Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Chem Biodivers ; : e202401315, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136528

ABSTRACT

We have synthesized a series of novel coumarin-steroid and triterpenoid hybrids and evaluated their potential anticancer activity through molecular docking calculations and in vitro antiproliferative assays. These hybrids, derived from estrone and oleanolic acid, were linked via hydrocarbon spacers of varying lengths. Molecular docking studies against human aromatase revealed strong interactions, particularly for compound 11d, which exhibited significant binding affinity (-12.6308 kcal/mol). In vitro assays demonstrated that compounds 6b and 11d had notable antiproliferative effects, with GI50 values of 5.4 and 7.0 µM against WiDr (colon) and HeLa (cervix) cancer cells, respectively. These findings highlight the potential of these hybrids as novel anticancer agents targeting aromatase, warranting further investigation and optimization.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39065804

ABSTRACT

A new series of compounds planned by molecular hybridization of the nucleobases uracil and thymine, or the xanthine theobromine, with coumarins, and linked through 1,2,3-triazole heterocycles were evaluated for their in vitro anticancer activity against the human tumor cell lines: colon carcinoma (HCT116), laryngeal tumor cells (Hep-2), and lung carcinoma cells (A549). The hybrid compound 9a exhibited better activity in the series, showing an IC50 of 24.19 ± 1.39 µM against the HCT116 cells, with a selectivity index (SI) of 6, when compared to the cytotoxicity against the non-tumor cell line HaCat. The in silico search for pharmacological targets was achieved through molecular docking studies on all active compounds, which suggested that the synthesized compounds possess a high affinity to the Topoisomerase 1-DNA complex, supporting their antitumor activity. The in silico toxicity prediction studies suggest that the compounds present a low risk of causing theoretical mutagenic and tumorigenic effects. These findings indicate that molecular hybridization from natural derivative molecules is an interesting approach to seek new antitumor candidates.

3.
Parasitol Res ; 123(6): 246, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896311

ABSTRACT

Human toxocariasis is a neglected anthropozoonosis with global distribution. Treatment is based on the administration of anthelmintics; however, their effectiveness at the tissue level is low to moderate, necessitating the discovery of new drug candidates. Several groups of synthetic compounds, including coumarin derivatives, have demonstrated bioactivity against fungi, bacteria, and even parasites, such as Dactylogyrus intermedius, Leishmania major, and Plasmodium falciparum. The aim of this study was to evaluate the effect of ten coumarin-derived compounds against Toxocara canis larvae using in vitro, cytotoxicity, and in silico tests for selecting new drug candidates for preclinical tests aimed at evaluating the treatment of visceral toxocariasis. The compounds were tested in vitro in duplicate at a concentration of 1 mg/mL, and compounds with larvicidal activity were serially diluted to obtain concentrations of 0.5 mg/mL; 0.25 mg/mL; 0.125 mg/mL; and 0.05 mg/mL. The tests were performed in a microculture plate containing 100 T. canis larvae in RPMI-1640 medium. One compound (COU 9) was selected for cytotoxicity analysis using J774.A1 murine macrophages and it was found to be non-cytotoxic at any concentration tested. The in silico analysis was performed using computational models; the compound presented adequate results of oral bioavailability. To confirm the non-viability of the larvae, the contents of the microplate wells of COU 9 were inoculated intraperitoneally (IP) into female Swiss mice at 7-8 weeks of age. This confirmed the larvicidal activity of this compound. These results show that COU 9 exhibited larvicidal activity against T. canis larvae, which, after exposure to the compound, were non-viable, and that COU 9 inhibited infection in a murine model. In addition, COU 9 did not exhibit cytotoxicity and presented adequate bioavailability in silico, similar to albendazole, an anthelmintic, which is the first choice for treatment of human toxocariasis, supporting the potential for future investigations and preclinical tests on COU 9.


Subject(s)
Coumarins , Larva , Toxocara canis , Animals , Larva/drug effects , Toxocara canis/drug effects , Coumarins/pharmacology , Coumarins/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Biological Availability , Mice , Computer Simulation , Toxocariasis/drug therapy , Toxocariasis/parasitology
4.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930806

ABSTRACT

Pterocaulon polystachyum is a species of pharmacological interest for providing volatile and non-volatile extracts with antifungal and amebicidal properties. The biological activities of non-volatile extracts may be related to the presence of coumarins, a promising group of secondary metabolites. In the present study, leaves and inflorescences previously used for the extraction of essential oils instead of being disposed of were subjected to extraction with supercritical CO2 after pretreatment with microwaves. An experimental design was followed to seek the best extraction condition with the objective function being the maximum total extract. Pressure and temperature were statistically significant factors, and the optimal extraction condition was 240 bar, 60 °C, and pretreatment at 30 °C. The applied mathematical models showed good adherence to the experimental data. The extracts obtained by supercritical CO2 were analyzed and the presence of coumarins was confirmed. The extract investigated for cytotoxicity against bladder tumor cells (T24) exhibited significant reduction in cell viability at concentrations between 6 and 12 µg/mL. The introduction of green technology, supercritical extraction, in the exploration of P. polystachyum as a source of coumarins represents a paradigm shift with regard to previous studies carried out with this species, which used organic solvents. Furthermore, the concept of circular bioeconomy was applied, i.e., the raw material used was the residue of a steam-distillation process. Therefore, the approach used here is in line with the sustainable exploitation of native plants to obtain extracts rich in coumarins with cytotoxic potential against cancer cells.


Subject(s)
Carbon Dioxide , Chromatography, Supercritical Fluid , Coumarins , Plant Extracts , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/pharmacology , Carbon Dioxide/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Humans , Chromatography, Supercritical Fluid/methods , Plant Components, Aerial/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification
5.
ACS Appl Mater Interfaces ; 16(24): 30900-30914, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38848495

ABSTRACT

Coumarins have great pharmacotherapeutic potential, presenting several biological and pharmaceutical applications, like antibiotic, fungicidal, anti-inflammatory, anticancer, anti-HIV, and healing activities, among others. These molecules are practically insoluble in water, and for biological applications, it became necessary to complex them with cyclodextrins (CDs), which influence their bioavailability in the target organism. In this work, we studied two coumarins, and it was possible to conclude that there were structural differences between 4,7-dimethyl-2H-chromen-2-one (DMC) and 7-methoxy-4-methyl-2H-chromen-2-one (MMC)/ß-CD that were solubilized in ethanol, frozen, and lyophilized (FL) and the mechanical mixtures (MM). In addition, the inclusion complex formation improved the solubility of DMC and MMC in an aqueous medium. According to the data, the inclusion complexes were formed and are more stable at a molar ratio of 2:1 coumarin/ß-CD, and hydrogen bonds along with π-π stacking interactions are responsible for the better stability, especially for (MMC)2@ß-CD. In vivo wound healing studies in mice showed faster re-epithelialization and the best deposition of collagen with the (DMC)2@ß-CD (FL) and (MMC)2@ß-CD (FL) inclusion complexes, demonstrating clearly that they have potential in wound repair. Therefore, (DMC)2@ß-CD (FL) deserves great attention because it presented excellent results, reducing the granulation tissue and mast cell density and improving collagen remodeling. Finally, the protein binding studies suggested that the anti-inflammatory activities might exert their biological function through the inhibition of MEK, providing the possibility of development of new MEK inhibitors.


Subject(s)
Coumarins , Wound Healing , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Coumarins/chemistry , Coumarins/pharmacology , Animals , Wound Healing/drug effects , Mice , Humans , Solubility , Male
6.
Curr Med Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877863

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) represents the primary form of oral cancer, posing a significant global health threat. The existing chemotherapy options are accompanied by notable side effects impacting patient treatment adherence. Consequently, the exploration and development of novel substances with enhanced anticancer effects and fewer side effects have become pivotal in the realms of biological and chemical science. OBJECTIVE: This work presents the pioneering examples of naphthoquinone-coumarin hybrids as a new category of highly effective cytotoxic substances targeting oral squamous cell carcinoma (OSCC). METHODS: Given the significance of both naphthoquinones and coumarins as essential pharmacophores/ privileged structures in the quest for anticancer compounds, this study focused on the synthesis and evaluation of novel naphthoquinones/coumarin hybrids against oral squamous cell carcinoma. RESULTS: By several in vitro, in silico, and in vivo approaches, we demonstrated that compound 6e was highly cytotoxic against OSCC cells and several other cancer cell types and was more selective than current chemotherapeutic drugs (carboplatin) and the naphthoquinone lapachol. Furthermore, compound 6e was non-hemolytic and tolerated in vivo at 50 mg/kg with an LD50 of 62.5 mg/kg. Furthermore, compound 6e did not induce apoptosis and cell cycle arrest but led to intracellular vesicle formation with LC3 aggregation in autophagosomes, suggesting an autophagic cell death. Additionally, 6e had a high-affinity potential for PKM2 protein, higher than the known ligands, such as lapachol or shikonin, and was able to inhibit this enzyme activity in vitro. CONCLUSION: We assert that compound 6e shows promise as a potential lead for a novel chemotherapeutic drug targeting OSCC, with potential applicability to other cancer types.

7.
Mol Biotechnol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834896

ABSTRACT

Parkinson's disease (PD) is a debilitating condition that can cause locomotor problems in affected patients, such as tremors and body rigidity. PD therapy often includes the use of monoamine oxidase B (MAOB) inhibitors, particularly phenylhalogen compounds and coumarin-based semi-synthetic compounds. The objective of this study was to analyze the structural, pharmacokinetic, and pharmacodynamic profile of a series of Triazolo Thiadiazepine-fused Coumarin Derivatives (TDCDs) against MAOB, in comparison with the inhibitor safinamide. To achieve this goal, we utilized structure-based virtual screening techniques, including target prediction and absorption, distribution, metabolism, and excretion (ADME) prediction based on multi-parameter optimization (MPO) topological analysis, as well as ligand-based virtual screening techniques, such as docking and molecular dynamics. The findings indicate that the TDCDs exhibit structural similarity to other bioactive compounds containing coumarin and MAOB-binding azoles, which are present in the ChEMBL database. The topological analyses suggest that TDCD3 has the best ADME profile, particularly due to the alignment between low lipophilicity and high polarity. The coumarin and triazole portions make a strong contribution to this profile, resulting in a permeability with Papp estimated at 2.15 × 10-5 cm/s, indicating high cell viability. The substance is predicted to be metabolically stable. It is important to note that this is an objective evaluation based on the available data. Molecular docking simulations showed that the ligand has an affinity energy of - 8.075 kcal/mol with MAOB and interacts with biological substrate residues such as Pro102 and Phe103. The results suggest that the compound has a safe profile in relation to the MAOB model, making it a promising active ingredient for the treatment of PD.

8.
Front Chem ; 12: 1338614, 2024.
Article in English | MEDLINE | ID: mdl-38807978

ABSTRACT

[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.

9.
Pharmaceutics ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38675153

ABSTRACT

Coumarins are benzopyrones found in several plant genera, including Pterocaulon (Asteraceae). These compounds represent an important source of new treatments, especially as antimicrobial and antifungal agents. In this study, two coumarin-rich extracts from Pterocaulon balansae using green technologies were obtained through aqueous maceration (AE) and supercritical fluid extraction (SFE). Such extracts were incorporated into nanoemulsions (NAE and NSFE) composed of a medium-chain triglyceride oil core stabilized by phospholipids. The nanoemulsions exhibited droplet sizes between 127 and 162 nm, pH above 5.0, and viscosity of approximately 1.0 cP, properties compatible with the topical route. The coumarins permeation/retention from formulations through ear porcine skin using Franz-type diffusion cells were evaluated. Whatever the extract, coumarins were distributed in skin layers, especially in the dermis in both intact and impaired (tape stripping) skin. In addition, a significant increase in coumarins that reached up to the receptor fluid was observed for impaired skin, with increases of approximately threefold for NAE and fourfold for NSFE. Finally, antifungal activity of nanoemulsions was evaluated according to minimum inhibitory concentrations, and the values were 250 µg/mL for all strains tested. The overall results demonstrated the feasibility of incorporating P. balansae extracts into nanoemulsions and showed a potential alternative for the treatment of sporotrichosis.

10.
Pharmaceutics ; 16(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399323

ABSTRACT

Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa ß. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.

11.
Biomedicines ; 12(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38255318

ABSTRACT

Leishmaniasis remains a significant global health concern, with current treatments relying on outdated drugs associated with high toxicity, lengthy administration, elevated costs, and drug resistance. Consequently, the urgent need for safer and more effective therapeutic options in leishmaniasis treatment persists. Previous research has highlighted selenium compounds as promising candidates for innovative leishmaniasis therapy. In light of this, a library of 10 selenium-containing diverse compounds was designed and evaluated in this study. These compounds included selenium-substituted indole, coumarin, chromone, oxadiazole, imidazo[1,2-a]pyridine, Imidazo[2,1-b]thiazole, and oxazole, among others. These compounds were screened against Leishmania amazonensis promastigotes and intracellular amastigotes, and their cytotoxicity was assessed in peritoneal macrophages, NIH/3T3, and J774A.1 cells. Among the tested compounds, MRK-106 and MRK-108 displayed the highest potency against L. amazonensis promastigotes with reduced cytotoxicity. Notably, MRK-106 and MRK-108 exhibited IC50 values of 3.97 µM and 4.23 µM, respectively, and most of the tested compounds showed low cytotoxicity in host cells (CC50 > 200 µM). Also, compounds MRK-107 and MRK-113 showed activity against intracellular amastigotes (IC50 18.31 and 15.93 µM and SI 12.55 and 10.92, respectively). In conclusion, the identified selenium-containing compounds hold potential structures as antileishmanial drug candidates to be further explored in subsequent studies. These findings represent a significant step toward the development of safer and more effective therapies for leishmaniasis, addressing the pressing need for novel and improved treatments.

12.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 9): 842-846, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693666

ABSTRACT

Methyl 2-(2-oxo-2H-chromen-4-yl-amino)-benzoate, C17H13NO4 (1), was pre-pared by condensation between 4-hy-droxy-coumarin and methyl 2-amino-benzoate. It crystallizes in the ortho-rhom-bic space group Pca21 at 300 K. The mol-ecule of compound 1 consists of the 2H-chromen-2-one part connected by an amine moiety (-NH-) to the methyl benzoate ring. The supra-molecular array is formed by hydrogen bonds between the aromatic ring and the O atoms of the lactone and ester portions. The structural details match the spectroscopic data acquired from NMR and IR spectroscopy.

13.
J Biol Inorg Chem ; 28(8): 711-723, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37768364

ABSTRACT

In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl2(HL1)]. All the studied compounds lower the proliferation of the amastigote form of Trypanosoma cruzi while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit T. cruzi release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.


Subject(s)
Thiosemicarbazones , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Palladium/pharmacology , Palladium/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Ligands , Parasitemia , Platinum/chemistry , Trypanocidal Agents/pharmacology , Coumarins/pharmacology , Mammals
14.
Microb Pathog ; 182: 106246, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454945

ABSTRACT

The discovery of antibiotics has significantly transformed the outcomes of bacterial infections in the last decades. However, the development of antibiotic resistance mechanisms has allowed an increasing number of bacterial strains to overcome the action of antibiotics, decreasing their effectiveness against infections they were developed to treat. This study aimed to evaluate the antibacterial activity of synthetic coumarins Staphylococcus aureus in vitro and analyze their interaction with the MepA efflux pump in silico. The Minimum Inhibitory Concentration (MIC) determination showed that none of the test compounds have antibacterial activity. However, all coumarin derivatives decreased the MIC of the standard efflux inhibitor ethidium bromide, indicating antibacterial synergism. On the other hand, the C14 derivative potentiated the antibacterial activity of ciprofloxacin against the resistant strain. In silico analysis showed that C9, C11, and C13 coumarins showed the most favorable interaction with the MepA efflux pump. Nevertheless, due to the present in silico and in vitro investigation limitations, further experimental research is required to confirm the therapeutic potential of these compounds in vivo.


Subject(s)
Coumarins , Multidrug Resistance-Associated Proteins , Coumarins/pharmacology , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Bacterial Proteins/metabolism
15.
Pathogens ; 12(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242414

ABSTRACT

Cooperia punctata is one of the most prevalent gastrointestinal nematodes affecting cattle under grazing conditions, and the increasing reports of anthelmintic resistance forces researchers to look for novel control measures. Previous reports have proposed the use of polyphenolic compound (PC) combinations (Coumarin:Quercetin (CuQ) and Caffeic-acid:Rutin (CaR)) against free-living stages (L3) of C. punctata. The objective of this study was to assess the in vitro motility inhibition of C. punctata adult worms and infective larvae using the Larval Motility Inhibition Assay (LMIA) and Adult Motility Inhibition Assay (AMIA), and to assess the structural and ultrastructural changes induced by both treatments using Scanning and Transmission Electron Microscopy. For the LMIA, infective larvae were incubated for 3 h in 0.8 mg mL-1 and 0.84 mg mL-1 of CuQ and CaR, respectively. For AMIA, six concentrations and five incubation periods (2, 4, 6, 12 and 24 h) were assessed using each PC combination. Cooperia punctata motility was calculated as a percentage and corrected using control motility percentages. A multiple comparisons Brown-Forsythe and Welch ANOVA test was used to compare larval motility; and to fit the dose-response in AMIA, data were analyzed with a non-linear regression four-parameter logistic equation with a variable slope, using the computer program GraphPad Prism® V.9.2.0. Although larval motility was barely affected by both treatments (p > 0.05), adult worm motility was inhibited 100% and 86.9% after 24 h incubation with CuQ and CaR, respectively (p < 0.05). The best fit EC50 for adult worm motility inhibition were 0.073 ± 0.071 mg mL-1 and 0.051 ± 0.164 mg mL-1 for CuQ and CaR, respectively. Main structural and ultrastructural lesions observed in both biological stages were: (i) L3 sheath-cuticle complex disruption, (ii) collagen fibers degradation; (iii) hypodermic detachment, (iv) seam cell apoptosis and (v) mitochondrial swelling. The alterations observed suggest that the PC combinations interfere with the anatomy and physiology of the locomotive apparatus of the nematodes.

16.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37111267

ABSTRACT

Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor related to stress response and cellular homeostasis that plays a key role in maintaining the redox system. The imbalance of the redox system is a triggering factor for the initiation and progression of non-communicable diseases (NCDs), including Inflammatory Bowel Disease (IBD). Nrf2 and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) are the main regulators of oxidative stress and their activation has been recognized as a promising strategy for the treatment or prevention of several acute and chronic diseases. Moreover, activation of Nrf2/keap signaling pathway promotes inhibition of NF-κB, a transcriptional factor related to pro-inflammatory cytokines expression, synchronically promoting an anti-inflammatory response. Several natural coumarins have been reported as potent antioxidant and intestinal anti-inflammatory compounds, acting by different mechanisms, mainly as a modulator of Nrf2/keap signaling pathway. Based on in vivo and in vitro studies, this review focuses on the natural coumarins obtained from both plant products and fermentative processes of food plants by gut microbiota, which activate Nrf2/keap signaling pathway and produce intestinal anti-inflammatory activity. Although gut metabolites urolithin A and urolithin B as well as other plant-derived coumarins display intestinal anti-inflammatory activity modulating Nrf2 signaling pathway, in vitro and in vivo studies are necessary for better pharmacological characterization and evaluation of their potential as lead compounds. Esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin are the most promising coumarin derivatives as lead compounds for the design and synthesis of Nrf2 activators with intestinal anti-inflammatory activity. However, further structure-activity relationships studies with coumarin derivatives in experimental models of intestinal inflammation and subsequent clinical trials in health and disease volunteers are essential to determine the efficacy and safety in IBD patients.

17.
Curr Med Chem ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37078582

ABSTRACT

In general, a cancerous process starts from uncontrolled cell growth, apoptosis, and rapid proliferation of cellular clones, as well as, reactive oxygen species (ROS) and imbalance of ROS-antioxidant production also could be involved in the genesis of the disease. Cancer has accounted for millions of deaths worldwide every year, representing a relevant threat to human lives. In this context, malignant melanoma represents the most aggressive and deadliest type of cancer, leading to increased rates of patient deaths. Natural active compounds have demonstrated their pharmacological benefits in several different studies. Among these compounds, coumarin analogs have demonstrated promising biological profiles, considering their efficacy and low toxicity. In this context, this phytochemical oxygenated core has been broadly investigated since it presents several biological properties of interest in the medicinal field. Herein, we reported a complete compilation of studies focused on natural coumarins against melanoma, as well as, tyrosinase since it is a cooper-catalyzed oxidase that performs an essential role during melanogenesis (Eu-melanins and Pheo-melanins), which is associated with melanoma. Thus, three different subclasses of natural coumarin were described in detail, such as simple coumarin core, furanocoumarins, pyranocoumarins, and pyrone-substituents. Additionally, insights on tyrosinase have been provided, allowing an overview of some structural/functional aspects of its enzyme, such as the presence of a binuclear type 3 cooper coordination at the binding site of this target, acting as cofactors. Posteriorly, several coumarin-based analogs with anti-tyrosinase activity also were reported and discussed. Finally, we believe that unprecedented review can be a valuable source of information, which can be used to design and develop novel coumarin-based analogs targeting melanoma and also tyrosinase enzyme, contributing to the advances in the field of natural products.

18.
Microb Pathog ; 177: 106058, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36878333

ABSTRACT

The increase in antibiotic resistance rates has attracted the interest of researchers for antibacterial compounds capable of potentiating the activity of conventional antibiotics. Coumarin derivatives have been reported to develop effective antibacterials with possible new mechanisms of action for treating infectious diseases caused by bacteria with a profile of drug resistance. In this context, the aim of the present study we have now prepared one variety of new synthetic coumarins evaluating the pharmacokinetic and chemical similarity in silico, their antimicrobial activity against Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), and potential for the modulation of antibiotic resistance against Staphylococcus aureus (SA10) and Escherichia coli (EC06) clinical isolate bacteria by in vitro assay. The antibacterial activity and antibiotic-enhancing properties were evaluated by the broth microdilution method and pharmacokinetically characterized according to the Lipinsk rule of 5 and had their similarity analyzed in databases such as ChemBL and CAS SciFinder. The results demonstrated that only compound C13 showed significant antibacterial activity (MIC ≤256 µg/mL), and all other coumarins did not display relevant antibacterial activity (MIC ≥1024 µg/mL). However, they did modulate the antibiotics activities to norfloxacin and gentamicin, except, compound C11 to norfloxacin against Staphylococcus aureus (SA10). The in silico properties prediction and drug-likeness results demonstrated that all coumarins presented a good drug-likeness score with no violations and promising in silico pharmacokinetic profiles showing that they have the potential to be developed into an oral drug. The results indicate that the coumarin derivatives showed good in vitro antibacterial activity. These new coumarin derivatives also demonstrated the capacity to modulate antibiotic resistance with potential synergy action for current antimicrobials assayed, as antibiotic adjuvants, to reduce the emergence of antimicrobial resistance.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Norfloxacin/pharmacology , Escherichia coli , Coumarins/pharmacology , Coumarins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Bacteria , Microbial Sensitivity Tests
19.
Molecules ; 28(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903660

ABSTRACT

The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Neoplasms , Humans , Molecular Docking Simulation , Coumarins/pharmacology , Neoplasms/drug therapy , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/pharmacology
20.
J Appl Toxicol ; 43(2): 323-334, 2023 02.
Article in English | MEDLINE | ID: mdl-36000810

ABSTRACT

3-(3,4-Dihydroxyphenyl)-7,8-dihydroxycoumarin is a newly synthesized coumarin derivative with a potent antioxidant effect. The aim of the present study is to investigate the safety of this compound, determining the in vitro cytotoxic and genotoxic in human peripheral blood mononuclear cells (PBMC) and in HepG2/C3A cells. Cell viability has been investigated by the trypan blue staining test and MTT assay and the genotoxicity by the comet assay and micronucleus test, using concentrations between 0.01 and 10 µg/ml. The compound proved to be noncytotoxic in both cell lines, at all tested concentrations, protecting the cells from the DNA damage. In addition, this molecule does not show clastogenic/aneugenic effects when performing the micronucleus test with cytokinesis blockade. Based on the obtained data, and the conditions of the experiments, we can conclude that the 3-(3,4-dihydroxyphenyl)-7,8-dihydroxycoumarin is a safe molecule up to a concentration of 10 µg/ml, which encourages further studies aiming to explore its potential as a drug candidate.


Subject(s)
Leukocytes, Mononuclear , Leukocytes , Humans , Comet Assay , Umbelliferones/toxicity , DNA Damage , Micronucleus Tests , Mutagens
SELECTION OF CITATIONS
SEARCH DETAIL