Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomater Adv ; 165: 214018, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39226677

ABSTRACT

A high vascular patency was realized in the bulk or surface heparinized small-diameter in situ tissue-engineered vascular grafts (TEVGs) via a rabbit carotid artery replacement model in our previous studies. Those surface heparinized TEVGs could reduce the occurrence of aneurysms, but with a low level of the remodeled elastin, whereas those bulk heparinized TEVGs displayed a faster degradation and an increasing occurrence of aneurysms, but with a high level of the regenerated elastin. To combine the advantages of the bulk and surface graft heparinization to boost the remodeling of elastin and defer the occurrence of aneurysms, a coaxial electro-spinning technique was used to fabricate a kind of small-diameter core/shell fibrous structural in situ TEVGs with a faster degradable poly(lactic-co-glycolic acid) (PLGA) as a core layer and a relatively lower degradable poly(ε-caprolactone) (PCL) as a shell layer followed by the surface heparinization. The in vitro mechanical performance and enzymatic degradation tests revealed the resulting PLGA@PCL-Hep in situ TEVGs possessing not only a faster degradation rate, but also the mechanical properties comparable to those of human saphenous veins. After implanted in the rat abdominal aorta for 12 months, the good endothelialization, low inflammation, and no calcification were evidenced. Furthermore, the neointima layer of regenerated new blood vessels was basically constructed with a well-organized arrangement of elastin and collagen proteins. The results showed the great potential of these in situ TEVGs to be used as a novel type of long-term small-diameter vascular grafts.


Subject(s)
Blood Vessel Prosthesis , Tissue Engineering , Animals , Rats , Tissue Engineering/methods , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polyesters/chemistry , Aorta, Abdominal/pathology , Blood Vessel Prosthesis Implantation/methods , Elastin/metabolism , Male , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Humans , Rabbits , Materials Testing
2.
Angew Chem Int Ed Engl ; : e202410080, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039033

ABSTRACT

Sodium-ion batteries (SIBs) as a promising technology for large-scale energy storage have received unprecedented attention. However, the cathodes in SIBs generally suffer from detrimental cathode-electrolyte interfacial side reactions and structural degradation during cycling, which leads to severe capacity fade and voltage decay. Here, we have developed an ultra-stable Na0.72Ni0.20Co0.21Mn0.55Mg0.036O2 (NCM-CS-GMg) cathode material in which a Mg-free core is encapsulated by a shell with gradient distribution of Mg using coprecipitation method with Mg-hysteretic cascade feedstock followed by calcination. From the interior to outer surface of the shell, as the content of electrochemically inactive Mg gradually increases, the Na+ deintercalation amount gradually decreases after charged. Benefiting from this surface gradient desodiation, the surface transition metal (TM) ion migration from TM layers to Na layers is effectively inhibited, thus suppressing the layered-to-rock-salt phase transition and the resultant microcracks. Besides, the less formation of high-valence TM ions on the surface contributes to a stable cathode-electrolyte interface. The as-prepared NCM-CS-GMg exhibits remarkable cycling life over 3000 cycles with a negligible voltage drop (0.127 mV per cycle). Our findings highlight an effective way to developing sustainable cathode materials without compromising on the initial specific capacity for SIBs.

3.
Materials (Basel) ; 10(6)2017 May 24.
Article in English | MEDLINE | ID: mdl-28772933

ABSTRACT

A modified coaxial electrospinning process was used to prepare composite nanofibrous mats from a poly(methyl methacrylate) (PMMA) solution with the addition of different cellulose nanocrystals (CNCs) as the sheath fluid and polyacrylonitrile (PAN) solution as the core fluid. This study investigated the conductivity of the as-spun solutions that increased significantly with increasing CNCs addition, which favors forming uniform fibers. This study discussed the effect of different CNCs addition on the morphology, thermal behavior, and the multilevel structure of the coaxial electrospun PMMA + CNCs/PAN composite nanofibers. A morphology analysis of the nanofibrous mats clearly demonstrated that the CNCs facilitated the production of the composite nanofibers with a core-shell structure. The diameter of the composite nanofibers decreased and the uniformity increased with increasing CNCs concentrations in the shell fluid. The composite nanofibrous mats had the maximum thermal decomposition temperature that was substantially higher than electrospun pure PMMA, PAN, as well as the core-shell PMMA/PAN nanocomposite. The BET (Brunauer, Emmett and Teller) formula results showed that the specific surface area of the CNCs reinforced core-shell composite significantly increased with increasing CNCs content. The specific surface area of the composite with 20% CNCs loading rose to 9.62 m²/g from 3.76 m²/g for the control. A dense porous structure was formed on the surface of the electrospun core-shell fibers.

SELECTION OF CITATIONS
SEARCH DETAIL