Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters











Publication year range
1.
Comp Biochem Physiol B Biochem Mol Biol ; 275: 111021, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151662

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are part of the nuclear hormone receptor family, playing a crucial role in gene expression regulation. They serve as a connection between lipid metabolism disorders and innate immunity by being activated by fatty acids and their derivatives, facilitating signal transduction between the cell surface and nucleus. However, the specific transcriptional effects of different fatty acids (FAs) in fish are not yet fully understood. In our research, we identified and characterized PPARs in grass carp (Ctenopharyngodon idellus). The complete coding sequences of pparαa, pparαb, pparγ, pparδa, and pparδb were 1443 bp, 1404 bp, 1569 bp, 1551 bp, and 1560 bp in length, respectively. Pparα showed the highest expression in the liver, pparγ was mainly expressed in abdominal adipose tissue, and pparδ exhibited increased expression in the heart compared to other tissues. Gene localization analysis revealed that only pparδa was present in both the nucleus and cytoplasm, while the other four genes were exclusively located in the nucleus. Furthermore, our study explored the influence of various fatty acids (docosahexaenoic acid, palmitic acid, lauric acid and oleic acid at concentrations of 0, 50, 100, and 200 µM) on the transcriptional activities of different PPARs, demonstrating the diverse effects of fatty acid ligands on PPAR transcriptional activity. These results have significant implications for understanding the regulation of PPARs transcriptional activity.

2.
Foods ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672919

ABSTRACT

This study scrutinized the nutritional quality and serum biochemical indices of grass carp (Ctenopharyngodon idellus) cultivated in traditional pond intercropping (TPI) and in-pond raceway system (IPRS) aquaculture setups. The findings showed that the TPI group exhibited a superior water-holding capacity, while the IPRS showcased heightened crude lipid content and levels of textural properties such as springiness. Moreover, significant differences emerged in the fatty acid profiles, with the TPI group manifesting higher total polyunsaturated fatty acids (ΣPUFAs), EPA, DHA, and Σn-3, while the IPRS group exhibited elevated total saturated fatty acids (ΣSFAs). In terms of amino acids, valine and histidine levels were notably higher in the IPRS group, whereas lysine levels were reduced. Volatile compound analysis revealed significant variations, with the IPRS group containing more volatile substances with a better aroma, resulting in a better odor. The IPRS group performed better in serum biochemistry analysis. Additionally, grass carp in the IPRS group displayed an improved structure and greater coverage area of the visceral peritoneum, appearing lighter in color compared to the TPI group. TPI mainly influences nutritional elements; IPRSs primarily affect muscle texture, serum biochemistry, and overall health. This study aims to fill the gap in quality comparison research and provide an important scientific basis.

3.
Gene ; 899: 148140, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38185291

ABSTRACT

B-cell lymphoma-2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) and BNIP3 like (BNIP3L or NIX) play a vital role in regulating mitophagy and the intrinsic apoptosis in mammals, but their gene characterizations remain unclear in fish. Herein, bnip3, nix1 and nix2 were isolated and characterized from grass carp (Ctenopharyngodon idellus), which encode peptides of 194, 233 and 222 amino acids, respectively. As typical BH3-only proteins, grass carp BNIP3, NIX1 and NIX2 proteins contain BH3 and C-terminal transmembrane domains for inducing apoptosis. Moreover, the LC3-interacting region motif of BNIP3, NIX1 and NIX2 is also conserved in grass carp. Phylogenetic analyses also demonstrated that nix1 and nix2 may have originated from the genome duplication event. Expression pattern analysis indicated that bnip3, nix1 and nix2 were highest expressed in brain, followed by eye (bnip3) and liver (nix1 and nix2). BNIP3, NIX1 and NIX2 localized to the nucleus and the cytoplasm, with a predominant localization to mitochondria within the cytoplasm. In the present study, we found that 200 µM DHA impaired the mitochondrial function, manifested as the decreased antioxidant ability, cellular ATP content and mitochondrial membrane potential in grass carp adipocytes. In addition, the gene expression and enzyme activities of caspase family were significantly increased in 200 µM DHA group, indicating that adipocyte apoptosis was induced. Meanwhile, DHA increased the gene expression of bnip3, nix1 and nix2 in a dose-dependent manner in grass carp adipocytes. The colocalization of mitochondria and lysosomes was promoted by 200 µM DHA treatment, implying that BNIP3/NIX-related mitophagy was activated in adipocytes. Based on these findings, it can be inferred that BNIP3/NIX-related mitophagy may be involved in the adipocyte apoptosis induced by DHA in grass carp.


