Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 617, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890595

ABSTRACT

BACKGROUND: Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively. FINDINGS: Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome. CONCLUSIONS: Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.


Subject(s)
Antlers , Deer , Genome , Animals , Deer/genetics , Deer/growth & development , Antlers/growth & development , Antlers/metabolism , Male , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Transcriptome , Genomics/methods
2.
Microbiol Spectr ; 11(6): e0231523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37874150

ABSTRACT

IMPORTANCE: The 2022 outbreak of the monkeypox virus already involves, by April 2023, 110 countries with 86,956 confirmed cases and 119 deaths. Understanding an emerging disease on a molecular level is essential to study infection processes and eventually guide drug discovery at an early stage. To support this, we provide the so far most comprehensive structural proteome of the monkeypox virus, which includes 210 structural models, each computed with three state-of-the-art structure prediction methods. Instead of building on a single-genome sequence, we generated our models from a consensus of 3,713 high-quality genome sequences sampled from patients within 1 year of the outbreak. Therefore, we present an average structural proteome of the currently isolated viruses, including mutational analyses with a special focus on drug-binding sites. Continuing dynamic mutation monitoring within the structural proteome presented here is essential to timely predict possible physiological changes in the evolving virus.


Subject(s)
Monkeypox virus , Proteome , Humans , Monkeypox virus/genetics , Consensus , Disease Outbreaks , Artificial Intelligence
3.
J Exp Bot ; 74(4): 1275-1290, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36433929

ABSTRACT

Jasminum sambac is a well-known plant for its attractive and exceptional fragrance, the flowers of which are used to produce scented tea. Jasmonate (JA), an important plant hormone was first identified in Jasminum species. Jasmine plants contain abundant JA naturally, of which the molecular mechanisms of synthesis and accumulation are not clearly understood. Here, we report a telomere-to-telomere consensus assembly of a double-petal J. sambac genome along with two haplotype-resolved genomes. We found that gain-and-loss, positive selection, and allelic specific expression of aromatic volatile-related genes contributed to the stronger flower fragrance in double-petal J. sambac compared with single- and multi-petal jasmines. Through comprehensive comparative genomic, transcriptomic, and metabolomic analyses of double-petal J. sambac, we revealed the genetic basis of the production of aromatic volatiles and salicylic acid (SA), and the accumulation of JA under non-stress conditions. We identified several key genes associated with JA biosynthesis, and their non-stress related activities lead to extraordinarily high concentrations of JA in tissues. High JA synthesis coupled with low degradation in J. sambac results in accumulation of high JA under typical environmental conditions, similar to the accumulation mechanism of SA. This study offers important insights into the biology of J. sambac, and provides valuable genomic resources for further utilization of natural products.


Subject(s)
Jasminum , Jasminum/genetics , Gene Expression Profiling , Transcriptome , Odorants
4.
J Virol Methods ; 213: 57-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25433217

ABSTRACT

Hepatitis B virus (HBV) genotypes vary in their geographical distribution and virological features. Previous investigations have shown that HBV genotype B is a predominant HBV genotype in China. Studies on HBV concerning different isolates frequently meet the question about the HBV reference strain and its representativeness. Although HBV consensus sequences can be generated easily by sequence alignment, they may not exist in nature or could not usually be isolated from patient samples. Thus, the construction of a consensus HBV genome has been proposed. In this study, an HBV genotype B consensus sequence was established by comparing 42 full-length HBV genotype B sequences and the genome was generated by chemical synthesis. This consensus genome was fully replication competent by in vitro transfection into hepatoma cells. The plasmid pHBV1.3B carrying a 1.3× full-length HBV consensus genome was hydrodynamically injected into Balb/c mice. HBsAg, anti-HBs, HBeAg, anti-HBe, and anti-HBc detection indicated expression and replication of this HBV genome in mice, similar to other HBV isolates. This approach represents a strategy to design and create consensus HBV genomes for future studies.


Subject(s)
DNA, Viral/chemical synthesis , Genome, Viral , Hepatitis B virus/physiology , Virus Replication , Animals , Cell Line, Tumor , Consensus Sequence , DNA, Viral/genetics , Genotype , Hepatitis B Antibodies/blood , Hepatitis B Surface Antigens/blood , Hepatitis B virus/genetics , Hepatocytes/virology , Humans , Male , Mice, Inbred BALB C , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL