Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
Trends Cogn Sci ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39147644

ABSTRACT

Decision making is often necessary before performing an action. Traditionally, it has been assumed that decision making and motor control are independent, sequential processes. Ogasa et al. challenge this view, and demonstrate that the decision-making process significantly impacts on the formation and retrieval of motor memory by tagging it with the level of confidence.

2.
FASEB J ; 38(15): e23877, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39114961

ABSTRACT

Transforming growth factor-ß (TGF-ß) is a pleiotropic cytokine that modulates a wide variety of cellular responses by regulating target gene expression. It principally transmits signals via receptor-activated transcription factors Smad2 and Smad3, which form trimeric complexes with Smad4 upon activation and regulate gene expression by binding to genomic DNA. Here, we examined the mechanisms by which TGF-ß regulates the transcription of target genes in a cell context-dependent manner by screening a double-stranded DNA oligonucleotide library for DNA sequences bound to endogenous activated Smad complexes. Screening was performed by cyclic amplification of selected targets (CASTing) using an anti-Smad2/3 antibody and nuclear extracts isolated from three cell lines (A549, HepG2, and HaCaT) stimulated with TGF-ß. The preference of the activated Smad complexes for conventional Smad-binding motifs such as Smad-binding element (SBE) and CAGA motifs was different in HepG2 than in the other two cell lines, which may indicate the distinct composition of the activated Smad complexes. Several transcription factor-binding motifs other than SBE or CAGA, including the Fos/Jun-binding motifs, were detected in the enriched sequences. Reporter assays using sequences containing these transcription factor-binding motifs together with Smad-binding motifs indicated that some of the motifs may be involved in cell type-dependent transcriptional activation by TGF-ß. The results suggest that the CASTing method is useful for elucidating the molecular basis of context-dependent Smad signaling.


Subject(s)
DNA , Signal Transduction , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Hep G2 Cells , DNA/metabolism , Protein Binding , Smad3 Protein/metabolism , Smad2 Protein/metabolism , A549 Cells , HaCaT Cells , Smad Proteins/metabolism
3.
Dev Cell ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39025060

ABSTRACT

N6-Methyladenosine (m6A) prevalently occurs on cellular RNA across almost all kingdoms of life. It governs RNA fate and is essential for development and stress responses. However, the dynamic, context-dependent m6A methylomes across tissues and in response to various stimuli remain largely unknown in multicellular organisms. Here, we generate a comprehensive census that identifies m6A methylomes in 100 samples during development or following exposure to various external conditions in Arabidopsis thaliana. We demonstrate that m6A is a suitable biomarker to reflect the developmental lineage, and that various stimuli rapidly affect m6A methylomes that constitute the regulatory network required for an effective response to the stimuli. Integrative analyses of the census and its correlation with m6A regulators identify multiple layers of regulation on highly context-dependent m6A modification in response to diverse developmental and environmental stimuli, providing insights into m6A modification dynamics in the myriad contexts of multicellular organisms.

4.
Brain Stimul ; 17(4): 816-825, 2024.
Article in English | MEDLINE | ID: mdl-38997105

ABSTRACT

INTRODUCTION: Fear extinction is a fundamental component of exposure-based therapies for anxiety-related disorders. The renewal of fear in a different context after extinction highlights the importance of contextual factors. In this study, we aimed to investigate the causal role of the left inferior frontal gyrus (LiFG) in the context-dependency of fear extinction learning via administration of transcranial direct current stimulation (tDCS) over this area. METHODS: 180 healthy subjects were assigned to 9 groups: 3 tDCS conditions (anodal, cathodal, and sham) × 3 context combinations (AAA, ABA, and ABB). The fear conditioning/extinction task was conducted over three consecutive days: acquisition, extinction learning, and extinction recall. tDCS (2 mA, 10min) was administered during the extinction learning phase over the LiFG via a 4-electrode montage. Skin conductance response (SCR) data and self-report assessments were collected. RESULTS: During the extinction learning phase, groups with excitability-enhancing anodal tDCS showed a significantly higher fear response to the threat cues compared to cathodal and sham stimulation conditions, irrespective of contextual factors. This effect was stable until the extinction recall phase. Additionally, excitability-reducing cathodal tDCS caused a significant decrease of the response difference between the threat and safety cues during the extinction recall phase. The self-report assessments showed no significant differences between the conditions throughout the experiment. CONCLUSION: Independent of the context, excitability enhancement of the LiFG did impair fear extinction, and led to preservation of fear memory. In contrast, excitability reduction of this area enhanced fear extinction retention. These findings imply that the LiFG plays a role in the fear extinction network, which seems to be however context-independent.


Subject(s)
Extinction, Psychological , Fear , Prefrontal Cortex , Transcranial Direct Current Stimulation , Humans , Fear/physiology , Transcranial Direct Current Stimulation/methods , Extinction, Psychological/physiology , Male , Female , Prefrontal Cortex/physiology , Adult , Young Adult , Galvanic Skin Response/physiology , Conditioning, Classical/physiology
5.
Trends Cell Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960851

ABSTRACT

Mutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage. Consistently, the behavior and properties of p53 mutants are altered by the context. This article aims to provide a balanced summary of the evolving evidence regarding the contribution of p53 mutants in the biology of cancer while contemplating alternative frameworks to decipher the complexity of p53 mutants within their physiological contexts.

6.
J Endocr Soc ; 8(8): bvae121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38966711

ABSTRACT

Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.

7.
BMC Genomics ; 25(1): 719, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054472

ABSTRACT

BACKGROUND: Pigs serve as a crucial source of protein in the human diet and play a fundamental role in ensuring food security. However, infectious diseases caused by bacteria or viruses are a major threat to effective global pig farming, jeopardizing human health. Peripheral blood mononuclear cells (PBMCs) are a mixture of immune cells that play crucial roles in immunity and disease resistance in pigs. Previous studies on the gene expression regulation patterns of PBMCs have concentrated on a single immune stimulus or immune cell subpopulation, which has limited our comprehensive understanding of the mechanisms of the pig immune response. RESULTS: Here, we integrated and re-analyzed RNA-seq data published online for porcine PBMC stimulated by lipopolysaccharide (LPS), polyinosinic acid (PolyI:C), and various unknown microorganisms (EM). The results revealed that gene expression and its functional characterization are highly specific to the pathogen, identifying 603, 254, and 882 pathogen-specific genes and 38 shared genes, respectively. Notably, LPS and PolyI:C stimulation directly triggered inflammatory and immune-response pathways, while exposure to mixed microbes (EM) enhanced metabolic processes. These pathogen-specific genes were enriched in immune trait-associated quantitative trait loci (QTL) and eGenes in porcine immune tissues and were implicated in specific cell types. Furthermore, we discussed the roles of eQTLs rs3473322705 and rs1109431654 in regulating pathogen- and cell-specific genes CD300A and CD93, using cellular experiments. Additionally, by integrating genome-wide association studies datasets from 33 complex traits and diseases in humans, we found that pathogen-specific genes were significantly enriched for immune traits and metabolic diseases. CONCLUSIONS: We systematically analyzed the gene expression profiles of the three stimulations and demonstrated pathogen-specific and cell-specific gene regulation across different stimulations in porcine PBMCs. These findings enhance our understanding of shared and distinct regulatory mechanisms of genetic variants in pig immune traits.


Subject(s)
Leukocytes, Mononuclear , Lipopolysaccharides , Poly I-C , Quantitative Trait Loci , Animals , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Swine , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Gene Expression Profiling , Transcriptome , Gene Expression Regulation
8.
Pestic Biochem Physiol ; 202: 105938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879329

ABSTRACT

The excessive and indiscriminate use of synthetic insecticides has led to environmental pollution, wildlife destruction, and adverse effects on human health, while simultaneously giving rise to resistance in insect pest populations. This adaptive trait is expressed through various mechanisms, such as changes in the cuticle, heightened activities of detoxifying enzymes, and alterations in the sites of action that reduce their affinity for insecticides. In this context, we associate variation in toxicological response with genomic variation, to identify genetic polymorphisms underlying the different steps of the insect (genotype)-response (phenotype)-insecticide (environment) interaction. Under this framework, our objective was to investigate the genetic factors involved in the toxicological response of D. melanogaster lines when exposed to citronellal and eucalyptol vapors (monoterpenes of plant origin). We quantified KT50 in adult males, representing the time necessary for half of the exposed individuals to be turned upside down (unable to walk or fly). Since the genomes of all lines used are completely sequenced, we perform a Genome Wide Association Study to analyze the genetic underpinnings of the toxicological response. Our investigation enabled the identification of 656 genetic polymorphisms and 316 candidate genes responsible for the overall phenotypic variation. Among these, 162 candidate genes (77.1%) exhibited specificity to citronellal, 45 (21.4%) were specific to eucalyptol, and 3 candidate genes (1.5%) namely CG34345, robo2, and Ac13E, were implicated in the variation for both monoterpenes. These suggest a widespread adaptability in the response to insecticides, encompassing genes influenced by monoterpenes and those orchestrating resistance to the toxicity of these compounds.


Subject(s)
Acyclic Monoterpenes , Drosophila melanogaster , Eucalyptol , Insecticides , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Eucalyptol/toxicity , Insecticides/toxicity , Male , Acyclic Monoterpenes/toxicity , Genome-Wide Association Study , Monoterpenes/toxicity , Aldehydes/toxicity , Insecticide Resistance/genetics
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230127, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913065

ABSTRACT

Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Animals , Ecosystem , Vertebrates/physiology
10.
Cogn Sci ; 48(6): e13475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923016

ABSTRACT

A view that has been gaining prevalence over the past decade is that the human conceptual system is malleable, dynamic, context-dependent, and task-dependent, that is, flexible. Within the flexible conceptual representation framework, conceptual representations are constructed ad hoc, forming a different, idiosyncratic instantiation upon each occurrence. In this review, we scrutinize the neurocognitive literature to better understand the nature of this flexibility. First, we identify some key characteristics of these representations. Next, we consider how these flexible representations are constructed by addressing some of the open questions in this framework: We review the age-old question of how to reconcile flexibility with the apparent need for shareable stable definitions to anchor meaning and come to mutual understanding, as well as some newer questions we find critical, namely, the nature of relations among flexible representations, the role of feature saliency in activation, and the viability of all-or-none feature activations. We suggest replacing the debate about the existence of a definitional stable core that is obligatorily activated with a question of the degree and probability of activation of the information constituting a conceptual representation. We rely on published works to suggest that (1) prior featural salience matters, (2) feature activation may be graded, and (3) Bayesian updating of prior information according to current demands offers a viable account of how flexible representations are constructed. This proposal provides a theoretical mechanism for incorporating a changing momentary context into a constructed representation, while still preserving some of the concept's constituent meaning.


Subject(s)
Concept Formation , Humans , Cognition , Bayes Theorem , Comprehension
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230130, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913060

ABSTRACT

The spread of parasites and the emergence of disease are currently threatening global biodiversity and human welfare. To address this threat, we need to better understand those factors that determine parasite persistence and prevalence. It is known that dispersal is central to the spatial dynamics of host-parasite systems. Yet past studies have typically assumed that dispersal is a species-level constant, despite a growing body of empirical evidence that dispersal varies with ecological context, including the risk of infection and aspects of host state such as infection status (parasite-dependent dispersal; PDD). Here, we develop a metapopulation model to understand how different forms of PDD shape the prevalence of a directly transmitted parasite. We show that increasing host dispersal rate can increase, decrease or cause a non-monotonic change in regional parasite prevalence, depending on the type of PDD and characteristics of the host-parasite system (transmission rate, virulence, and dispersal mortality). This result contrasts with previous studies with parasite-independent dispersal which concluded that prevalence increases with host dispersal rate. We argue that accounting for host dispersal responses to parasites is necessary for a complete understanding of host-parasite dynamics and for predicting how parasite prevalence will respond to changes such as human alteration of landscape connectivity. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Host-Parasite Interactions , Models, Biological , Animals , Prevalence , Humans , Parasites/physiology , Parasitic Diseases/epidemiology , Parasitic Diseases/parasitology , Population Dynamics
12.
Trends Genet ; 40(8): 642-667, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734482

ABSTRACT

Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Gene Regulatory Networks/genetics
13.
J Leukoc Biol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700080

ABSTRACT

Precise synapse elimination is essential for the establishment of a fully developed neural circuit during brain development and higher function in adult brain. Beyond immune and nutrition support, recent groundbreaking studies have revealed that phagocytic microglia and astrocytes can actively and selectively eliminate synapses in normal and diseased brains, thereby mediating synapse loss and maintaining circuit homeostasis. Multiple lines of evidence indicate that the mechanisms of synapse elimination by phagocytic glia are not universal but rather depend on specific contexts and detailed neuron-glia interactions. The mechanism of synapse elimination by phagocytic glia is dependent on neuron-intrinsic factors, many innate immune and local apoptosis related molecules. During development, microglial synapse engulfment in the visual thalamus is primarily influenced by the classic complement pathway, whereas in the barrel cortex, the fractalkine pathway is dominant. In Alzheimer's disease, microglia employ complement-dependent mechanisms for synapse engulfment in tauopathy and early ß-amyloid pathology. But microglia are not involved in synapse loss at late ß-amyloid stages. Phagocytic microglia also engulfment synapses in complement dependent way in schizophrenia, anxiety and stress. Besides, phagocytic astrocytes engulf synapses in a MEGF10 dependent way during visual development, memory and stroke. Furthermore, the mechanism of a phenomenon that phagocytes selectively eliminating excitatory and inhibitory synapses is also emphasized in this review. We hypothesize that elucidating context-dependent synapse elimination by phagocytic microglia and astrocytes may reveal the molecular basis of synapse loss in neural disorders and provide a rationale for developing novel candidate therapies that target synapse loss and circuit homeostasis.

14.
Cells ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607012

ABSTRACT

Neuronal timing with millisecond precision is critical for many brain functions such as sensory perception, learning and memory formation. At the level of the chemical synapse, the synaptic delay is determined by the presynaptic release probability (Pr) and the waveform of the presynaptic action potential (AP). For instance, paired-pulse facilitation or presynaptic long-term potentiation are associated with reductions in the synaptic delay, whereas paired-pulse depression or presynaptic long-term depression are associated with an increased synaptic delay. Parallelly, the AP broadening that results from the inactivation of voltage gated potassium (Kv) channels responsible for the repolarization phase of the AP delays the synaptic response, and the inactivation of sodium (Nav) channels by voltage reduces the synaptic latency. However, whether synaptic delay is modulated during depolarization-induced analogue-digital facilitation (d-ADF), a form of context-dependent synaptic facilitation induced by prolonged depolarization of the presynaptic neuron and mediated by the voltage-inactivation of presynaptic Kv1 channels, remains unclear. We show here that despite Pr being elevated during d-ADF at pyramidal L5-L5 cell synapses, the synaptic delay is surprisingly unchanged. This finding suggests that both Pr- and AP-dependent changes in synaptic delay compensate for each other during d-ADF. We conclude that, in contrast to other short- or long-term modulations of presynaptic release, synaptic timing is not affected during d-ADF because of the opposite interaction of Pr- and AP-dependent modulations of synaptic delay.


Subject(s)
Neurons , Synapses , Synapses/physiology , Action Potentials/physiology , Pyramidal Cells/physiology , Long-Term Potentiation
15.
Cell Rep Methods ; 4(4): 100758, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38631346

ABSTRACT

In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when combined, can deploy multiple existing methods and resources to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this work, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step by step in both Python and R and provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This workflow typically takes ∼1.5 h to complete from installation to downstream visualizations on a graphics processing unit-enabled computer for a dataset of ∼63,000 cells, 10 cell types, and 12 samples.


Subject(s)
Cell Communication , Software , Cell Communication/physiology , Humans , Computational Biology/methods , Single-Cell Analysis/methods
16.
Neurosci Biobehav Rev ; 159: 105606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431150

ABSTRACT

Renewal is a 'return of fear' manipulation in human fear conditioning to investigate learning processes underlying anxiety and trauma. Even though renewal paradigms are widely used, no study has compared the strength of different renewal paradigms. We conduct a systematic review (N = 80) and meta-analysis (N = 23) of human fear conditioning studies assessing renewal. Our analysis shows that the classic ABA design is the most effective paradigm, compared to ABC and ABBA designs. We present evidence that conducting extinction in multiple contexts and increasing the similarity between acquisition and extinction contexts reduce renewal. Furthermore, we show that additional cues can be used as safety and 'protection from extinction' cues. The review shows that alcohol weakens the extinction process and that older adults appear less sensitive to context changes and thus show less renewal. The large variability in approaches to study renewal in humans suggests that standardisation of fear conditioning procedures across laboratories would be of great benefit to the field.


Subject(s)
Extinction, Psychological , Fear , Fear/physiology , Humans , Extinction, Psychological/physiology , Conditioning, Classical/physiology , Cues , Conditioning, Psychological/physiology
17.
Cell Rep ; 43(3): 113806, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38377001

ABSTRACT

Experience-driven alterations in neuronal activity are followed by structural-functional modifications allowing cells to adapt to these activity changes. Structural plasticity has been observed for cortical principal cells. However, how GABAergic interneurons respond to experience-dependent network activity changes is not well understood. We show that parvalbumin-expressing interneurons (PVIs) of the dentate gyrus (DG) possess dendritic spines, which undergo behaviorally induced structural dynamics. Glutamatergic inputs at PVI spines evoke signals with high spatial compartmentalization defined by neck length. Mice experiencing novel contexts form more PVI spines with elongated necks and exhibit enhanced network and PVI activity and cFOS expression. Enhanced green fluorescent protein reconstitution across synaptic partner-mediated synapse labeling shows that experience-driven PVI spine growth boosts targeting of PVI spines over shafts by glutamatergic synapses. Our findings propose a role for PVI spine dynamics in regulating PVI excitation by their inputs, which may allow PVIs to dynamically adjust their functional integration in the DG microcircuitry in relation to network computational demands.


Subject(s)
Interneurons , Parvalbumins , Mice , Animals , Parvalbumins/metabolism , Interneurons/metabolism , Neurons/metabolism , Synapses/metabolism , Dentate Gyrus/metabolism , Neuronal Plasticity
18.
Proc Natl Acad Sci U S A ; 121(8): e2313042121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346194

ABSTRACT

One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.


Subject(s)
Electrical Synapses , Epilepsy , Animals , Humans , Synapses/physiology , Interneurons/physiology , Brain , Epilepsy/pathology , Seizures/pathology , Mammals
19.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37745512

ABSTRACT

Everyday perceptual tasks require sensory stimuli to be dynamically encoded and analyzed according to changing behavioral goals. For example, when searching for an apple at the supermarket, one might first find the Granny Smith apples by separating all visible apples into the categories "green" and "non-green". However, suddenly remembering that your family actually likes Fuji apples would necessitate reconfiguring the boundary to separate "red" from "red-yellow" objects. This flexible processing enables identical sensory stimuli to elicit varied behaviors based on the current task context. While this phenomenon is ubiquitous in nature, little is known about the neural mechanisms that underlie such flexible computation. Traditionally, sensory regions have been viewed as mainly devoted to processing inputs, with limited involvement in adapting to varying task contexts. However, from the standpoint of efficient computation, it is plausible that sensory regions integrate inputs with current task goals, facilitating more effective information relay to higher-level cortical areas. Here we test this possibility by asking human participants to visually categorize novel shape stimuli based on different linear and non-linear boundaries. Using fMRI and multivariate analyses of retinotopically-defined visual areas, we found that shape representations in visual cortex became more distinct across relevant decision boundaries in a context-dependent manner, with the largest changes in discriminability observed for stimuli near the decision boundary. Importantly, these context-driven modulations were associated with improved categorization performance. Together, these findings demonstrate that codes in visual cortex are adaptively modulated to optimize object separability based on currently relevant decision boundaries.

20.
Autism ; 28(1): 84-94, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37313623

ABSTRACT

LAY ABSTRACT: In Ecuador, the low official estimate of the number of persons with autism spectrum disorder suggest that many children are not identified and are not receiving support. Screening tools are short parent-addressed questionnaires used to identify children that may be developing with autism. Their use is recommended, but their application can be perceived as challenging in paediatric routines. Some professionals prefer looking for autism-related behaviours in a child rather than using screening questionnaires. Although a short observation does not replace the use of validated screening questionnaires, tasks to guide the observation of autistic early signs can help professionals decide to screen or refer the family for assessment and early intervention. In this study, we tested observational tasks that could be adapted to the Ecuadorian paediatric contexts.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child , Humans , Autism Spectrum Disorder/diagnosis , Ecuador , Feasibility Studies , Autistic Disorder/diagnosis , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL