Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 914: 169410, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38123080

ABSTRACT

Vanadium (V) concentrations in organisms are usually very low. To date, among animals, only some urochordate and annelid species contain very high levels of V in their tissues. A new case of hyper-accumulation of V in a distinct animal phylum (Porifera), namely, the two homoscleromorph sponge species Oscarella lobularis and O. tuberculata is reported. The measured concentrations (up to 30 g/kg dry weight) exceed those reported previously and are not found in all sponge classes. In both Oscarella species, V is mainly accumulated in the surface tissues, and in mesohylar cells, as V(IV), before being partly reduced to V(III) in the deeper tissues. Candidate genes from Bacteria and sponges have been identified as possibly being involved in the metabolism of V. This finding provides clues for the development of bioremediation strategies in marine ecosystems and/or bioinspired processes to recycle this critical metal.


Subject(s)
Porifera , Urochordata , Animals , Vanadium , Ecosystem
2.
Mar Pollut Bull ; 194(Pt B): 115242, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453169

ABSTRACT

Adult corals are among the most sensitive marine organisms to dissolved manganese and experience tissue sloughing without bleaching (i.e., no loss of Symbiodinium spp.) but there are no chronic toxicity data for this sensitive endpoint. We exposed adult Acropora millepora to manganese in 2-d acute and 14-d chronic experiments using tissue sloughing as the toxicity endpoint. The acute tissue sloughing median effect concentration (EC50) was 2560 µg Mn/L. There was no chronic toxicity to A. millepora at concentrations up to and including the highest concentration of 1090 µg Mn/L i.e., the chronic no observed effect concentration (NOEC). A coral-specific acute-to-chronic ratio (ACR) (EC50/NOEC) of 2.3 was derived. These data were combined with chronic toxicity data for other marine organisms in a species sensitivity distribution (SSD). Marine manganese guidelines were 190, 300, 390 and 570 µg Mn/L to provide long-term protection of 99, 95, 90, and 80 % of marine species, respectively.


Subject(s)
Anthozoa , Dinoflagellida , Water Pollutants, Chemical , Animals , Manganese/toxicity , Water Quality , Aquatic Organisms , Water Pollutants, Chemical/toxicity
3.
Environ Sci Pollut Res Int ; 30(21): 59621-59631, 2023 May.
Article in English | MEDLINE | ID: mdl-37012563

ABSTRACT

We propose a novel integrated model for the recovery of tantalum from tantalum-rich waste using a combination of hydrometallurgical and bio-metallurgical processes. To this end, leaching experiments with heterotrophs (Pseudomonas putida, Bacillus subtilis and Penicillium simplicissimum) were carried out. The heterotrophic fungal strain leached manganese with an efficiency of 98%; however, no tantalum was detected in the leachate. An unidentified species did mobilise 16% tantalum in 28 days in an experiment with non-sterile tantalum capacitor scrap. Attempts to cultivate isolate and identify these species failed. The results of a range of leaching trials resulted in an effective strategy for Ta recovery. A bulk sample of homogenised Ta capacitor scrap was first subjected to microbial leaching using Penicillium simplicissimum, which solubilised manganese and base metals. The residue was subjected to the second leach using 4 M HNO3. This effectively solubilised silver and other impurities. The residue collected after the second leach was pure tantalum in concentrated form. The hybrid model produced derives from observations from previous independent studies and shows that we can effectively recover tantalum along with silver and manganese in an efficient and environmentally friendly manner from tantalum capacitor scrap.


Subject(s)
Electronic Waste , Penicillium , Silver/chemistry , Manganese , Recycling/methods , Electronic Waste/analysis
4.
Environ Sci Pollut Res Int ; 30(24): 65558-65571, 2023 May.
Article in English | MEDLINE | ID: mdl-37085683

ABSTRACT

Global low-carbon contracts, along with the energy and environmental crises, have encouraged the rapid development of the power battery industry. As the current first choice for power batteries, lithium-ion batteries have overwhelming advantages. However, the explosive growth of the demand for power lithium-ion batteries will likely cause crises such as resource shortages and supply-demand imbalances. This study adopts qualitative and quantitative research methods to comprehensively evaluate the power lithium-ion battery supply and demand risks by analyzing the global material flow of these batteries. The results show that the processes from resources to market of the power lithium-ion battery industry are highly concentrated with growing trends. The proportion of the top three power lithium-ion battery-producing countries grew from 71.79% in 2016 to 92.22% in 2020, increasing by 28%. The top three power lithium-ion battery-demand countries accounted for 83.07% of the demand in 2016 and 88.16% in 2020. The increasing concentration increases the severity of the supply risk. The results also imply that different processes are concentrated within different countries or regions, and the segmentation puts the development of the power lithium-ion battery industry at significant risk. It is urgent to address this situation so that this severe risk can be ameliorated.


Subject(s)
Electric Power Supplies , Lithium , Ions , Carbon
5.
Sci Total Environ ; 856(Pt 1): 159123, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36181795

ABSTRACT

The enrichment of rare, scattered, rare earth, and noble elements, such as Li, Ga, Ge, rare earth elements and yttrium (REY), platinum group elements (PGE), Au, and Ag, have been discovered in the Late Permian coals from southwestern China. With the gradual depletion of traditional ore deposits, the geochemistry and resource utilization of critical metals in coals have received considerable attention. The geochemistry of associated elements in the Late Permian coals from the No. 10 coal profile of the Yueliangtian (YLT) underground mine, Liupanshui coalfield in Guizhou, were investigated to reveal the sediment source of inorganic components, as well as utilization prospects and controlling factors of critical metals. Silver and Pb were slightly enriched in the Yueliangtian coals, while Be, Rb, Sr, Mo, Cs, Ba, Tl, Bi, and U were significantly lower than that of world hard coals. The concentrations of total REY and individual elements in the Yueliangtian coals were similar to those of world hard coals. The minerals kaolinite, pyrite, calcite, and quartz predominated in coals, with trace amounts of anatase, gypsum, and apatite. High anatase proportion was identified in the floor and roof rock samples. Based on the Al2O3/TiO2 and Zr/TiO2 versus Nb/Y ratios, elemental assemblages, REY distribution, and paleogeography, the sediment source of mineral matter in the Yueliangtian coals dominated by felsic-intermediate rocks that from a distal volcanic arc or orogens was inferred. The terrigenous debris in the roof and floor rocks primarily originated from the high-Ti basalt of the Emeishan Large Igneous Province (ELIP). The relatively low elemental concentrations in these coals were primarily determined by their sediment sources. Although most critical metals in this coal were not enriched, the concentration of REY in coal ash was high enough to be considered as a potential resource for REY recovery given the extremely low ash yields of this coal.


Subject(s)
Coal Mining , Metals, Rare Earth , Coal/analysis , Metals , Coal Ash , Minerals
6.
J Hazard Mater ; 425: 127756, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34883375

ABSTRACT

The essence behind metal solvent extraction is the interaction between metal species and organic extractants. Aqueous metal species tuning at the molecular level is critical to improve the extraction efficiency and selectivity of the target metal. Herein, we demonstrate a quantitative metal species tuning strategy which is capable of extracting the most critical metals (e.g., V, W, and Mo) in extraction systems constructed by amines. We reveal the superior activities of V4 and V10 species among various V and Cr species by calculations and experiments. In addition, the contribution of various Vn species was quantitatively evaluated via Ion Species Contribution Evaluation (ISCE). Our tuning strategy is rationally designed by bridging species characteristics and routine aqueous conditions with extraction activities. Consequently, a three-dimensional model of V and Cr solvent extraction is established for the prediction of reaction regions, and the reactivities of nearly 20 kinds of typical metal species are compared and predicted. Our strategy serves for industrial solvent extraction, and may provide inspiration for the traditional hydrometallurgical revolutionary.


Subject(s)
Vanadium , Water , Ions , Solvents
7.
J Hazard Mater ; 425: 127900, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34896721

ABSTRACT

The rapid development of lithium-ion batteries (LIBs) in emerging markets is pouring huge reserves into, and triggering broad interest in the battery sector, as the popularity of electric vehicles (EVs)is driving the explosive growth of EV LIBs. These mounting demands are posing severe challenges to the supply of raw materials for LIBs and producing an enormous quantity of spent LIBs, bringing difficulties in the areas of resource allocation and environmental protection. This review article presents an overview of the global situation of power LIBs, aiming at different methods to treat spent power LIBs and their associated metals. We provide a critical review of power LIB supply chain, industrial development, waste treatment strategies and recycling, etc. Power LIBs will form the largest proportion of the battery industry in the next decade. The analysis of the sustainable supply of critical metal materials is emphasized, as recycling metal materials can alleviate the tight supply chain of power LIBs. The existing significant recycling practices that have been recognized as economically beneficial can promote metal closed-loop recycling. Scientific thinking needs to innovate sustainable and cost-effective recycling technologies to protect the environment because of the chemicals contained in power LIBs.

8.
Waste Manag ; 125: 154-162, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33706254

ABSTRACT

In a circular economy context, there is a growing need for more sustainable waste management options to recover elements from end-of-life materials. These "secondary ores" represent a source of critical elements that are often present in higher concentration compared to their primary ore. In this work, the recovery of lanthanum (La) from waste nickel metal hydride battery (NiMH) leachate is investigated using an aqueous biphasic system (ABS) process based on a pluronic triblock copolymer (L35). An initial screening is performed to determine the influence of the ABS phase forming salt anion and alizarin red extractant on the La extraction efficiency and selectivity. From these results, a three-step ABS process is developed, varying only the nature of the salt and requiring no additional extractant. In a first step, the ABS composed of L35 + thiocyanate ammoniun + H2O efficiently extracts iron, manganese, and cobalt leaving La, cerium, and Ni in solution. Nickel is subsequently recovered by precipitation using dimethylglyoxime. Finally, La is separated from cerium using the L35 + ammonium nitrate + H2O ABS, recovering 62 g of La with 94% purity per kilogram of black mass of NiMH battery. This work highlights the applicability of ABS for the treatment of raw and complex matrices, potentially allowing for a greener hydrometallurgical treatment of wastes.


Subject(s)
Cerium , Nickel , Electric Power Supplies , Lanthanum , Metals
SELECTION OF CITATIONS
SEARCH DETAIL