Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.915
Filter
1.
Planta ; 260(4): 86, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230667

ABSTRACT

MAIN CONCLUSION: The review offers insights into the current state of research on insect pest-resistant GM crops and the regulations governing the cultivation of GM crops in India. India has a rich crop diversity of more than 160 major and minor crops through its diverse agroclimatic conditions. Insect pests alone cause around USD 36 billion in crop loss annually in India. The last two decades witnessed considerable progress in managing insect pests by adopting innovative techniques including transgenics. In research, significant advancement has been brought in insect pest-resistant transgenics in India since its inception in 2002. However, any events have not been endorsed owing to biosafety impediments, except Bt cotton reaching the commercial release stage. A landmark decision to exempt certain types of gene-edited plants from genetically modified organism (GMO) regulations offers great promise for developing novel insect-resistant crops in India. The article reviews the current research on insect pest-resistant transgenics and its regulations in India.


Subject(s)
Crops, Agricultural , Insecta , Pest Control, Biological , Plants, Genetically Modified , Crops, Agricultural/genetics , India , Plants, Genetically Modified/genetics , Animals , Insecta/genetics , Pest Control, Biological/methods
2.
Plant Dis ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39219006

ABSTRACT

Understanding the effects of barley yellow dwarf virus (BYDV) on crop agronomic traits and yield performance helps breeders balance their selection criteria and farmers decide if pesticides should be applied to control aphids that distribute the virus. To precisely assess the deterioration of different agronomic traits and yield components caused by different levels of BYDV infection, seeds of a BYDV-sensitive barley variety cv. RGT Planet were space sown in a field plot with 10 cm between seeds and 20 cm between rows under two consecutive years. When BYDV symptoms were shown, plants with different levels (0 - 5) of BYDV infection were tagged. For accurate comparisons, the neighbouring non/less-infected plants were also tagged. At maturity, different agronomic traits and yield components were measured on those tagged plants. Results showed a strong linear correlation between BYDV severity and the performance of agronomic traits and yield components. The yield reductions ranged from 30% for the least affected (score of 1) to 90% for the severely affected (score of 5). Our research confirmed previous findings that BYDV seriously affects crop yield and the prediction of yield loss due to BYDV infection should use the percentage of plants with different BYDV symptoms.

4.
Front Plant Sci ; 15: 1398846, 2024.
Article in English | MEDLINE | ID: mdl-39228831

ABSTRACT

Studies are being conducted to develop strategies to reduce the adverse effects of salinity stress. In the present study, it was aimed to determine the interactive effects of salinity stress with biochar on plant growth-the physiological and biochemical attributes of forage peas (Pisum sativum ssp. arvense L.). Salt applications were carried out with irrigation water at concentrations of 0, 25, 50, 75, and 100 mM NaCl. The experiment was conducted using a randomized complete block design with three applications [control: 0 (B0), 2.5% biochar (B1), and 5% biochar (B2)], five salt doses [0 (S0), 25 (S1), 50 (S2), 75 (S3), and 100 (S4) mM NaCl], and three replications, arranged in a 3 × 5 factorial arrangement. In the salt-stressed environment, the highest plant height (18.75 cm) and stem diameter (1.71 mm) in forage pea seedlings were obtained with the application of B1. The root fresh (0.59 g/plant) and dry weight (0.36 g/plant) were determined to be the highest in the B1 application, both in non-saline and saline environments. A decrease in plant chlorophyll content in forage pea plants was observed parallel to the increasing salt levels. Specifically, lower H2O2, MDA, and proline content were determined at all salt levels with biochar applications, while in the B0 application these values were recorded at the highest levels. Furthermore, in the study, it was observed that the CAT, POD, and SOD enzyme activities were at their lowest levels at all salt levels with the biochar application, while in the B0 application, these values were determined to be at the highest levels. There was a significant decrease in plant mineral content, excluding Cl and Na, parallel to the increasing salt levels. The findings of the study indicate that biochar amendment can enhance forage peas' growth by modulating the plant physiology and biochemistry under salt stress. Considering the plant growth parameters, no significant difference was detected between 2.5% and 5% biochar application. Therefore, application of 2.5 biochar may be recommended.

5.
Sci Total Environ ; 952: 175949, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39226972

ABSTRACT

Human activities led to elevation in carbon dioxide (CO2) concentrations in atmosphere. While such increase per se may be beneficial for the growth of some crops, it comes with a caveat of affecting crop nutritional status. Here, we present a comprehensive analysis of changes in concentration of essential (Cu, Fe, Mn, Zn, Mo, Ni) and non-essential (Ba, Cd, Cr, Hg, Pb, and Sr) heavy metals in response to elevated CO2, drawing on a meta-analysis of 1216 paired observations. The major findings are as follows: (1) Elevated CO2 leads to reduced concentrations of Cu, Fe, Mn, and Zn in crops; (2) the extent of above reduction varies among plants species and is most pronounced in cereals and then in legumes and vegetables; (3) reduction in accumulation of non-essential (toxic) metals is less pronounced, potentially leading to an unfavorable essential/non-essential metal ratio in plants; (4) the above effects will come with significant implication to human health, exacerbating effects of the "hidden hunger" caused by the lack of Fe and Zn in the human diets. The paper also analyses the mechanistic basis of nutrient acquisition (both at physiological and molecular levels) and calls for the changes in the governmental policies to increase efforts of plant breeders to create genotypes with improved nutrient use efficiency for essential micronutrients while uncoupling their transport from non-essential (toxic) heavy metals.

6.
Plant Dis ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235414

ABSTRACT

Common lambsquarters (Chenopodium album Linn.) is one of the most problematic weeds associated with crops worldwide due to its fast-growing, high fecundity, and wide tolerance to various conditions. Meanwhile, C. album is also an herbaceous vegetable plant, and the leaves and young shoots of this plant are considered nutritious in the human diet (Aman et al. 2016). In September 2023, C. album plants exhibiting yellowing, stunted growth, and extensive galled root symptoms were collected from a yam field in Fengqiu (34°54'24"N; 114°34'57"E), Henan Province, China. At the selected sampling site, we randomly selected 100 C. album plants, and the disease incidence was 73% on a 0.67-ha field. A RKN species belonging to the genus Meloidogyne was found, comprising an average of 550 second-stage juveniles (J2s) from 100 g of the 10 to 30 cm soil layer. The J2s were isolated from fresh soil with a Baermann funnel. C. album roots were thoroughly washed with tap water and dissected. Nematodes at different stages were collected and morphologically identified. Females and egg masses were obtained by dissecting galls. Females were white with a protruding neck, globular to pear-shaped. The perineal patterns of females predominantly exhibited a pronounced dorsal arch, characterized by either a square or trapezoid shape, lacking obvious lateral lines. Males isolated from root galls were vermiform, annulated, and showed a trapezoidal labial region, including a high head cap that was concaved at the center of the top end in lateral view. J2s were distinguished by the conspicuous, round stylet knobs, and they had wrinkled tails with a hyaline region and an obtuse tip. Morphological measurements are described in the supplementary material. All features were consistent with the morphological characteristics of Meloidogyne incognita (Eisenback and Hirschmann 1981). Identification was accomplished with subsequent species-specific PCR and sequencing analysis. The genomic DNA of 10 individual females was extracted, and the molecular identification was carried out with M. incognita-specific primers Mi-F/Mi-R, and Inc-K14-F/Inc-K14-R (Meng et al. 2004; Randig et al. 2002). PCR amplification generated 955 and 399 bp fragments for the analyzed samples, respectively, and the amplicons were confirmed by sequence analyses. The sequences were deposited in GenBank under accession number PP836070 and PP836071. BLASTn searches showed 100% identity with available GenBank M. incognita sequences (accession no. MK410954, OQ427638). To verify reproduction on C. album, 10 healthy plants (30 days old) grown in pots with sterilized soil were inoculated with 1,000 M. incognita J2s under greenhouse conditions (light/dark: 16 h/8 h, temperature: 25-28°C). Five uninoculated plants were used as negative control. Two months after inoculation, stunted growth and root-galling symptoms were observed similar to those in field, whereas control plants remained symptomless. Many root galls and egg masses were observed in all inoculated plants. The root galling index (scale of 0 to 10; Poudyal et al. 2005) was ~7 and nematode reproduction factor (final population density/initial population density) was 5.3. The morphological features of the nematodes reisolated from root tissue closely match the description of M. incognita, fulfilling Koch's postulates. The pathogenicity test was carried out twice with similar results. M. incognita is an emerging disease of economic importance in many crop plants worldwide, and may cause serious economic losses (Phani et al. 2021). This widely distributed C. album plant is likely a reservoir for the pathogen and serves as an alternate host for nematodes. The findings are significant for the integrated management practices of RKNs, particularly for crops that are infested with C. album. To our knowledge, this is the first report of the nematode parasitizing C. album in China. The development of effective short- and long-term control procedures is urgently needed for managing M. incognita.

7.
AIMS Microbiol ; 10(3): 674-693, 2024.
Article in English | MEDLINE | ID: mdl-39219755

ABSTRACT

Climate change enhances stress in food crops. Recently, abiotic stress such as metalloid toxicity, salinity, and drought have increased in food crops. Mycorrhizal fungi can accumulate several nutrients within their hyphae through a symbiotic relationship and release them to cells in the root of the food crops under stress conditions. We have studied arbuscular mycorrhizal fungi (AMF)-enriched biofertilizers as a climate-smart technology option to increase safe and healthy food production under abiotic stress. AMF such as Glomus sp., Rhizophagus sp., Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, and Claroideoglomus etunicatum enhance growth and yield in food crops grown in soils under abiotic stress. AMF also works as a bioremediation material in food crops grown in soil. More precisely, the arsenic concentrations in grains decrease by 57% with AMF application. In addition, AMF increases mineral contents, and antioxidant activities under drought and salinity stress in food crops. Catalase (CAT) and ascorbate peroxidase (APX) increased by 45% and 70% in AMF-treated plants under drought stress. AMF-enriched biofertilizers are used in crop fields like precision agriculture to reduce the demand for chemical fertilizers. Subsequently, AMF-enriched climate-smart biofertilizers increase nutritional quality by reducing abiotic stress in food crops grown in soils. Consequently, a climate resilience environment might be developed using AMF-enriched biofertilizers for sustainable livelihood.

8.
J Environ Manage ; 369: 122340, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39232321

ABSTRACT

The contamination characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in different environmental functional areas are different. In this study, the contamination of PAHs in soils and common plants in typical mining and farmland areas in Xinjiang, China, was analyzed. The results showed that the contamination levels of PAHs in mining soils were significantly higher than those in farmland soils, and the mining soils were dominated by 4-5-ring PAHs and farmland soils by 3-4-ring PAHs. Analysis of their sources using a positive definite factor matrix model showed that PAHs in mining soils mainly originated from coal and natural gas combustion, and transportation processes; while farmland soils mainly came from biomass and coal combustion, and fossil fuel volatile spills. The cancer risk of PAHs in soils was evaluated using a combination of the Monte Carlo and the lifetime carcinogenic risk models, and the results showed that the overall level of cancer risk for mining soils was higher than that for farmland soils, and can put some people in high risk of cancer. For plant samples, except for individual crop samples, the contamination levels of mining plants and crops were similar, with 4-5-ring PAHs dominating in desert plants in mining areas and the highest proportion of 3-ring PAHs in crops in agricultural fields, and PAHs in both plants were mainly from biomass and coal combustion. The results of correlation analysis showed that 2-ring PAHs in crop roots were significantly positively correlated with it in corresponding soils, and some high-ring PAHs in crop leaves were significantly negatively correlated with it in corresponding soils. Therefore, there were significant differences in the pollution characteristics of PAHs in soils and common plants in mining and agricultural areas. Human health risks and ecological risks are mainly concentrated in mining areas, and appropriate intervention measures should be taken for pollution remediation.

9.
Plants (Basel) ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124140

ABSTRACT

Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.

10.
Trends Plant Sci ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39129109

ABSTRACT

Understanding the complex challenges that plants face from multiple stresses is key to developing climate-ready crops. We highlight the significance of the Stress Combinations and their Interactions in Plants database (SCIPdb) for studying the impact of stress combinations on plants and the importance of aligning thematic research programs to create crops aligned with achieving sustainable development goals.

11.
Plant Dis ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175276

ABSTRACT

Fritillaria unibracteata Hsiao et K. C. Hsia is a recognized source of 'Chuanbeimu' in the 'Chinese Pharmacopoeia'. In China, its bulbs have been used as a traditional herbal cough remedy for about 2,000 years. Surveys for fungal diseases were conducted in Xiaojin and Songpan, Sichuan Province, the primary cultivation region of F. unibracteata, with an area of 150 acres, in May and July 2022. Rust was found in almost all areas and incidence ranged from 5% to 80% in all study areas. Diseased leaves displayed yellow spots on the upper side, and raised buff, golden, or fuscous waxy pustules on the lower side. In severe cases, the infection extended to the stems and petioles, leading to wilting and death of plant. Spermogonia, aecia, and telia were mainly found on the underside of leaves. Spermogonia were scattered among the aecia and exhibited a range of colors from honey-yellow to chestnut-brown. They had a cross-sectional diameter of 94.4 to 214.3 µm height and 94.2 to 197.5 µm in width (n=30). They were nearly spherical, embedded in the host tissue, and had distinct periphysis at the pores. Aecia were hemispherical, initially white, with the peridium later turning yellowish-brown and opening via a central pore. Aeciospores were pale yellow, finely and closely verrucose, measuring 20.6 to 34.1 × 18.4 to 30.1 µm with a cell wall thickness of 1.5 to 2.4 µm (n=51). Prior to plants wilting, elongated telia were observed, gradually exposed, then finally opening through longitudinal cracks in the epidermis. Teliospores were unicellular, dark brown, oblong to oval, and solitary on stems, measuring 24.7 to 38.2 × 19.2 to 27.8 µm (n=130) with a wall thickness of 1.6 to 3.1 µm, with a low hyaline papilla at the apex and were moderately rugose with longitudinal parallel ridges. The characteristics align with previous descriptions of Uromyces aecidiiformi (Rees, 1917, Zhuang, 2005). The primer pair LR0R (Moncalvo et al., 1995)/LR5 (Vilgalys & Hester, 1990) was utilized for amplifying and sequencing the large subunit of the nuclear ribosomal RNA genes from strains IS909-3 and IS1816 (GenBank PQ008482, PQ008483). The obtained sequences showed a high similarity of 99.9% to 100% similarity to strains U1023 and UBC19 of U. aecidiiformis in RustHubb (KR0014142 and PUN23000)( Kaishian et al., 2024). Through examination of morphology, host range, and sequence similarity, we determined the rust species to be U. aecidiiformis. Pathogenicity testing was conducted by spraying a suspension of aeciospores (1×105 spores/mL in 0.05% Tween 20 solution) on six healthy four-year-old F. unibracteata plants indoors in May 2023. The plants were allowed to grow under natural conditions, where the diurnal temperature ranged from 9 to 20℃, with an average temperature of 14℃, which is conducive to the growth of F. unibracteata. Another six seedlings were sprayed with 0.05% Tween 20 solution as controls. After three weeks, all infected plants showed symptoms similar to those seen in the field, while control plants remained symptom-free. Microscopic examination and sequencing confirmed that the pathogen morphology was consistent between the field and the inoculation, meeting Koch's postulates. Although U. aecidiiformis has been previously reported to cause rust of F. pallidiflora and F. ussuriensis(Zhuang, 1989, Zhuang, 2005), this is the first report of U. aecidiiformis causing rust on F. unibracteata in China. This pathogen significantly reduces the yield and quality of Chuanbeimu, highlighting the importance of effectively identifying and controlling it.

12.
Heliyon ; 10(15): e35513, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170454

ABSTRACT

Conventional breeding approaches have played a significant role in meeting the food demand remarkably well until now. However, the increasing population, yield plateaus in certain crops, and limited recombination necessitate using genomic resources for genomics-assisted crop improvement programs. As a result of advancements in the next-generation sequence technology, GABs have developed dramatically to characterize allelic variants and facilitate their rapid and efficient incorporation in crop improvement programs. Genomics-assisted breeding (GAB) has played an important role in harnessing the potential of modern genomic tools, exploiting allelic variation from genetic resources and developing cultivars over the past decade. The availability of pangenomes for major crops has been a significant development, albeit with varying degrees of completeness. Even though adopting these technologies is essentially determined on economic grounds and cost-effective assays, which create a wealth of information that can be successfully used to exploit the latent potential of crops. GAB has been instrumental in harnessing the potential of modern genomic resources and exploiting allelic variation for genetic enhancement and cultivar development. GAB strategies will be indispensable for designing future crops and are expected to play a crucial role in breeding climate-smart crop cultivars with higher nutritional value.

13.
Agrofor Syst ; 98(6): 1659-1680, 2024.
Article in English | MEDLINE | ID: mdl-39086741

ABSTRACT

Agroforestry systems promise a high multifunctionality providing cash and subsistence yields as well as other ecosystem services. Such land systems may be particularly promising for smallholders in tropical landscapes due to high labour intensity and productivity on limited land. Focusing on Madagascar, we here describe the history of agroforestry in the country and review the current literature on agroforestry outcomes as well as factors promoting and hindering agroforest establishment and maintenance. From this, we discuss the potential future of agroforestry in Madagascar. Historically, many crops farmed today in agroforestry systems were originally introduced as plantation crops, mostly in the nineteenth century. Since then, people co-opted these crops into mixed agroforestry systems, often focusing on clove, vanilla, coffee, or cocoa in combination with fruit trees or, for clove, with livestock. Other crops are also integrated, but shares are comparatively low. Overall, 27.4% of Malagasy exports are crops typically farmed in agroforestry systems, providing income for at least 500,000 farmers. Outcomes of agroforestry for biodiversity and ecosystem services are commonly researched, showing benefits over annual crops and monocultures. Social-economic outcomes, including yields, are more scarcely researched, but findings point towards financial benefits for smallholder farmers and a sense of community and collective memory. However, findings emphasize that research gaps remain in terms of geographic and crop coverage, also for ecological outcomes. Looking to the future, we highlight the need to overcome hurdles such as land tenure insecurity, financial barriers to implementation, and unstable value chains to scale agroforestry in Madagascar to the benefit of multifunctional land systems and human wellbeing. Supplementary Information: The online version contains supplementary material available at 10.1007/s10457-024-00975-y.

14.
Plant Physiol Biochem ; 215: 108989, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094478

ABSTRACT

The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.

15.
Front Plant Sci ; 15: 1439951, 2024.
Article in English | MEDLINE | ID: mdl-39109062

ABSTRACT

Plant diseases are caused by various microorganisms such as bacteria, fungi, viruses, and nematodes. These diseases impact crop growth, reduce produce quality, and lead to financial losses. Plant disease can be caused by single pathogens or by interactions called "disease complexes", involving two or more pathogens. In these cases, the disease severity caused by the pathogens combined is greater than the sum of the disease caused by each pathogen alone. disease complexes formed among plant-parasitic nematodes (PPNs) with bacteria, fungi, or viruses, can occur. PPNs either enhance the other pathogen incidence and severity or are necessary for disease symptoms to be expressed. PPNs can do so by being wounding agents, vectors, modifiers of plant biochemistry and physiology, or altering the rhizosphere microbiome. This review identifies several PPNs-plant pathogens disease complexes in crop production to discuss how understanding such interactions is key for improving management practices.

16.
Pest Manag Sci ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189544

ABSTRACT

BACKGROUND: Lepidopteran pest control in agriculture has become heavily dependent on cultivars that express Bacillus thuringiensis (Bt) toxins as 'plant-incorporated protectants'. However, populations of Spodoptera frugiperda (Smith) in Brazil appear resistant to the Bt traits currently available in commercial soybean cultivars. RESULTS: This study evaluated S. frugiperda life history when feeding on three different Bt soybean cultivars. Cultivars expressing Cry1Ac + Cry1F and Cry1A.105 + Cry2Ab2 + Cry1Ac Bt toxins caused 100% larval mortality in S. frugiperda. Both non-Bt and Cry1Ac-expressing soybean induced transgenerational effects that increased the survival of subsequent generations. A Cry1Ac soybean diet reduced the generation time (T) of S. frugiperda relative to non-Bt soybean, resulting in shorter generation time and more rapid population growth. CONCLUSION: The implications of these results revealed how diet can alter aspects of insect life history and biology, and have important implications for sustainable management of S. frugiperda on soybean. © 2024 Society of Chemical Industry.

17.
Sci China Life Sci ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39190125

ABSTRACT

Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.

18.
Plant Environ Interact ; 5(4): e70004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39183979

ABSTRACT

The Southern African region suffers from drought and food system uncertainty with increased risks due to climate change, natural disasters, and global catastrophes. Increasing crop diversity with more appropriate and resilient crops is an effective way of increasing food system resilience. We focus on crop species that are native or naturalized to an area because of their increased resilience than those that are not naturally occurring. Additionally, crops that are easily stored are more useful in times of drought and disaster. In this systematic review, we use scientific interest in neglected and underutilized species (NUS) from Southern Africa to help define next steps toward their cultivation and development as a marketable crop. We found that although scientific interest is minimal for storable Southern African NUS, these crops are worth scaling up due to their economic and nutritional value. We outline next actionable steps and specific NUS for production in a more agrobiodiverse and resilient agriculture system.

19.
Plant Biol (Stuttg) ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162150

ABSTRACT

The diverse class of plant diterpenoid metabolites serves important functions in mediating growth, chemical defence, and ecological adaptation. In major monocot crops, such as maize (Zea mays), rice (Oryza sativa), and barley (Hordeum vulgare), diterpenoids function as core components of biotic and abiotic stress resilience. Switchgrass (Panicum virgatum) is a perennial grass valued as a stress-resilient biofuel model crop. Previously we identified an unusually large diterpene synthase family that produces both common and species-specific diterpenoids, several of which accumulate in response to abiotic stress. Here, we report discovery and functional characterization of a previously unrecognized monofunctional class I diterpene synthase (PvKSL1) via in vivo co-expression assays with different copalyl pyrophosphate (CPP) isomers, structural and mutagenesis studies, as well as genomic and transcriptomic analyses. In particular, PvKSL1 converts ent-CPP into ent-abietadiene, ent-palustradiene, ent-levopimaradiene, and ent-neoabietadiene via a 13-hydroxy-8(14)-ent-abietene intermediate. Notably, although featuring a distinct ent-stereochemistry, this product profile is near-identical to bifunctional (+)-levopimaradiene/abietadiene synthases occurring in conifer trees. PvKSL1 has three of four active site residues previously shown to control (+)-levopimaradiene/abietadiene synthase catalytic specificity. However, mutagenesis studies suggest a distinct catalytic mechanism in PvKSL1. Genome localization of PvKSL1 distant from other diterpene synthases, and its phylogenetic distinctiveness from known abietane-forming diterpene synthases, support an independent evolution of PvKSL1 activity. Albeit at low levels, PvKSL1 gene expression predominantly in roots suggests a role of diterpenoid formation in belowground tissue. Together, these findings expand the known chemical and functional space of diterpenoid metabolism in monocot crops.

20.
AoB Plants ; 16(4): plae039, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39114598

ABSTRACT

Climate change models predict increasing precipitation variability in the mid-latitude regions of Earth, generating a need to reduce the negative impacts of these changes on crop production. Despite considerable research on how cover crops support agriculture in a changing climate, understanding is limited of how climate change influences the growth of cover crops. We investigated the early development of two common cover crop species-crimson clover (Trifolium incarnatum) and rye (Secale cereale)-and hypothesized that growing them in the mixture would ameliorate stress from drought or waterlogging. This hypothesis was tested in a 25-day greenhouse experiment, where the two factors (species number and water stress) were fully crossed in randomized blocks, and plant responses were quantified through survival, growth rate, biomass production and root morphology. Water stress negatively influenced the early growth of these two species in contrasting ways: crimson clover was susceptible to drought while rye performed poorly under waterlogging. Per-plant biomass in rye was always greater in mixture than in monoculture, while per-plant biomass of crimson clover was greater in mixture under drought. Both species grew longer roots in mixture than in monoculture under drought, and total biomass of mixtures did not differ significantly from the more-productive monoculture (rye) in any water condition. In the face of increasingly variable precipitation, growing crimson clover and rye together has potential to ameliorate water stress, a possibility that should be further investigated in field experiments.

SELECTION OF CITATIONS
SEARCH DETAIL