Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 670: 1068-1074, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31018422

ABSTRACT

Copper nanoparticles (NCu) may co-exist with other pollutants in agricultural soils, such as pesticides. However, this has been little evaluated yet. Thus, possible effects of the simultaneous applications of pesticides and NCu on biogeochemical cycles are expected, for example on the nitrogen cycle. Therefore, the aim of this work was to evaluate the effect of simultaneous application of the herbicide atrazine (ATZ) and NCu on the abundance of total bacteria and nitrifying communities: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Moreover, the ATZ dissipation was evaluated. A soil-plant system containing ATZ at field dose (3 mg a.i. kg-1) was mixed with two doses of NCu (0.05% or 0.15% w/w). Changes in the abundance of 16S rRNA and ammonia monooxygenase (amoA) genes of AOA and AOB were evaluated by real-time quantitative PCR (qPCR) at three sampling times (1, 15 and 30 days). The residual ATZ and nitrate production were also measured. The results showed significant differences in microbial composition and abundance over the 30 days of the experiment. Particularly, an initial decrease was observed in total bacterial abundance due to the presence of ATZ and NCu respect to ATZ alone (~60%). The abundance of AOA was also remarkably reduced (~85%), but these communities gradually recovered towards the end of the experiment. Conversely, AOB abundance initially increased (>100%) and remained mainly unaltered in soil exposed to ATZ and NCu 0.15% w/w, where nitrate formation was also constant. Moreover, NCu decreased the ATZ dissipation, which was translated in a 2-fold increase on the ATZ half-life values (T1/2). This study demonstrates that the simultaneous presence of NCu and ATZ may represent a risk for the total bacteria present in soil and sensitive microorganisms such as nitrifying communities, and changes in the dissipation of the pesticide could influence this process.


Subject(s)
Archaea/physiology , Atrazine/adverse effects , Bacterial Physiological Phenomena , Copper/adverse effects , Herbicides/adverse effects , Metal Nanoparticles/adverse effects , Soil Pollutants/adverse effects , Genes, Bacterial , Nitrogen Cycle , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Soil Microbiology
2.
J Hazard Mater ; 361: 228-236, 2019 01 05.
Article in English | MEDLINE | ID: mdl-30196035

ABSTRACT

Copper nanoparticles (NCu) have been proposed as an antimicrobial agent in agriculture. Therefore, NCu may interact with numerous pollutants including pesticides. Little is known about the combined effects of NCu and pesticides in soil. This study aimed at assessing the impact of NCu combined with the herbicide atrazine (ATZ) on soil. We focused on assessing the adsorption and dissipation of ATZ in the presence of NCu and the changes in microbial community profiles. First, ATZ adsorption isotherms (described using the Freundlich equation) were evaluated. After that, soil samples were spiked with NCu (40-60 nm) at 0.05 and 0.15% w/w and ATZ (3 mg a.i kg-1) and incubated for 30 days. The results showed that ATZ adsorption is favored by the presence of NCu. On the other hand, NCu at 0.15% w/w caused a significant decrease in ATZ dissipation, increasing its half-life from 6 to 37 days. Microbial community profiles (bacteria, fungi and nitrifying bacteria) remained relatively stable throughout the evaluated period. Therefore, our findings suggest that NCu can increase the persistence of ATZ in soil, which may be mostly associated to physical-chemical interaction with soil particles more than a microbial impact.


Subject(s)
Atrazine/analysis , Copper/analysis , Nanoparticles/analysis , Pesticides/analysis , Soil Microbiology , Soil Pollutants/analysis , Atrazine/metabolism , Biodegradation, Environmental , Copper/metabolism , Microbiota/drug effects , Nanoparticles/metabolism , Pesticides/metabolism , Soil/chemistry , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL