ABSTRACT
The atypical porcine pestivirus (APPV) belongs to the species Pestivirus K of the genus Pestivirus and the family Flaviviridae, and it has been associated with congenital tremor (CT) type A-II in newborn piglets. Although APPV was discovered in 2015, evidence shows that APPV has circulated in pig herds for many years, at least since 1986. Due to the frequently reported outbreaks of CT on different continents, the importance of this virus for global pig production is notable. Since 2015, several studies have been conducted to clarify the association between APPV and CT. However, some findings regarding APPV infection and the measures taken to control and prevent the spread of this virus need to be contextualized to understand the infection better. This review attempts to highlight advances in the understanding of APPV associated with type A-II CT, such as etiology, epidemiology, diagnosis, and control and prevention measures, and also describes the pathophysiology of the infection and its consequences for pig production. Further research still needs to be conducted to elucidate the host's immune response to APPV infection, the control and prevention of this infection, and the possible development of vaccines.
Subject(s)
Pestivirus Infections/physiopathology , Pestivirus Infections/veterinary , Pestivirus/classification , Pestivirus/pathogenicity , Tremor/congenital , Tremor/veterinary , Animals , Animals, Newborn/virology , Genome, Viral , Pestivirus Infections/epidemiology , Phylogeny , Swine/virology , Swine Diseases/epidemiology , Swine Diseases/virology , Tremor/virologyABSTRACT
The genus Pestivirus, which belongs to the family Flaviviridae, includes ssRNA+ viruses responsible for infectious diseases in swine, cattle, sheep, goats, and other domestic and wild animals. Recently, several putative pestiviruses species have been discovered and characterized in mammalian species (giraffe pestivirus, antelope pestivirus, HoBi virus, Bungowannah virus, and Linda virus); one of these is a genetically distinct pestivirus, named atypical porcine pestivirus (APPV), discovered using the next-generation sequencing technology. APPV has been detected in piglets with congenital tremor (CT) from four different continents, including North America, South America, Europe, and Asia. There is strong evidence that experimental inoculation and in field outbreaks involving APPV induce CT in piglets. Additionally, splay leg (SL) syndrome has been observed concurrently with CT, and it was induced by APPV in experimental studies and some field cases. Animals with a persistent and/or chronic infection condition can shed the virus over time. Viral-RNA is frequently detected in different tissues from CT-piglets; however, high loads of APPV are detected most consistently in central nervous tissue. Moreover, the APPV genome has been recently detected in semen and preputial swabs from boar studs, as well as in serum and tissue samples from wild boars and domestic adult pigs, all known to be clinically healthy. Phylogenetic analysis revealed that the APPV sequence (complete or partial polyprotein) exhibits high genetic diversity between viral strains detected in different countries and formed independent clusters according to geographic location. Additional studies are needed to evaluate the molecular detection and sero-prevalence of APPV around the world. Lastly, more research is needed to understand clinical presentations associated with APPV infection, as well as the economic losses related to the virus in pig production worldwide.
ABSTRACT
Atypical porcine pestivirus (APPV) has been associated with congenital tremor (CT) type A-II in newborn piglets. Although the number of APPV-based studies is increasing, the associated pathologic findings in infected piglets are underreported. This study describes the histopathologic features of spontaneous APPV infection in CT-affected piglets and complements a previous report by our group. Four two-day-old piglets with CT were evaluated by histopathology, immunohistochemistry (IHC), and molecular assay. The main histopathologic findings at the brain and spinal cord included neuronal necrosis, gliosis, neuronophagia, satellitosis, demyelination, Wallerian degeneration, and Purkinje cell necrosis. An IHC assay designed to detect the proliferation of glial fibrillary acidic protein (GFAP) in affected areas of the brain and spinal cord revealed that the proliferation of GFAP + cells and fibers was predominant in APPV-infected piglets relative to asymptomatic piglets of the same age group. The RT-nested-PCR assays identified APPV RNA in the cerebrum, cerebellum, and brainstem of all piglets; other viruses known to produce similar manifestations were not detected. These results suggest that the APPV-induced histopathologic findings are predominantly degenerative and necrotic and correlate with our previous findings. Consequently, it is proposed that neuronal necrosis, gliosis, neuronophagia, and satellitosis should be considered as important histologic features of APPV-induced infection in symptomatic CT piglets.
Subject(s)
Animals, Newborn/virology , Pestivirus Infections/veterinary , Pestivirus/genetics , Pestivirus/pathogenicity , Swine Diseases/pathology , Animals , Brain/cytology , Brain/pathology , Brain/virology , Gliosis/veterinary , Gliosis/virology , Pestivirus/isolation & purification , Pestivirus Infections/pathology , Pestivirus Infections/virology , Phylogeny , Swine , Swine Diseases/epidemiology , Swine Diseases/virology , TremorABSTRACT
Atypical porcine pestivirus (APPV) has been detected in piglets with congenital tremor (CT) from three different continents including North America, Europe and Asia. Thirteen piglets from four farms in two different states in Brazil with CT were sampled. Viral RNA was detected by quantitative real-time PCR in the cerebellum or cerebellum and spinal cord in the 100% of the piglets with CT, and APPV was not detected in any tissue sample from clinically non-affected piglets with the exception of the cerebellum of one piglet from Farm A. Piglets with CT had an odds ratio of 99.0 (95% CI 3.4, 2823.8; p = .0072) compared to piglets without CT to test positive for APPV by qRT-PCR. A subset of positive samples was selected for sequencing of the NS3 gene. Phylogenetic analysis revealed that Brazilian sequences of the NS3 formed an independent cluster and had the highest sequence identity with a sequence from the United States. This is the first identification of APPV infection in piglets with CT in South America.
Subject(s)
Animals, Suckling/virology , Central Nervous System/virology , Pestivirus Infections/veterinary , Pestivirus/isolation & purification , Swine Diseases/diagnosis , Tremor/veterinary , Animals , Brazil/epidemiology , Female , Male , Pestivirus/genetics , Pestivirus/immunology , Pestivirus Infections/diagnosis , Pestivirus Infections/epidemiology , Pestivirus Infections/virology , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/veterinary , Swine , Swine Diseases/epidemiology , Swine Diseases/virology , Tremor/diagnosis , Tremor/epidemiology , Tremor/virologyABSTRACT
Recently, a putative new pestivirus species, provisionally named as Atypical Porcine Pestivirus (APPV), was associated with the congenital tremor in piglets in North America and consequently in Europe and Asia. The present research aimed to describe the detection and characterization of APPV employing NS5B gene partial sequencing, gross pathology and histologic examination of piglets displaying congenital tremor from two different farms of Southern Brazil. No gross lesions were observed, and the histological findings revealed moderate vacuolization of the white matter of the cerebellum. RT-PCR followed by DNA sequencing and a phylogenetic analysis confirmed the presence of APPV in samples from the two farms, which the samples were distinct in nature. Phylogenetic reconstruction reinforced the high genetic variability within the APPVs previously reported. This is the first report of APPV in South America suggesting that this new group of viruses may be widespread in swine herds in other countries as it is in Brazil.