Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 851
Filter
1.
Mol Ecol Resour ; : e13997, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086104

ABSTRACT

Molecular techniques like metabarcoding, while promising for exploring diversity of communities, are often impeded by the lack of reference DNA sequences available for taxonomic annotation. Our study explores the benefits of combining targeted DNA barcoding and morphological taxonomy to improve metabarcoding efficiency, using beach meiofauna as a case study. Beaches are globally important ecosystems and are inhabited by meiofauna, microscopic animals living in the interstitial space between the sand grains, which play a key role in coastal biodiversity and ecosystem dynamics. However, research on meiofauna faces challenges due to limited taxonomic expertise and sparse sampling. We generated 775 new cytochrome c oxidase I DNA barcodes from meiofauna specimens collected along the Netherlands' west coast and combined them with the NCBI GenBank database. We analysed alpha and beta diversity in 561 metabarcoding samples from 24 North Sea beaches, a region extensively studied for meiofauna, using both the enriched reference database and the NCBI database without the additional reference barcodes. Our results show a 2.5-fold increase in sequence annotation and a doubling of species-level Operational Taxonomic Units (OTUs) identification when annotating the metabarcoding data with the enhanced database. Additionally, our analyses revealed a bell-shaped curve of OTU richness across the intertidal zone, aligning more closely with morphological analysis patterns, and more defined community dissimilarity patterns between supralittoral and intertidal sites. Our research highlights the importance of expanding molecular reference databases and combining morphological taxonomy with molecular techniques for biodiversity assessments, ultimately improving our understanding of coastal ecosystems.

2.
R Soc Open Sci ; 11(8): 240294, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113774

ABSTRACT

Evolutionary theory predicts that the species of an evolutionarily successful taxon would not overlap in spatial distribution. To test the prediction, we document our research on the spatial associations of mustelids, an evolutionarily successful group of order Carnivore, using infrared camera trap data on species distribution collected from the national nature reserves (NNRs) of Liancheng, Wolong, Tangjiahe and Heizhugou in China in 2017-2021. Data showed seven mustelid species occurring in the study area, including Arctonyx collaris, Meles leucurus, Martes foina, Martes flavigula, Mustela altaica, Mustela nivalis and Mustela sibirica. Following Ricklef's definition of biological community, we identified five networks of species associations. The mustelids occurred in the networks. Species from the same genus, such as M. foina and M. flavigula, stayed in different networks to avoid competition owing to similar feeding habits or habitat preferences. Species with different feeding habits or habitat preferences either occurred in different networks, such as M. altaica and M. flavigula, or coexisted in the same networks but avoided direct spatial associations, such as M. foina and A. collaris. Asymmetrical associations were found between different genera, such as M. foina and M. altaica, or between different subfamilies, such as M. flavigula and A. collaris. These associations may be attributed to interspecific killing or seed dispersal. However, these associations accounted for only a small proportion and would not impact the species diversity of Mustelidae. It is thus concluded that the prediction is supported by our research findings and that spatial avoidance may be the biogeographic strategy of maintaining the species diversity of the family. We also found that the well protection of the mustelids may benefit the overall biodiversity conservation in Heizhugou, an NNR that has experienced severe deforestation.

3.
Ecol Evol ; 14(8): e70045, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091332

ABSTRACT

Tardigrades (Tardigrada) are a phylum of micrometazoans found in all biomes on Earth, but their ecology and habitat preferences remain vastly understudied. Boreal peatlands include a diversity of habitat types and high structural heterogeneity that represents an interesting system to study some of the poorly known habitat preferences of tardigrades. Here, we investigate for the first time tardigrade communities in peatland mosses and the latter's potential associations with key environmental variables. We collected 116 moss samples from 13 sites representing different peatland types and management histories. We found that tardigrades are common and diverse in boreal peatlands, as tardigrades were present in 72% of the collected samples and we identified 14 tardigrade genera. Tardigrade abundance seemed to increase alongside the increasing tree basal area and the density was higher in the microtopographic level further from the water table level, that is, hummocks (mean 117/moss gram) than in lawns/hollows (mean 84/moss gram). Furthermore, the highest tardigrade density was found in the moss taxa that are associated with forested peatland types (i.e., feather mosses) (321 mean/moss gram). Finally, we found interesting patterns regarding tardigrade functional diversity, as carnivorous tardigrades were found only in peatlands with tree basal area > 20 m2 and mostly in hummocks. Our study demonstrates that the habitat heterogeneity of peatlands (e.g., variation in moisture and vegetation cover) represents an interesting system to study tardigrade ecology and habitat preferences. However, since we found variation in tardigrade abundance and communities across peatland types and microhabitats within peatlands, our results highlight that such studies should be conducted with numerous replicate samples and a systematic study design that properly addresses the habitat heterogeneity between and within different peatland types.

4.
Appl Environ Microbiol ; : e0135924, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171904

ABSTRACT

The Altai Mountains (ALE) and the Greater Khingan Mountains (GKM) in northern China are forest regions dominated by coniferous trees. These geographically isolated regions provide an ideal setting for studying microbial biogeographic patterns. In this study, we employed high-throughput techniques to obtain DNA sequences of soil myxomycetes, bacteria, and fungi and explored the mechanisms underlying the assembly of both local and cross-regional microbial communities in relation to environmental factors. Our investigation revealed that the environmental heterogeneity in ALE and GKM significantly affected the succession and assembly of soil bacterial communities at cross-regional scales. Specifically, the optimal environmental factors affecting bacterial Bray-Curtis similarity were elevation and temperature seasonality. The spatial factors and climate change impact on bacterial communities under the geographical barriers surpassed that of local soil microenvironments. The assembly pattern of bacterial communities transitions from local drift to cross-regional heterogeneous selection. Environmental factors had a relatively weak influence on myxomycetes and fungi. Both soil myxomycetes and fungi faced considerable dispersal limitation at local and cross-regional scales, ultimately leading to weak geographical distribution patterns.IMPORTANCEThe impact of environmental selection and dispersal on the soil microbial spatial distribution is a key concern in microbial biogeography, particularly in large-scale geographical patterns. However, our current understanding remains limited. Our study found that soil bacteria displayed a distinct cross-regional geographical distribution pattern, primarily influenced by environmental selection. Conversely, the cross-regional geographical distribution patterns of soil myxomycetes and fungi were relatively weak. Their composition exhibited a weak association with the environment at local and cross-regional scales, with assembly primarily driven by dispersal limitation.

5.
Mycologia ; : 1-12, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39208238

ABSTRACT

The study of myxomycete biogeography has a long-standing history and has consistently drawn scholarly interest. Nevertheless, studies focusing specifically on the spatial and temporal distribution patterns of myxomycete diversity are relatively limited, with even fewer investigating the mechanisms driving the generation and maintenance of myxomycete diversity. Therefore, this study selected two geographically distant sampling sites within northern Chinese forests to investigate myxomycete species composition, community structure, environmental drivers, and assembly patterns under geographic barriers. We established plots in the Altai Mountains (ALE) and the Greater Khingan Mountains (GKM), gathered bark and litter, and conducted 80-day moist chamber cultures of myxomycetes. Additionally, myxomycete specimens were collected in the field simultaneously to supplement the data set. This study collected 541 myxomycete specimens belonging to 73 species from 28 genera, spanning 12 families and eight orders. The ALE and the GKM had 20 identical species, accounting for 27% of the total species. Myxomycetes from both regions exhibited abundant occurrence 18 days after cultivation, with the quantity on bark substrates notably higher than on litter. Arcyria pomiformis and Comatricha elegans were the most common species in moist chamber cultures. Mantel test outcomes revealed that environmental factors had no significant impact on myxomycete community similarity between the two areas, aligning with findings from the neutral community model analysis, indicating a predominant influence of stochastic processes on myxomycete community structure in moist chamber cultures. This study represents the first application of a quantitative framework to analyze myxomycete community assembly cultivated in moist chambers.

6.
Parasitol Res ; 123(8): 288, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093485

ABSTRACT

Tabanidae are considered a nuisance to humans, wild animals, and livestock due to their painful, annoying, and insistent biting. Tabanids transmit some pathogens and parasites biologically and mechanically. In humans, there are relatively few pathogens transmitted regularly. Still, tabanids serve as vectors of a number of disease agents of animals, including viruses, bacteria, protozoans, and nematodes. They are more abundant in tropical and humid regions, and their seasonal patterns are affected by habitat changes such as deforestation and fragmentation. Here, we analyze the tabanid fauna in Monte Negro, a central municipality of Rondônia, Brazil, comparing abundance, richness, and diversity in forest and pasture habitats. Traps were set for 5 days a month for 12 consecutive months. We also examined how abiotic factors (humidity, temperature, and rainfall) affected the abundance, diversity, and richness and the effectiveness of Malaise and Nzi traps as sample methods. The influence of climatic variables on the richness and abundance of the species was tested using generalized linear models, and we used non-parametric dimensional scaling (nMDS) for analysis of species composition and diversity in different traps and environments. We collect 1032 specimens of 25 species. The most abundant species were Tabanus antarcticus, Dichelacera tetradelta, Tabanus mucronatus, and Leucotabanus albovarius. Forest habitats had the highest number of tabanids, followed by pasture and the anthropized area, and there was no significant difference regarding the effectiveness of the Malaise and Nzi traps. The study provides new information on the distribution and ecology of tabanids in Brazil.


Subject(s)
Biodiversity , Diptera , Forests , Seasons , Animals , Brazil , Diptera/physiology , Diptera/classification , Ecosystem
7.
Proc Biol Sci ; 291(2029): 20240915, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39191282

ABSTRACT

A pathogen arriving on a host typically encounters a diverse community of microbes that can shape priority effects, other within-host interactions and infection outcomes. In plants, environmental nutrients can drive trade-offs between host growth and defence and can mediate interactions between co-infecting pathogens. Nutrients may thus alter the outcome of pathogen priority effects for the host, but this possibility has received little experimental investigation. To disentangle the relationship between nutrient availability and co-infection dynamics, we factorially manipulated the nutrient availability and order of arrival of two foliar fungal pathogens (Rhizoctonia solani and Colletotrichum cereale) on the grass tall fescue (Lolium arundinaceum) and tracked disease outcomes. Nutrient addition did not influence infection rates, infection severity or plant biomass. Colletotrichum cereale facilitated R. solani, increasing its infection rate regardless of their order of inoculation. Additionally, simultaneous and C. cereale-first inoculations decreased plant growth and-in plants that did not receive nutrient addition-increased leaf nitrogen concentrations compared to uninoculated plants. These effects were partially, but not completely, explained by the duration and severity of pathogen infections. This study highlights the importance of understanding the intricate associations between the order of pathogen arrival, host nutrient availability and host defence to better predict infection outcomes.


Subject(s)
Colletotrichum , Lolium , Nutrients , Plant Diseases , Plant Diseases/microbiology , Colletotrichum/physiology , Nutrients/metabolism , Lolium/microbiology , Rhizoctonia/physiology , Coinfection/microbiology , Host-Pathogen Interactions , Plant Leaves/microbiology , Nitrogen/metabolism
8.
Glob Chang Biol ; 30(8): e17482, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39189596

ABSTRACT

Rising global temperatures are often identified as the key driver impacting ecosystems and the services they provide by affecting biodiversity structure and function. A disproportionate amount of our understanding of biodiversity and function is from short-term experimental studies and static values of biodiversity indices, lacking the ability to monitor long-term trends and capture community dynamics. Here, we analyse a biennial dataset spanning 32 years of macroinvertebrate benthic communities and their functional response to increasing temperatures. We monitored changes in species' thermal affinities to examine warming-related shifts by selecting their mid-point global temperature distribution range and linking them to species' traits. We employed a novel weighted metric using Biological Trait Analysis (BTA) to gain better insights into the ecological potential of each species by incorporating species abundance and body size and selecting a subset of traits that represent five ecosystem functions: bioturbation activity, sediment stability, nutrient recycling and higher and lower trophic production. Using biodiversity indices (richness, Simpson's diversity and vulnerability) and functional indices (richness, Rao's Q and redundancy), the community structure showed no significant change over time with a narrow range of variation. However, we show shifts in species composition with warming and increases in the abundance of individuals, which altered ecosystem functioning positively and/or non-linearly. Yet, when higher taxonomic groupings than species were excluded from the analysis, there was only a weak increase in the measured change in community-weighted average thermal affinities, suggesting changes in ecosystem functions over time occur independently of temperature increase-related shifts in community composition. Other environmental factors driving species composition and abundance may be more important in these subtidal macrobenthic communities. This challenges the prevailing emphasis on temperature as the primary driver of ecological response to climate change and emphasises the necessity for a comprehensive understanding of the temporal dynamics of complex systems.


Subject(s)
Biodiversity , Ecosystem , Invertebrates , Temperature , Animals , Invertebrates/physiology , Climate Change , Global Warming
9.
Ecol Appl ; : e3025, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166511

ABSTRACT

Fire is a powerful tool for conservation management at a landscape scale, but a rigorous evidence base is often lacking for understanding its impacts on biodiversity in different biomes. Fire-induced changes to habitat openness have been identified as an underlying driver of responses of faunal communities, including for ants. However, most studies of the impacts of fire on ant communities consider only epigeic (foraging on the soil surface) species, which may not reflect the responses of species inhabiting other vertical strata. Here, we examine how the responses of ant communities vary among vertical strata in a highly fire-prone biome. We use a long-term field experiment to quantify the effects of fire on the abundance, richness, and composition of ant assemblages of four vertical strata (subterranean, leaf litter, epigeic, and arboreal) in an Australian tropical savanna. We first document the extent to which each stratum harbors distinct assemblages. We then assess how the assemblage of each stratum responds to three fire-related predictors: fire frequency, fire activity, and vegetation cover. Each stratum harbored a distinct ant assemblage and showed different responses to fire. Leaf litter and epigeic ants were most sensitive to fire because it directly affects their microhabitats, but they showed contrasting negative and positive responses, respectively. Subterranean ants were the least sensitive because of the insulating effects of soil. Our results show that co-occurring species of the same taxonomic group differ in the strength and direction of their response to fire depending on the stratum they inhabit. As such, effective fire management for biodiversity conservation should consider species in all vertical strata.

10.
Proc Natl Acad Sci U S A ; 121(34): e2322063121, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39136989

ABSTRACT

Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions.


Subject(s)
Animal Migration , Birds , Ecosystem , Seasons , Animals , Animal Migration/physiology , Birds/physiology
11.
Trends Ecol Evol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39068138

ABSTRACT

Individual behavioral plasticity enables animals to adjust to different scenarios. Yet, personality traits limit this flexibility, leading to consistent interindividual differences in behavior. These individual behavioral traits have the potential to govern community interactions, although testing this is difficult in complex natural systems. For large predators who often exert strong effects on ecosystem functioning, this behavioral diversity may be especially important and lead to individualized ecosystem roles. We present a framework for quantifying individual behavioral plasticity and personality traits of large wild predators, revealing the extent to which certain natural behaviors are governed by these latent traits. The outcomes will reveal how the innate characteristics of wildlife can scale up to affect community interactions.

12.
Article in English | MEDLINE | ID: mdl-39073180

ABSTRACT

Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.

13.
bioRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39005283

ABSTRACT

Microbial communities vary across space, time, and individual hosts, presenting new challenges for the development of statistics measuring the variability of community composition. To understand differences across microbiome samples from different host individuals, sampling times, spatial locations, or experimental replicates, we present FAVA, a new normalized measure for characterizing compositional variability across multiple microbiome samples. FAVA quantifies variability across many samples of taxonomic or functional relative abundances in a single index ranging between 0 and 1, equaling 0 when all samples are identical and equaling 1 when each sample is entirely comprised of a single taxon. Its definition relies on the population-genetic statistic F S T , with samples playing the role of "populations" and taxa playing the role of "alleles." Its convenient mathematical properties allow users to compare disparate data sets. For example, FAVA values are commensurable across different numbers of taxonomic categories and different numbers of samples considered. We introduce extensions that incorporate phylogenetic similarity among taxa and spatial or temporal distances between samples. We illustrate how FAVA can be used to describe across-individual taxonomic variability in ruminant microbiomes at different regions along the gastrointestinal tract. In a second example, a longitudinal analysis of gut microbiomes of healthy human adults taking an antibiotic, we use FAVA to quantify the increase in temporal variability of microbiomes following the antibiotic course and to measure the duration of the antibiotic's influence on microbial variability. We have implemented this tool in an R package, FAVA, which can fit easily into existing pipelines for the analysis of microbial relative abundances.

14.
Microbiome ; 12(1): 133, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030632

ABSTRACT

BACKGROUND: Protists, single-celled eukaryotic organisms, are critical to food web ecology, contributing to primary productivity and connecting small bacteria and archaea to higher trophic levels. Lake Mendota is a large, eutrophic natural lake that is a Long-Term Ecological Research site and among the world's best-studied freshwater systems. Metagenomic samples have been collected and shotgun sequenced from Lake Mendota for the last 20 years. Here, we analyze this comprehensive time series to infer changes to the structure and function of the protistan community and to hypothesize about their interactions with bacteria. RESULTS: Based on small subunit rRNA genes extracted from the metagenomes and metagenome-assembled genomes of microeukaryotes, we identify shifts in the eukaryotic phytoplankton community over time, which we predict to be a consequence of reduced zooplankton grazing pressures after the invasion of a invasive predator (the spiny water flea) to the lake. The metagenomic data also reveal the presence of the spiny water flea and the zebra mussel, a second invasive species to Lake Mendota, prior to their visual identification during routine monitoring. Furthermore, we use species co-occurrence and co-abundance analysis to connect the protistan community with bacterial taxa. Correlation analysis suggests that protists and bacteria may interact or respond similarly to environmental conditions. Cryptophytes declined in the second decade of the timeseries, while many alveolate groups (e.g., ciliates and dinoflagellates) and diatoms increased in abundance, changes that have implications for food web efficiency in Lake Mendota. CONCLUSIONS: We demonstrate that metagenomic sequence-based community analysis can complement existing efforts to monitor protists in Lake Mendota based on microscopy-based count surveys. We observed patterns of seasonal abundance in microeukaryotes in Lake Mendota that corroborated expectations from other systems, including high abundance of cryptophytes in winter and diatoms in fall and spring, but with much higher resolution than previous surveys. Our study identified long-term changes in the abundance of eukaryotic microbes and provided context for the known establishment of an invasive species that catalyzes a trophic cascade involving protists. Our findings are important for decoding potential long-term consequences of human interventions, including invasive species introduction. Video Abstract.


Subject(s)
Bacteria , Lakes , Metagenomics , Lakes/microbiology , Lakes/parasitology , Animals , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Eukaryota/genetics , Eukaryota/classification , Phytoplankton/genetics , Phytoplankton/classification , Food Chain , Metagenome , Zooplankton/genetics , Zooplankton/classification
15.
Oecologia ; 205(3-4): 445-459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972958

ABSTRACT

Irruptive or boom-and-bust population dynamics, also known as 'outbreaks', are an important phenomenon that has been noted in biological invasions at least since Charles Elton's classic book was published in 1958. Community-level consequences of irruptive dynamics are poorly documented and invasive species provide excellent systems for their study. African Jewelfish (Rubricatochromis letourneuxi, "jewelfish") are omnivores that demonstrate opportunistic carnivory, first reported in Florida in the 1960s and in Everglades National Park (ENP) in 2000. Twelve years after invasion in ENP, jewelfish underwent a 25-fold increase in density in one year. By 2016, jewelfish represented 25-50% of fish biomass. Using a 43-year fish community dataset at two sites (1978-2021), and a 25-year dataset of fish and invertebrate communities from the same drainage (1996-2021), with additional spatial coverage, we quantified differences in fish and invertebrate communities during different phases of invasion. During jewelfish boom, abundant, native cyprinodontiform fishes decreased in density and drove changes in community structure as measured by similarity of relativized abundance. Density of two species declined by > 70%, while four declined by 50-62%. Following the jewelfish bust, some species recovered to pre-boom densities while others did not. Diversity of recovery times produced altered community structure that lagged for at least four years after the jewelfish population declined. Community structure is an index of ecological functions such as resilience, productivity, and species interaction webs; therefore, these results demonstrate that irruptive population dynamics can alter ecological functions of ecosystems mediated by community structure for years following that population's decline.


Subject(s)
Fishes , Introduced Species , Population Dynamics , Animals , Ecosystem , Invertebrates , Florida
16.
Oecologia ; 205(3-4): 655-667, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39078484

ABSTRACT

The amount of genetic diversity within a population can affect ecological processes at population, community, and ecosystem levels. However, the magnitude, consistency, and scope of these effects are largely unknown. To investigate these issues, we conducted two experiments manipulating the amount of genetic diversity and environmental factors in larval amphibians. The first experiment manipulated wood frog genetic diversity, the presence or absence of caged predators, and competition from leopard frogs to test whether these factors affected survival, growth, and morphology of wood frogs and leopard frogs. The second experiment manipulated wood frog genetic diversity, the presence or absence of uncaged predators, and resource abundance to test whether these factors affected wood frog traits (survival, morphology, growth, development, and behavior) and other components of the ecological community (zooplankton abundance, phytoplankton, periphyton, and bacterial community structure). Genetic diversity did not affect wood frog survival, growth, and development in either experiment. However, genetic diversity did affect the mean morphology of wood frog tadpoles in the first experiment and the abundance and distribution of zooplankton in the second experiment. It did not affect phytoplankton abundance, periphyton abundance, or bacterial community structure. While effect sizes (Cohen's d) of genetic diversity were approximately half those of environment treatments, the greatest effect sizes were for interaction effects between genetic diversity and environment. Our results indicate that genetic diversity can have a large effect on ecological processes, but the direction of those effects is highly dependent upon environmental conditions, and not easily predicted from simple measures of traits.


Subject(s)
Ecosystem , Genetic Variation , Animals , Larva/growth & development , Amphibians , Zooplankton
17.
Ecol Evol ; 14(7): e70026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015879

ABSTRACT

Many plants have evolved nutrient rewards to attract pollinators to flowers, but most research has focused on the sugar content of floral nectar resources. Concentrations of sodium in floral nectar (a micronutrient in low concentrations in nectar) can vary substantially both among and within co-occurring species. It is hypothesized that sodium concentrations in floral nectar might play an important and underappreciated role in plant-pollinator interactions, especially because many animals, including pollinators, are sodium limited in nature. Yet, the consequences of variation in sodium concentrations in floral nectar remain largely unexplored. Here, we investigate whether enriching floral nectar with sodium influences the composition, diversity, and frequency of plant-pollinator interactions. We experimentally enriched sodium concentrations in four plant species in a subalpine meadow in Colorado, USA. We found that flowers with sodium-enriched nectar received more visits from a greater diversity of pollinators throughout the season. Different pollinator species foraged more frequently on flowers enriched with sodium and showed evidence of other changes to foraging behavior, including greater dietary evenness. These findings are consistent with the "salty nectar hypothesis," providing evidence for the importance of sodium limitation in pollinators and suggesting that even small nectar constituents can shape plant-pollinator interactions.

18.
NPJ Biodivers ; 3(1): 3, 2024.
Article in English | MEDLINE | ID: mdl-39050515

ABSTRACT

Rivers are an important component of the global carbon cycle and contribute to atmospheric carbon exchange disproportionately to their total surface area. Largely, this is because rivers efficiently mobilize, transport and metabolize terrigenous organic matter (OM). Notably, our knowledge about the magnitude of globally relevant carbon fluxes strongly contrasts with our lack of understanding of the underlying processes that transform OM. Ultimately, OM processing en route to the oceans results from a diverse assemblage of consumers interacting with an equally diverse pool of resources in a spatially complex network of heterogeneous riverine habitats. To understand this interaction between consumers and OM, we must therefore account for spatial configuration, connectivity, and landscape context at scales ranging from local ecosystems to entire networks. Building such a spatially explicit framework of fluvial OM processing across scales may also help us to better predict poorly understood anthropogenic impacts on fluvial carbon cycling, for instance human-induced fragmentation and changes to flow regimes, including intermittence. Moreover, this framework must also account for the current unprecedented human-driven loss of biodiversity. This loss is at least partly due to mechanisms operating across spatial scales, such as interference with migration and habitat homogenization, and comes with largely unknown functional consequences. We advocate here for a comprehensive framework for fluvial networks connecting two spatially aware but disparate lines of research on (i) riverine metacommunities and biodiversity, and (ii) the biogeochemistry of rivers and their contribution to the global carbon cycle. We argue for a research agenda focusing on the regional scale-that is, of the entire river network-to enable a deeper mechanistic understanding of naturally arising biodiversity-ecosystem functioning coupling as a major driver of biogeochemically relevant riverine carbon fluxes.

19.
Integr Zool ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956827

ABSTRACT

Population and community ecology as a science are about 100 years old, and we discuss here our opinion of what approaches have progressed well and which point to possible future directions. The three major threads within population and community ecology are theoretical ecology, statistical tests and models, and experimental ecology. We suggest that our major objective is to understand what factors determine the distribution and abundance of organisms within populations and communities, and we evaluate these threads against this major objective. Theoretical ecology is elegant and compelling and has laid the groundwork for achieving our overall objectives with useful simple models. Statistics and statistical models have contributed informative methods to analyze quantitatively our understanding of distribution and abundance for future research. Population ecology is difficult to carry out in the field, even though we may have all the statistical methods and models needed to achieve results. Community ecology is growing rapidly with much description but less understanding of why changes occur. Biodiversity science cuts across all these subdivisions but rarely digs into the necessary population and community science that might solve conservation problems. Climate change affects all aspects of ecology but to assume that everything in population and community ecology is driven by climate change is oversimplified. We make recommendations on how to advance the field with advice for present and future generations of population and community ecologists.

20.
Parasitol Int ; 102: 102914, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38908472

ABSTRACT

Knowledge of parasite-host interactions is essential for understanding factors associated with the ecology and evolution of both groups. Some aspects, such as host size and phylogeny, as well as parasite specificity, are significant predictors that help unveil the parasite-host relationship. Thus, the goals of this study were: (1) to describe parasite diversity in regions of the Atlantic Forest; (2) to analyze which host characteristics can influence parasite richness of anuran's parasite component community; and (3) to investigate if the prevalence of parasite infection is related to specificity metrics (ecological and phylogenetic), number of infected hosts and parasite's abundance. We identified 49 parasite taxa, classified into three phyla: Nematoda, Acanthocephala, and Platyhelminthes. Supporting the existing literature, our findings corroborate the positive relationship between host size and parasite richness, further emphasizing the significance of this predictor. Parasite prevalence in the host community is related to the number of infected host species and parasite abundance, but not to phylogenetic and ecological specificity indices. This shows that parasite prevalence is strongly associated with infection opportunity, host sampling effort, and high parasite abundance.


Subject(s)
Anura , Biodiversity , Forests , Host-Parasite Interactions , Nematoda , Phylogeny , Animals , Anura/parasitology , Nematoda/classification , Brazil/epidemiology , Acanthocephala/classification , Acanthocephala/physiology , Acanthocephala/isolation & purification , Prevalence , Helminths/classification , Helminths/isolation & purification , Helminths/genetics , Host Specificity
SELECTION OF CITATIONS
SEARCH DETAIL