effects on the performance and external and internal welfare parameters of ballan wrasse and can be considered a stressor likely affecting the delousing efficacy. These findings support the seasonal use of different cleaner fish species. High CF, but not increased dietary EPA levels, appeared to help fish cope better with low water temperatures and should thus be assessed and considered before deploying them in salmon cages.


Subject(s)
Perciformes , Salmo salar , Animals , Diet/veterinary , Eicosapentaenoic Acid/metabolism , Fishes/metabolism , Perciformes/physiology , Salmo salar/metabolism , Temperature , Water
8.
Behav Ecol ; 34(2): 269-277, 2023.
Article in English | MEDLINE | ID: mdl-36998993

ABSTRACT

Mutualisms are driven by partners deciding to interact with one another to gain specific services or rewards. As predicted by biological market theory, partners should be selected based on the likelihood, quality, reward level, and or services each partner can offer. Third-party species that are not directly involved in the interaction, however, may indirectly affect the occurrence and or quality of the services provided, thereby affecting which partners are selected or avoided. We investigated how different clients of the sharknose goby (Elacatinus evelynae) cleaner fish were distributed across cleaning stations, and asked what characteristics, relating to biological market theory, affected this distribution. Through quantifying the visitation and cleaning patterns of client fish that can choose which cleaning station(s) to visit, we found that the relative species richness of visiting clients at stations was negatively associated with the presence of disruptive territorial damselfish at the station. Our study highlights, therefore, the need to consider the indirect effects of third-party species and their interactions (e.g., agonistic interactions) when attempting to understand mutualistic interactions between species. Moreover, we highlight how cooperative interactions may be indirectly governed by external partners.

9.
Br J Nutr ; 130(5): 765-782, 2023 09 14.
Article in English | MEDLINE | ID: mdl-36632013

ABSTRACT

A 5-week feeding trial was conducted in the cleaner fish Ballan wrasse (Labrus bergylta) for a better understanding of the basic biology of the intestinal functions and health in this stomach less species. During the trial, Ballan wrasse was fed either a reference diet, the reference diet supplemented with (i) a commercial prebiotic (Aquate™ SG, 0·4 %) expected to have beneficial effects, (ii) soya saponins (0·7 %) expected to induce inflammation or (iii) a combination of the prebiotics and the soya saponins to find a remedy for gut inflammation. Blood, intestinal tissue and gut content from four consecutive intestinal segments (IN1 - IN4) were collected. No significant differences in fish growth were observed between the four dietary groups. Saponin supplementation, both alone and in combination with prebiotics, increased weight index of IN2 and IN3 and decreased blood plasma glucose, cholesterol and total protein. Dry matter of intestinal content and activity of digestive enzymes were not affected by diet. Histomorphological analyses revealed a progressing inflammation with increased infiltration by immune cells particularly into the distal parts of the intestine in fish fed diets with saponins, both alone and in combination with prebiotics. Gene expression profiles obtained by RNA sequencing and quantitative PCR mirrored the histological and biochemical changes induced by the saponin load. The study demonstrated that Ballan wrasse gut health and digestive function may be markedly affected by feed ingredients containing antinutrients.


Subject(s)
Perciformes , Saponins , Animals , Prebiotics , Saponins/pharmacology , Perciformes/genetics , Fishes , Inflammation
10.
Microb Ecol ; 85(2): 372-382, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35275230

ABSTRACT

Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies' level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies' skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.


Subject(s)
Microbiota , Perciformes , Animals , RNA, Ribosomal, 16S , Fishes/microbiology , Coral Reefs , Caribbean Region , Bacteria
11.
J Fish Dis ; 45(11): 1745-1756, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35989490

ABSTRACT

European North Atlantic ranavirus (ENARV, Iridoviridae), is a ranavirus species recently isolated from lumpfish (Cyclopterus lumpus, L.), which are used as cleaner fish in Atlantic salmon (Salmo salar) farming in Northern Europe. This study aimed to investigate (1) the virulence of ENARV isolates from Ireland, Iceland and the Faroe Islands to lumpfish; (2) horizontal transmission between lumpfish; and (3) virulence to Atlantic salmon parr. Lumpfish were challenged in a cohabitation model using intraperitoneally (IP) injected shedders, and naïve cohabitants. IP challenge with isolates from Iceland (1.9 × 107 TCID50  ml-1 ) and the Faroe Islands (5.9 × 107 TCID50  ml-1 ) reduced survival in lumpfish, associated with consistent pathological changes. IP challenge with the Irish strain (8.6 × 105 TCID50  ml-1 ) did not significantly reduce survival in lumpfish, but the lower challenge titre complicated interpretation. Horizontal transmission occurred in all strains tested, but no clinical impact was demonstrated in cohabitants. Salmon parr were challenged by IP injection with the Irish isolate, no virulence or virus replication were demonstrated. A ranavirus qPCR assay, previously validated for fish ranaviruses, was first used to detect ENARV in tissues of both in lumpfish and Atlantic salmon. This study provides the first data on the assessment of virulence of ENARV isolates to lumpfish and salmon, guidelines for the diagnosis of ENARV infection, and poses a basis for further investigations into virulence markers.


Subject(s)
Fish Diseases , Iridoviridae , Perciformes , Ranavirus , Salmo salar , Animals , Fishes
12.
Front Physiol ; 13: 781519, 2022.
Article in English | MEDLINE | ID: mdl-35309044

ABSTRACT

Lumpfish are utilized to combat ectoparasitic epidemics in salmon farming. Research gaps on both cleaning behavior and client preferences in a natural environment, emphasizes the need to investigate the physiological impacts on lumpfish during cohabitation with piscivorous Atlantic salmon. Lumpfish (39.9 g, S.D ± 8.98) were arranged in duplicate tanks (n = 40 per treatment) and exposed to Live Atlantic salmon (245.7 g, S.D ± 25.05), salmon Olfaction or lifelike salmon Models for 6 weeks. Growth and health scores were measured every second week. In addition, the final sampling included measurements of neuromodulators, body color, and plasma cortisol. A stimulation and suppression test of the hypothalamic-pituitary-interrenal (HPI) axis was used for chronic stress assessment. Results showed that growth, health scores, and body color remained unaffected by treatments. Significant reductions in levels of brain dopamine and norepinephrine were observed in Live compared to Control. Plasma cortisol was low in all treatments, while the stimulation and suppression test of the HPI axis revealed no indications of chronic stress. This study presents novel findings on the impact on neuromodulators from Atlantic salmon interaction in the lumpfish brain. We argue that the downregulation of dopamine and norepinephrine indicate plastic adjustments to cohabitation with no negative effect on the species. This is in accordance with no observed deviations in welfare measurements, including growth, health scores, body color, and stress. We conclude that exposure to salmon or salmon cues did not impact the welfare of the species in our laboratory setup, and that neuromodulators are affected by heterospecific interaction.

13.
J Fish Biol ; 100(1): 40-50, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34590316

ABSTRACT

The mutualistic relationships between anemonefish (Amphiprion; Pomacentridae) and host sea anemones are well known, but host anemones are also used as shelter by damselfish (Pomacentridae), wrasses (Labridae) and cardinalfish (Apogonidae). The threespot dascyllus Dascyllus trimaculatus (Pomacentridae) is known to live on or near host anemones in their immature phase. Nonetheless, detailed studies on the use of host anemones by other fish species have not yet been conducted. To understand the factors that influence the use of host anemones by other fish species, this study investigated the fish biota around host anemones in the Ryukyu Archipelago. Other than Amphiprion spp. and D. trimaculatus, 10 additional species of fish (9 species of damselfish and 1 species of cardinalfish) were confirmed to temporarily use host anemones as shelter, and five species of wrasse including Labroides dimidiatus came to clean anemonefish. Logistic regression analyses (independent variable: presence or absence of other species of fish; dependent variables: anemonefish aggressiveness, size of host anemone, number of D. trimaculatus) indicated that the size of host anemones is important for the presence of fish, both in species using the anemone as temporary shelter and in cleaner species. Large host anemones can provide shelter and food resources for other species of coral reef fish as well as for anemonefish.


Subject(s)
Perciformes , Sea Anemones , Animals , Coral Reefs , Fishes , Symbiosis
14.
Brain Behav Evol ; 96(3): 124-136, 2021.
Article in English | MEDLINE | ID: mdl-34753141

ABSTRACT

Scientists have long struggled to establish how larger brains translate into higher cognitive performance across species. While absolute brain size often yields high predictive power of performance, its positive correlation with body size warrants some level of correction. It is expected that larger brains are needed to control larger bodies without any changes in cognitive performance. Potentially, the mean value of intraspecific brain-body slopes provides the best available estimate for an interspecific correction factor. For example, in primates, including humans, an increase in body size translates into an increase in brain size without changes in cognitive performance. Here, we provide the first evaluation of this hypothesis for another clade, teleost fishes. First, we obtained a mean intraspecific brain-body regression slope of 0.46 (albeit with a relatively large range of 0.26-0.79) from a dataset of 51 species, with at least 10 wild adult specimens per species. This mean intraspecific slope value (0.46) is similar to that of the encephalisation quotient reported for teleosts (0.5), which can be used to predict mean cognitive performance in fishes. Importantly, such a mean value (0.46) is much higher than in endothermic vertebrate species (≤0.3). Second, we used wild-caught adult cleaner fish Labroides dimidiatus as a case study to test whether variation in individual cognitive performance can be explained by body size. We first obtained the brain-body regression slope for this species from two different datasets, which gave slope values of 0.58 (MRI scan data) and 0.47 (dissection data). Then, we used another dataset involving 69 adult cleaners different from those tested for their brain-body slope. We found that cognitive performance from four different tasks that estimated their learning, numerical, and inhibitory control abilities was not significantly associated with body size. These results suggest that the intraspecific brain-body slope captures cognitive equivalence for this species. That is, individuals that are on the brain-body regression line are cognitively equal. While rather preliminary, our results suggest that fish and mammalian brain organisations are fundamentally different, resulting in different intra- and interspecific slopes of cognitive equivalence.


Subject(s)
Fishes , Hominidae , Animals , Body Size , Brain , Cognition , Mammals , Organ Size
15.
Cells ; 10(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34572091

ABSTRACT

The use of lumpfish (Cyclopterus lumpus) as a cleaner fish to fight sea lice infestation in farmed Atlantic salmon has become increasingly common. Still, tools to increase our knowledge about lumpfish biology are lacking. Here, we successfully established and characterized the first Lumpfish Gill cell line (LG-1). LG-1 are adherent, homogenous and have a flat, stretched-out and almost transparent appearance. Transmission electron microscopy revealed cellular protrusions and desmosome-like structures that, together with their ability to generate a transcellular epithelial/endothelial resistance, suggest an epithelial or endothelial cell type. Furthermore, the cells exert Cytochrome P450 1A activity. LG-1 supported the propagation of several viruses that may lead to severe infectious diseases with high mortalities in fish farming, including viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Altogether, our data indicate that the LG-1 cell line originates from an epithelial or endothelial cell type and will be a valuable in vitro research tool to study gill cell function as well as host-pathogen interactions in lumpfish.


Subject(s)
Cell Proliferation , Fish Diseases/virology , Fish Proteins/metabolism , Gills/cytology , Gills/physiology , Perciformes/physiology , Animals , Cell Line , Fish Proteins/genetics , Gene Expression Regulation , Gills/virology , Novirhabdovirus/physiology , Perciformes/classification , Perciformes/virology
16.
Vaccines (Basel) ; 9(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34451944

ABSTRACT

Vibrio anguillarum, a marine bacterial pathogen that causes vibriosis, is a recurrent pathogen of lumpfish (Cyclopterus lumpus). Lumpfish is utilized as a cleaner fish in the Atlantic salmon (Salmo salar) aquaculture in the North Atlantic region because of its ability to visualize and prey on the ectoparasite sea lice (Lepeophtheirus salmonis) on the skin of Atlantic salmon, and its performance in cold environments. Lumpfish immunity is critical for optimal performance and sea lice removal. Oral vaccine delivery at a young age is the desired method for fish immunization because is easy to use, reduces fish stress during immunization, and can be applied on a large scale while the fish are at a young age. However, the efficacy of orally delivered inactivated vaccines is controversial. In this study, we evaluated the effectiveness of a V. anguillarum bacterin orally delivered to cultured lumpfish and contrasted it to an intraperitoneal (i.p.) boost delivery. We bio-encapsulated V. anguillarum bacterin in Artemia salina live-feed and orally immunized lumpfish larvae. Vaccine intake and immune response were evaluated by microscopy and quantitative polymerase chain reaction (qPCR) analysis, respectively. qPCR analyses showed that the oral immunization of lumpfish larvae resulted in a subtle stimulation of canonical immune transcripts such as il8b, il10, igha, ighmc, ighb, ccl19, ccl20, cd8a, cd74, ifng, and lgp2. Nine months after oral immunization, one group was orally boosted, and a second group was both orally and i.p. boosted. Two months after boost immunization, lumpfish were challenged with V. anguillarum (7.8 × 105 CFU dose-1). Orally boosted fish showed a relative percentage of survival (RPS) of 2%. In contrast, the oral and i.p. boosted group showed a RPS of 75.5% (p < 0.0001). V. anguillarum bacterin that had been orally delivered was not effective in lumpfish, which is in contrast to the i.p. delivered bacterin that protected the lumpfish against vibriosis. This suggests that orally administered V. anguillarum bacterin did not reach the deep lymphoid tissues, either in the larvae or juvenile fish, therefore oral immunization was not effective. Oral vaccines that are capable of crossing the epithelium and reach deep lymphoid tissues are required to confer an effective protection to lumpfish against V. anguillarum.

17.
J Fish Biol ; 99(4): 1513-1518, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34159592

ABSTRACT

The movement patterns of three commercially important wrasse (Labridae) species inside a small marine protected area (~ 0.15 km2 ) on the west coast of Norway were analysed over a period of 21 months. The mean distance between capture and recapture locations varied between 10 and 187 m, and was species and season specific. The extent of movement was not related to body size or sex. These results imply that a network of small strategically located marine protected areas can be used as management tools to protect wrasses from size- and sex-selective fishing mortality.


Subject(s)
Perciformes , Animals , Norway
18.
Biol Rev Camb Philos Soc ; 96(6): 2584-2601, 2021 12.
Article in English | MEDLINE | ID: mdl-34165230

ABSTRACT

Cleaning interactions, in which a small 'cleaner' organism removes and often consumes material from a larger 'client', are some of the most enigmatic and intriguing of interspecies interactions. Early research on cleaning interactions canonized the view that they are mutualistic, with clients benefiting from parasite removal and cleaners benefiting from a meal, but subsequent decades of research have revealed that the dynamics of these interactions can be highly complex. Despite decades of research on marine cleaning interactions (the best studied cleaning systems), key questions remain, including how the outcome of an individual cleaning interaction depends on ecological, behavioural, and social context, how such interactions arise, and how they remain stable over time. Recently, studies of marine parasites, long-term data from coral reef communities with and without cleaners, increased behavioural observations recorded using remote video, and a focus on a larger numbers of cleaning species have helped bring about key conceptual advances in our understanding of cleaning interactions. In particular, evidence now suggests that the ecological, behavioural, and social contexts of a given cleaning interaction can result in the outcome ranging from mutualistic to parasitic, and that cleaning interactions are mediated by signals that can also vary with context. Signals are an important means by which animals extract information about one another, and thus represent a mechanism by which interspecific partners can determine when, how, and with whom to interact. Here, I review our understanding of the behavioural ecology of marine cleaning interactions. In particular, I argue that signals provide a useful framework for advancing our understanding of several important outstanding questions. I discuss the costs and benefits of cleaning interactions, review how cleaners and clients recognize and assess one another using signals, and discuss how signal reliability, or 'honesty', may be maintained in cleaning systems. Lastly, I discuss the sensory ecology of both cleaners and clients to highlight what marine cleaning systems can tell us about signalling behaviour, signal form, and signal evolution in a system where signals are aimed at multiple receiver species. Overall, I argue that future research on cleaning interactions has much to gain by continuing to shift the research focus toward examining the variable outcomes of cleaning interactions in relation to the broader behavioural, social, and ecological contexts.


Subject(s)
Fishes , Symbiosis , Animals , Coral Reefs , Reproducibility of Results , Social Behavior
19.
Ecol Evol ; 11(12): 7865-7878, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188857

ABSTRACT

The parasitic salmon louse represents one of the biggest challenges to environmentally sustainable salmonid aquaculture across the globe. This species also displays a high evolutionary potential, as demonstrated by its rapid development of resistance to delousing chemicals. In response, farms now use a range of non-chemical delousing methods, including cleaner fish that eat lice from salmon. Anecdotal reports suggest that in regions where cleaner fish are extensively used on farms, lice have begun to appear less pigmented and therefore putatively less visible to cleaner fish. However, it remains an open question whether these observations reflect a plastic (environmental) or adaptive (genetic) response. To investigate this, we developed a pigment scoring system and conducted complimentary experiments which collectively demonstrate that, a) louse pigmentation is strongly influenced by environmental conditions, most likely light, and b) the presence of modest but significant differences in pigmentation between two strains of lice reared under identical conditions. Based on these data, we conclude that pigmentation in the salmon louse is strongly influenced by environmental conditions, yet there are also indications of underlying genetic control. Therefore, lice could display both plastic and adaptive responses to extensive cleaner fish usage where visual appearance is likely to influence survival of lice.

20.
J Fish Dis ; 44(8): 1201-1214, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33960425

ABSTRACT

The use of cleaner fish as a delousing method in Norwegian salmonid aquaculture has increased tremendously over the last few years. This has led to the emergence of a new large industry of farming lumpsuckers (Cyclopterus lumpus L.). The use of lumpsuckers as cleaner fish has, however, not been problem-free. Bacterial diseases cause high mortalities with pasteurellosis as one of the major emerging diseases. During the past few years, outbreaks of pasteurellosis in farmed Atlantic salmon (Salmo salar L.) have become more frequent. This has led to an increasing concern that this disease will become common in salmon farming as well. The purpose of this study was to investigate the susceptibility of Atlantic salmon to Pasteurella spp. infection and the possibility of lumpsuckers transmitting pasteurellosis to Atlantic salmon. Atlantic salmon were experimentally challenged, either by bath or by cohabitation with challenged lumpsuckers, using two different strains of Pasteurella spp. (originating from lumpsucker and Atlantic salmon, respectively). No clinical signs of pasteurellosis were observed on any of the Atlantic salmon. The lumpsuckers were, however, equally susceptible to both isolates. In addition, clear differences in histopathological changes were observed between individuals challenged with the two isolates.


Subject(s)
Fish Diseases/microbiology , Pasteurella Infections/veterinary , Pasteurella/physiology , Perciformes , Salmo salar , Animals , Aquaculture , Norway , Pasteurella Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL