Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
J Clin Med ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274282

ABSTRACT

Background: There are many questions regarding the optimal approach to treating non-culprit lesions in STEMI patients. Several questions still need to be answered, such as identifying the lesions to be revascularized and the optimal timing. Methods: We conducted a single-center analysis. The primary outcome was the incidence of major cardiovascular and cerebral adverse events (MACCE) at 12 months in patients with STEMI and multivessel disease (MVD) who achieved complete revascularization during the index procedure or with a staged procedure. The secondary outcomes were death from any cause, myocardial infarction, target lesion revascularization, stroke, major bleeding events, new angina episodes, new hospitalization, and in-hospital MACCE. Results: From January 2021 to December 2022, a total of 230 patients with STEMI underwent primary PCI in our department; 87 patients had MVD. Fifty-nine patients (67.8%) underwent a non-culprit revascularization strategy during the index procedure strategy, and 28 patients (32.2%) during a staged procedure. The incidence of MACCE at 12 months was 11.9% (seven patients) in the index PCI group, compared with 32.1% (nine patients) in the staged PCI group (odds ratio, 3.52; 95% CI, 1.15 to 10.77; p = 0.022). In-hospital MACCE occurred in five patients (8.5%) of the index PCI group, compared with seven patients (25%) in the staged PCI group (odds ratio, 3.60; 95% CI, 1.03 to 12.61; p = 0.036). A trend towards better outcomes favoring the index PCI group was observed with death from any cause, myocardial infarction, target lesion revascularization, and new angina episodes. Conclusions: Better outcomes were evident with an index PCI strategy than with a staged PCI strategy for complete revascularization in patients with STEMI and MVD.

2.
Int J Cardiol ; 417: 132559, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303926

ABSTRACT

OBJECTIVE: This study aims to elucidate the association between serum levels of circular RNAs circ_0001879 and circ_0004104 and the occurrence of coronary microcirculation disorders along with post-PCI prognosis in individuals with stable coronary heart disease. METHODS: A cohort of 92 patients diagnosed with stable coronary heart disease and subjected to PCI between June 2020 and June 2022 at our institution was assembled. Patients were categorized into an exposed group (n = 60) and a non-exposed group (n = 32), predicated on the coronary angiography-derived microcirculation resistance index (caIMR). RESULTS: Comparative analysis revealed significantly elevated levels of circ_0001879 and circ_0004104 in the serum of the exposed group compared to the non-exposed group, with statistical significance (P < 0.05). Post-PCI, both caFFR and caIMR values demonstrated a marked increase in comparison to pre-surgical measurements within both groups, with the exposed group exhibiting lower indices post-surgery relative to the non-exposed group, indicative of superior microcirculatory outcomes (P < 0.05). Furthermore, serum levels of circ_0001879 and circ_0004104 were inversely correlated with favorable prognosis, with lower levels observed in patients with positive outcomes (P < 0.05). The predictive accuracy for poor prognosis, as indicated by the area under the curve (AUC), was enhanced when circ_0001879 and circ_0004104 were considered in tandem (AUC = 0.934), surpassing the predictive power of individual assessments (Z combination vs circ_0001879 = 2.439, Z combination vs circ_0004104 = 2.317, P < 0.05). CONCLUSION: Elevated serum levels of circ_0001879 and circ_0004104 are observed in stable coronary heart disease patients and are significantly associated with the presence of coronary microcirculation disorders and post-PCI prognosis, underscoring their potential as prognostic biomarkers.

3.
Rev Cardiovasc Med ; 25(8): 288, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39228508

ABSTRACT

Coronary microvascular dysfunction (CMD) refers to structural and functional abnormalities of the microcirculation that impair myocardial perfusion. CMD plays a pivotal role in numerous cardiovascular diseases, including myocardial ischemia with non-obstructive coronary arteries, heart failure, and acute coronary syndromes. This review summarizes recent advances in CMD pathophysiology, assessment, and treatment strategies, as well as ongoing challenges and future research directions. Signaling pathways implicated in CMD pathogenesis include adenosine monophosphate-activated protein kinase/Krüppel-like factor 2/endothelial nitric oxide synthase (AMPK/KLF2/eNOS), nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), Angiotensin II (Ang II), endothelin-1 (ET-1), RhoA/Rho kinase, and insulin signaling. Dysregulation of these pathways leads to endothelial dysfunction, the hallmark of CMD. Treatment strategies aim to reduce myocardial oxygen demand, improve microcirculatory function, and restore endothelial homeostasis through mechanisms including vasodilation, anti-inflammation, and antioxidant effects. Traditional Chinese medicine (TCM) compounds exhibit therapeutic potential through multi-targeted actions. Small molecules and regenerative approaches offer precision therapies. However, challenges remain in translating findings to clinical practice and developing effective pharmacotherapies. Integration of engineering with medicine through microfabrication, tissue engineering and AI presents opportunities to advance the diagnosis, prediction, and treatment of CMD.

4.
Eur Heart J Imaging Methods Pract ; 2(3): qyae070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39224623

ABSTRACT

Cardiometabolic risk factors, including high fasting plasma glucose (hFPG), are emerging prognostic determinants in patients with coronary artery disease (CAD) or heart failure (HF). Coronary microvascular dysfunction might be a comprehensive risk predictor in these patients. The purpose of this study was to assess whether hFPG and global myocardial blood flow (MBF) reserve measured by positron emission tomography (PET), expressing global coronary function, predict long-term prognosis beyond other risk factors and presence of obstructive CAD or left ventricular (LV) dysfunction associated with HF. We retrospectively collected long-term follow-up data in 103 patients (mean age 61 ± 10 years, 74 males) with stable chest pain or dyspnoea who underwent cardiac PET/computerized tomography and coronary angiography. Disease phenotypes included obstructive CAD (35%), LV dysfunction without obstructive CAD (43%), or none (22%). At multivariable logistic regression analysis, MBF reserve lower than the median value (OR 1.8, 95% CI 1.5-2.2) was significantly associated with male gender (OR 3.45, 95% CI 1.21-9.83) and hFPG (OR 3.87, 95% CI 1.17-12.84) among all risk factors. In a median follow-up of 10.9 years (interquartile range 7.8-13.9), 39 patients (37.8%) died (13.6% cardiac death). At multivariable Cox analyses including all risk factors and disease phenotypes, age (HR 1.07, 95% CI 1.02-1.12), hFPG (HR 2.18, 95% CI 1.02-4.63), and depressed MBF reserve (HR 4.47, 95% CI 1.96-10.18) were independent predictors of death (global χ 2 37.41, P = 0.0004). These results suggest a strong long-term prognostic role of hFPG and depressed MBF reserve in a high-risk population of patients with a high prevalence of obstructive CAD or HF.

6.
J Nippon Med Sch ; 91(3): 277-284, 2024.
Article in English | MEDLINE | ID: mdl-38972740

ABSTRACT

BACKGROUND: Although occlusion of the right coronary artery (RCA) is common in the remote stages of Kawasaki disease, revascularization of the RCA is challenging in children and is usually managed by observation without intervention. METHODS: Using adenosine-stress 13N-ammonia myocardial perfusion positron emission tomography, we evaluated coronary circulation in 14 patients (12 males) with RCA occlusion to identify ischemia (myocardial flow ratio < 2.0) in the RCA region and examined hemodynamics, cardiac function, and coronary aneurysm diameter. These variables were also compared in patients with/without RCA segmental stenosis (SS). RESULTS: There were five cases of ischemia in the RCA region. RCA myocardial blood flow (MBF) at rest was higher in patients with ischemia than in those without ischemia, but the difference was not significant (1.27 ± 0.21 vs. 0.82 ± 0.16 mL/min/g, p = 0.2053). Nine patients presented with RCA SS, and age at onset of Kawasaki disease tended to be lower in those with SS. The maximum aneurysm diameter of RCA was significantly smaller in patients with SS (10.0 ± 2.8 vs. 14.7 ± 1.6, p = 0.0239). No significant differences in other variables were observed between patients with/without ischemia and SS. CONCLUSIONS: At rest, MBF in the RCA region was relatively well preserved, even in patients with RCA occlusion, and there was no progressive deterioration in cardiac function. Adenosine stress showed microcirculatory disturbances in only half of the patients, indicating that it is reversible in children with Kawasaki disease.


Subject(s)
Ammonia , Coronary Circulation , Mucocutaneous Lymph Node Syndrome , Myocardial Perfusion Imaging , Nitrogen Radioisotopes , Positron-Emission Tomography , Humans , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/physiopathology , Mucocutaneous Lymph Node Syndrome/diagnostic imaging , Male , Female , Ammonia/blood , Positron-Emission Tomography/methods , Child , Child, Preschool , Myocardial Perfusion Imaging/methods , Coronary Occlusion/etiology , Coronary Occlusion/diagnostic imaging , Coronary Occlusion/physiopathology , Coronary Aneurysm/etiology , Coronary Aneurysm/diagnostic imaging , Coronary Aneurysm/physiopathology , Adolescent , Infant , Hemodynamics
8.
Rev Cardiovasc Med ; 25(3): 108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39076937

ABSTRACT

Coronary physiology is widely used to assess epicardial coronary lesions in patients with stable angina. Based on the available evidence, physiology plays a crucial role in diagnosing and treating patients. There have been invasive methods for determining cardiac physiology, such as fractional flow reserve and instantaneous wave-free ratio. Still, new non-invasive approaches provide extra anatomical information, such as fractional flow reserve computed tomography (FFR-CT) based on computed tomography and physiology based on angiography. Even though FFR-guided percutaneous coronary intervention (PCI) is clinically beneficial, one-third of patients retain suboptimal FFR after the procedure, associated with severe adverse events, rendering PCI in diffuse coronary artery disease questionable. Using the pullback pressure gradient (PPG), we can analyze the magnitude and extent of pressure losses; a lower value may indicate diffuse disease, while a high value with an abrupt curve may indicate focal disease. Since PCI is not the best option for treating diffuse coronary disease, current strategies focus on conservatively using medical therapy or bypass surgery. It has been demonstrated that patients with diffuse disease of the left anterior descending (LAD) are at a greater risk of developing occlusion of the left internal mammary artery graft than those with focal disease and that maximal medical therapy may be the most effective treatment for these patients.

9.
Eur J Intern Med ; 127: 15-24, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39039011

ABSTRACT

Ischemia with non-obstructive coronary arteries (INOCA) is an increasingly recognized entity. It encompasses different pathophysiological subtypes (i.e., endotypes), including coronary microvascular dysfunction (CMD), vasospastic angina (VSA) and mixed entities resulting from the variable combination of both. Diagnosing INOCA and precisely characterizing the endotype allows for accurate medical treatment and has proven prognostic implications. A breadth of diagnostic technique is available, ranging from non-invasive approaches to invasive coronary angiography adjuvated by functional assessment and provocative tests. This review summarizes the strength and limitations of these methodologies and provides the rationale for the routine referral for invasive angiography and functional assessment in this subset of patients.


Subject(s)
Coronary Angiography , Myocardial Ischemia , Humans , Myocardial Ischemia/physiopathology , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/diagnosis , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Coronary Vasospasm/physiopathology , Coronary Vasospasm/diagnostic imaging , Coronary Vasospasm/diagnosis
10.
SLAS Technol ; 29(4): 100152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823582

ABSTRACT

Coronary microcirculation dysfunction (CMD) is one of the main causes of cardiovascular disease. Traditional treatment methods lack specificity, making it difficult to fully consider the differences in patient conditions and achieve effective treatment and intervention. The complexity and diversity of CMD require more standardized diagnosis and treatment plans to clarify the best treatment strategy and long-term outcomes. The existing treatment measures mainly focus on symptom management, including medication treatment, lifestyle intervention, and psychological therapy. However, the efficacy of these methods is not consistent for all patients, and the long-term efficacy is not yet clear. GSEA is a bioinformatics method used to interpret gene expression data, particularly for identifying the enrichment of predefined gene sets in gene expression data. In order to achieve personalized treatment and improve the quality and effectiveness of interventions, this article combined GSEA (Gene Set Enrichment Analysis) technology to conduct in-depth research on potential drug targets and their interaction networks in coronary microcirculation dysfunctions. This article first utilized the Coremine medical database, GeneCards, and DrugBank public databases to collect gene data. Then, filtering methods were used to preprocess the data, and GSEA was used to analyze the preprocessed gene expression data to identify and calculate pathways and enrichment scores related to CMD. Finally, protein sequence features were extracted through the calculation of autocorrelation features. To verify the effectiveness of GSEA, this article conducted experimental analysis from four aspects: precision, receiver operating characteristic (ROC) curve, correlation, and potential drug targets, and compared them with Gene Regulatory Networks (GRN) and Random Forest (RF) methods. The results showed that compared to the GRN and RF methods, the average precision of GSEA improved by 0.11. The conclusion indicated that GSEA helped identify and explore potential drug targets and their interaction networks, providing new ideas for personalized quality of CMD.


Subject(s)
Computational Biology , Microcirculation , Humans , Microcirculation/drug effects , Computational Biology/methods , Gene Regulatory Networks , Gene Expression Profiling
11.
Chin J Integr Med ; 30(10): 886-895, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38753274

ABSTRACT

OBJECTIVE: To study the effect of Shexiang Tongxin Dropping Pill (STDP) on angiogenesis in diabetic cardiomyopathy mice with coronary microcirculation dysfunction (CMD). METHODS: According to a random number table, 6 of 36 SPF male C57BL/6 mice were randomly selected as the control group, and the remaining 30 mice were injected with streptozotocin intraperitoneally to replicate the type 1 diabetes model. Mice successfully copied the diabetes model were randomly divided into the model group, STDP low-dose group [15 mg/(kg·d)], medium-dose group [30 mg/(kg·d)], high-dose group [60 mg/(kg·d)], and nicorandil group [15 mg/(kg·d)], 6 in each group. The drug was given by continuous gavage for 12 weeks. The cardiac function of mice in each group was detected at the end of the experiment, and coronary flow reserve (CFR) was detected by chest Doppler technique. Pathological changes of myocardium were observed by hematoxylin-eosin staining, collagen fiber deposition was detected by masson staining, the number of myocardial capillaries was detected by platelet endothelial cell adhesion molecule-1 staining, and the degree of myocardial hypertrophy was detected by wheat germ agglutinin staining. The expression of the vascular endothlial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) signaling pathway-related proteins in myocardial tissue was detected by Western blot. RESULTS: Compared with the model group, medium- and high-dose STDP significantly increased the left ventricular ejection fraction and left ventricular fraction shortening (P<0.01), obviously repaired the disordered cardiac muscle structure, reduced myocardial fibrosis, reduced myocardial cell area, increased capillary density, and increased CFR level (all P<0.01). Western blot showed that high-dose STDP could significantly increase the expression of VEGF and promote the phosphorylation of vascular endothelial growth factor receptor 2, phosphoinositide 3-kinase, protein kinase B, and eNOS (P<0.05 or P<0.01). CONCLUSION: STDP has a definite therapeutic effect on diabetic CMD, and its mechanism may be related to promoting angiogenesis through the VEGF/eNOS signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Mice, Inbred C57BL , Microcirculation , Nitric Oxide Synthase Type III , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , Drugs, Chinese Herbal/pharmacology , Nitric Oxide Synthase Type III/metabolism , Male , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism , Microcirculation/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Neovascularization, Physiologic/drug effects , Myocardium/pathology , Myocardium/metabolism , Coronary Circulation/drug effects , Mice , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Angiogenesis
12.
Basic Res Cardiol ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796544

ABSTRACT

Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg-1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.

13.
Microcirculation ; 31(5): e12853, 2024 07.
Article in English | MEDLINE | ID: mdl-38690605

ABSTRACT

OBJECTIVE: Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF. METHODS: We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5-4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared. RESULTS: The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min-1 g-1) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min-1 g-1) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32-5.48) for Group 2 and 34.9 (95% CI: 13.23-92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76. CONCLUSION: Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.


Subject(s)
Cadmium , Coronary Circulation , Tellurium , Tomography, Emission-Computed, Single-Photon , Zinc , Humans , Male , Female , Aged , Middle Aged , Retrospective Studies , Zinc/blood , Cadmium/blood , Microcirculation , Myocardial Perfusion Imaging/methods , Heart Failure/physiopathology , Heart Failure/blood , Heart Failure/diagnostic imaging , Zinc Compounds , Serum Albumin
14.
J Clin Med ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731013

ABSTRACT

Background: Coronary microvascular dysfunction is associated with adverse prognosis after ST-segment elevation myocardial infarction (STEMI). We aimed to compare the invasive, Doppler wire-based coronary flow reserve (CFR) with the non-invasive transthoracic Doppler echocardiography (TTDE)-derived CFR, and their ability to predict infarct size. Methods: We included 36 patients with invasive Doppler wire assessment on days 3-7 after STEMI treated with primary percutaneous coronary intervention (PCI), of which TTDE-derived CFR was measured in 47 vessels (29 patients) within 6 h of the invasive Doppler. Infarct size was assessed by cardiac magnetic resonance at a median of 8 months. Results: The correlation between invasive and non-invasive CFR was modest in the overall cohort (rho 0.400, p = 0.005). It improved when only measurements in the LAD artery were considered (rho 0.554, p = 0.002), with no significant correlation in the RCA artery (rho -0.190, p = 0.435). Both invasive (AUC 0.888) and non-invasive (AUC 0.868) CFR, measured in the recanalized culprit artery, showed a good ability to predict infarct sizes ≥18% of the left ventricular mass, with the optimal cut off values of 1.85 and 1.80, respectively. Conclusions: In patients with STEMI, TTDE- and Doppler wire-derived CFR exhibit significant correlation, when measured in the LAD artery, and both have a similarly strong association with the final infarct size.

15.
J Appl Physiol (1985) ; 136(5): 1157-1169, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511210

ABSTRACT

The coronary sinus reducer (CSR) is an emerging medical device for treating patients with refractory angina, often associated with myocardial ischemia. Patients implanted with CSR have shown positive outcomes, but the underlying mechanisms are unclear. This study sought to understand the mechanisms of CSR by investigating its effects on coronary microcirculation hemodynamics that may help explain the therapy's efficacy. We applied a validated computer model of the coronary microcirculation to investigate how CSR affects hemodynamics under different degrees of coronary artery stenosis. With moderate coronary stenosis, an increase in capillary transit time (CTT) [up to 69% with near-complete coronary sinus (CS) occlusion] is the key change associated with CSR. Because capillaries in the microcirculation can still receive oxygenated blood from the upstream artery with moderate stenosis, the increase in CTT allows more time for the exchange of gases and nutrients, aiding tissue oxygenation. With severe coronary stenosis; however, the redistribution of blood draining from the nonischemic region to the ischemic region (up to 96% with near-complete CS occlusion) and the reduction in capillary flow heterogeneity are the key changes associated with CSR. Because blood draining from the nonischemic region is not completely devoid of O2, the redistribution of blood to the capillaries in the ischemic region by CSR is beneficial especially when little or no oxygenated blood reaches these capillaries. This simulation study provides insights into the mechanisms of CSR in improving clinical symptoms. The mechanisms differ with the severity of the upstream stenosis.NEW & NOTEWORTHY Emerging coronary venous retroperfusion treatments, particularly coronary sinus reducer (CSR) for refractory angina linked to myocardial ischemia, show promise; however, their mechanisms of action are not well understood. We find that CSR's effectiveness varies with the severity of coronary stenosis. In moderate stenosis, CSR improves tissue oxygenation by increasing capillary transit time, whereas in severe stenosis, it redistributes blood from nonischemic to ischemic regions and reduces capillary flow heterogeneity.


Subject(s)
Computer Simulation , Coronary Circulation , Coronary Sinus , Hemodynamics , Microcirculation , Myocardial Ischemia , Humans , Coronary Sinus/physiopathology , Myocardial Ischemia/physiopathology , Myocardial Ischemia/metabolism , Coronary Circulation/physiology , Hemodynamics/physiology , Microcirculation/physiology , Coronary Stenosis/physiopathology , Models, Cardiovascular
16.
J Am Coll Cardiol ; 83(6): 699-709, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38325996

ABSTRACT

Diagnosing coronary microvascular dysfunction remains challenging, primarily due to the lack of direct measurements of absolute coronary blood flow (Q) and microvascular resistance (Rµ). However, there has been recent progress with the development and validation of continuous intracoronary thermodilution, which offers a simplified and validated approach for clinical use. This technique enables direct quantification of Q and Rµ, leading to precise and accurate evaluation of the coronary microcirculation. To ensure consistent and reliable results, it is crucial to follow a standardized protocol when performing continuous intracoronary thermodilution measurements. This document aims to summarize the principles of thermodilution-derived absolute coronary flow measurements and propose a standardized method for conducting these assessments. The proposed standardization serves as a guide to ensure the best practice of the method, enhancing the clinical assessment of the coronary microcirculation.


Subject(s)
Coronary Circulation , Myocardial Ischemia , Humans , Coronary Circulation/physiology , Vascular Resistance/physiology , Thermodilution/methods , Hemodynamics , Microcirculation/physiology , Coronary Vessels
17.
Front Cardiovasc Med ; 11: 1358472, 2024.
Article in English | MEDLINE | ID: mdl-38410244

ABSTRACT

Introduction: Investigating coronary microvascular perfusion responses after myocardial infarction (MI) would aid in the development of flow preserving therapies. Laser speckle contrast imaging (LSCI) is a powerful tool used for real-time, non-contact, full-field imaging of blood flow in various tissues/organs. However, its use in the beating heart has been limited due to motion artifacts. Methods: In this paper, we report the novel use of LSCI, combined with custom speckle analysis software (SpAn), to visualise and quantitate changes in ventricular perfusion in adult and aged mice undergoing ischaemia-reperfusion (IR) injury. The therapeutic benefit of inhibiting the actions of the pro-inflammatory cytokine interleukin-36 (IL-36) was also investigated using an IL-36 receptor antagonist (IL-36Ra). Results: Imaging from uncovered and covered regions of the left ventricle demonstrated that whilst part of the LSCI flux signal was derived from beating motion, a significant contributor to the flux signal came from ventricular microcirculatory blood flow. We show that a biphasic flux profile corresponding to diastolic and systolic phases of the cardiac cycle can be detected without mathematically processing the total flux data to denoise motion artifacts. Furthermore, perfusion responses to ischaemia and postischaemia were strong, reproducible and could easily be detected without the need to subtract motion-related flux signals. LSCI also identified significantly poorer ventricular perfusion in injured aged mice following IR injury which markedly improved with IL-36Ra. Discussion: We therefore propose that LSCI of the heart is possible despite motion artifacts and may facilitate future investigations into the role of the coronary microcirculation in cardiovascular diseases and development of novel therapies.

18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1024418

ABSTRACT

With the deepening of the research on coronary artery related diseases,people gradually realize that coronary microcirculation disorders have an important impact on the occurrence,development,curative effect and prognosis of cardiovascular diseases,and coronary microcirculation diseases have received more and more attention in ischemic heart disease.Since coronary microvessels cannot be directly observed through imaging,there are currently some indicators to evaluate coronary microcirculation function in clinical practice,among which the index of microcirculatory resistance(IMR)is widely used for the evaluation of coronary microcirculation function.Computational fluid dynamics derived IMR is accurate,easy to perform,and has a broad application prospect.This article provides a comprehensive review of the establishment,development,clinical applications,and progress of IMR.

19.
Comput Methods Programs Biomed ; 243: 107908, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931581

ABSTRACT

Capillary transit time (CTT) is a fundamental determinant of gas exchange between blood and tissues in the heart and other organs. Despite advances in experimental techniques, it remains difficult to measure coronary CTT in vivo. Here, we developed a novel computational framework that couples coronary microcirculation with cardiac mechanics in a closed-loop system that enables prediction of hemodynamics in the entire coronary network, including arteries, veins, and capillaries. We also developed a novel "particle-tracking" approach for computing CTT where "virtual tracers" are individually tracked as they traverse the capillary network. Model predictions compare well with blood pressure and flow rate distributions in the arterial network reported in previous studies. Model predictions of transit times in the capillaries (1.21 ± 1.5 s) and entire coronary network (11.8 ± 1.8 s) also agree with measurements. We show that, with increasing coronary artery stenosis (as quantified by fractional flow reserve, FFR), intravascular pressure and flow rate downstream are reduced but remain non-stationary even at 100 % stenosis because some flow (∼3 %) is redistributed from the non-occluded to the occluded territories. Importantly, the model predicts that occlusion of a large artery results in higher CTT. For moderate stenosis (FFR > 0.6), the increase in CTT (from 1.21 s without stenosis to 2.23 s at FFR=0.6) is caused by a decrease in capillary flow rate. In severe stenosis (FFR = 0.1), the increase in CTT to 14.2 s is due to both a decrease in flow rate and an increase in path length taken by "virtual tracers" in the capillary network.


Subject(s)
Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Fractional Flow Reserve, Myocardial/physiology , Capillaries/diagnostic imaging , Coronary Vessels/diagnostic imaging , Constriction, Pathologic , Coronary Angiography , Predictive Value of Tests , Severity of Illness Index
20.
Front Immunol ; 14: 1257497, 2023.
Article in English | MEDLINE | ID: mdl-37954606

ABSTRACT

Introduction: Opening occluded coronary arteries in patients with myocardial infarction (MI) damages the delicate coronary microvessels through a process called myocardial ischaemia-reperfusion injury. Although mesenchymal stromal cells (MSCs) have the potential to limit this injury, clinical success remains limited. This may be due to (i) poor MSC homing to the heart (ii) infused MSCs, even if derived from the same site, being a heterogeneous population with varying therapeutic efficacy and (iii) conventional 2D culture of MSCs decreasing their homing and beneficial properties. This study investigated whether 3D culture of two distinctly different bone marrow (BM)-derived MSC sub-populations could improve their homing and coronary vasculoprotective efficacy. Methods: Intravital imaging of the anaesthetised mouse beating heart was used to investigate the trafficking and microvascular protective effects of two clonally-derived BM-derived MSC lines, namely CD317neg MSCs-Y201 and CD317pos MSCs-Y202, cultured using conventional monolayer and 3D hanging drop methods. Results: 3D culture consistently improved the adhesive behaviour of MSCs-Y201 to various substrates in vitro. However, it was their differential ability to reduce neutrophil events within the coronary capillaries and improve ventricular perfusion in vivo that was most remarkable. Moreover, dual therapy combined with heparin further improved the vasculoprotection afforded by 3D cultured MSCs-Y201 by also modifying platelet as well as neutrophil recruitment, which subsequently led to the greatest salvage of viable myocardium. Therapeutic benefit could mechanistically be explained by reductions in coronary endothelial oxidative stress and intercellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1 (VCAM-1) expression. However, since this was noted by both 2D and 3D cultured MSCs-Y201, therapeutic benefit is likely explained by the fact that 3D cultured MSCs-Y201 were the most potent sub-population at reducing serum levels of several pro-inflammatory cytokines. Conclusion: This novel study highlights the importance of not only 3D culture, but also of a specific CD317neg MSC sub-population, as being critical to realising their full coronary vasculoprotective potential in the injured heart. Since the smallest coronary blood vessels are increasingly recognised as a primary target of reperfusion injury, therapeutic interventions must be able to protect these delicate structures from inflammatory cells and maintain perfusion in the heart. We propose that relatively feasible technical modifications in a specific BM-derived MSC sub-population could achieve this.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Reperfusion Injury , Mice , Animals , Humans , Heparin/pharmacology , Heparin/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Myocardial Reperfusion Injury/therapy , Myocardial Reperfusion Injury/metabolism , Microvessels
SELECTION OF CITATIONS
SEARCH DETAIL