Subject(s)
Carps , Mitophagy , Animals , Mitophagy/genetics , Carps/genetics , Phylogeny , Apoptosis/genetics , Adipocytes/metabolism , Cloning, Molecular , Mammals/genetics
4.
Mar Biotechnol (NY) ; 26(1): 74-91, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38153607

ABSTRACT

The study aimed to compare the effects of crystalline L-lysine and L-glutamate (CAA), Lys-Glu dipeptide (KE) on the growth and muscle development of grass carp (Ctenopharyngodon idellus), and related molecular mechanisms. Five experimental diets (CR, 0.5% CAA, 1.5% CAA, 0.5% KE, 1.5% KE) containing Lys and Glu as free (Lys and Glu, CAA) dipeptide (Lys-Glu, KE) forms were prepared, respectively. A total of 450 juvenile grass carp with an initial weight of 10.69 ± 0.07 g were randomly assigned to 15 cages, and 5 treatments with 3 replicates of 30 fish each for 61 days of feeding. The results showed that the group of 0.5% KE exhibited the best growth performances according to the indicator's weight gain rate (WGR) and specific growth rate (SGR), although no statistically significant occurred among all groups; diet supplemented with 0.5% CAA significantly elevated the condition factor (CF) and viscerasomatic index (VSI) of juvenile grass carp. Diet supplemented with different Lys and Glu co-forms at different levels promoted the muscle amino acid content compared with those of CR group. Comparing with the CR group and other groups, the hardness of 0.5% CAA group significantly increased, and the springiness of 0.5% KE group excelled. Both the muscle fiber diameter and density of 0.5% KE group showed significant difference with those of the CR group, and a negative correlation between them was also observed. To uncover the related molecular mechanism of the differences caused by the different co-forms of Lys and Glu, the effect of different diets on the expressions of protein absorption, muscle quality, and antioxidation-related genes was analyzed. The results suggested that comparing with those of CR group, the dipeptide KE inhibited the expressions of genes associated with protein metabolism, such as AKT, S6K1, and FoxO1a but promoted PCNA expression, while the free style of CAA would improve the FoxO1a expression. Additionally, the muscle development-related genes (MyoD, MyOG, and Myf5) were significantly boosted in CAA co-form groups, and the expressions of fMYHCs were blocked but fMYHCs30 significantly promoted in 0.5% KE group. Finally, the effect of different co-forms of Lys and Glu on muscle antioxidant was examined. The 0.5% CAA diet was verified to increase GPX1a but obstruct Keap1 and GSTP1 expressions, resulting in enhanced SOD activity and reduced MDA levels in plasma. Collectively, the different co-forms of Lys and Glu influenced the growth of juvenile grass carp, and also the muscle development and quality through their different regulation on the protein metabolism, muscle development- and antioxidative-related genes.


Subject(s)
Antioxidants , Carps , Animals , Antioxidants/metabolism , Lysine , Glutamic Acid , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Carps/genetics , Carps/metabolism , NF-E2-Related Factor 2/metabolism , Diet/veterinary , Dipeptides/genetics , Dipeptides/metabolism , Gene Expression , Animal Feed/analysis , Fish Proteins/genetics
5.
Front Microbiol ; 14: 1269164, 2023.
Article in English | MEDLINE | ID: mdl-38029205

ABSTRACT

Introduction: Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered to be the most pathogenic aquareovirus. Productive viral infection requires extensive interactions between viruses and host cells. However, the molecular mechanisms underlying GCRV early infection remains elusive. Methods: In this study we performed transcriptome and DNA methylome analyses with Ctenopharyngodon idellus kidney (CIK) cells infected with GCRV at 0, 4, and 8 h post infection (hpi), respectively. Results: We found that at early infection stage the differentially expressed genes related to defense response and immune response in CIK cells are activated. Although DNA methylation pattern of CIK cells 8 hpi is similar to mock-infected cells, we identified a considerable number of genes that selectively utilize alternative polyadenylation sites. Particularly, we found that biological processes of cytoskeleton organization and regulation of microtubule polymerization are statistically enriched in the genes with altered 3'UTRs. Discussion: Our results suggest that alternative polyadenylation potentially contributes to GCRV early infection.

6.
Fish Physiol Biochem ; 49(6): 1229-1239, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37843716

ABSTRACT

Lipoprotein lipase (LPL) functions as a marker of adipocyte differentiation in mammals, but little is known about its role in fish adipogenesis. The aim of this research is to investigate the function of Lpl in adipocyte differentiation in fish. In this paper, we isolated and characterized lipoprotein lipase a (lpla) and lipoprotein lipase b (lplb) from grass carp (Ctenopharyngodon idellus). The complete coding sequence of lpla and lplb was 1524 bp and 1503 bp in length, coding for 507 amino acids and 500 amino acids, respectively. Both lpla and lplb mRNA were expressed in a great number of tissues. During adipogenesis, the level of lpla mRNA reached its maximum at day 2 and then dropped gradually, while the level of lplb mRNA had no significant changes, indicating that lpla and lplb may have different function in the differentiation of grass carp adipocyte. Furthermore, inhibition of lpla by inhibitor of LPL(GSK264220A) at early time points most clearly reduced adipogenesis, whereas these effects were less pronounced at later stages, suggesting that lpla predominantly affects early adipogenesis rather than late adipogenesis. Based on these findings, it can be inferred that lpla and lplb in grass carp may have distinct roles in the differentiation of grass carp adipocyte, and lpla may play an important role in the early adipogenesis rather than late adipogenesis in grass carp.


Subject(s)
Adipogenesis , Carps , Animals , Lipoprotein Lipase/genetics , Carps/genetics , Carps/metabolism , RNA, Messenger/metabolism , Amino Acids , Fish Proteins/metabolism , Mammals/genetics , Mammals/metabolism
7.
Antioxidants (Basel) ; 12(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37507906

ABSTRACT

An eight-week trial was conducted to investigate the effects of sanguinarine supplementation (600 µg and 1200 µg/kg) in high-fat (crude fat: 10%) diets (HF) on the intestinal physiological function of Ctenopharyngodon idellus (initial weight 50.21 ± 0.68 g), based on a basic diet (5% crude fat, CON), which were named HFLS and HFHS, respectively. The results showed that the HF diet significantly impaired the intestinal immune and physical barrier function, and disrupted the balance of the intestinal microbiota in grass carp. Compared to the HF diet, sanguinarine supplementation significantly improved the levels of serum C4, C3, AKP, IgA, and IgM, and enhanced the intestinal antioxidant capacity (gr, CuZnsod, gpx4, cat, gsto, and nrf2 expression were significantly up-regulated). Sanguinarine significantly down-regulated the expression of claudin-15 and up-regulated the expression of claudin-b, claudin-c, occludin, and zo-1 by inhibiting MLCK signaling molecules. Additionally, sanguinarine significantly down-regulated the expression of il-6, il-1ß, and tnf-α and up-regulated the expression of il-10, tgf-ß2, and tgf-ß1 by inhibiting NF-κB signaling molecules, thereby alleviating intestinal inflammation caused by HF diets. Furthermore, compared to the HF diet, the abundance of Fusobacterium and Cetobacterium in the HFHS diet increased significantly, while the abundance of Firmicutes and Streptococcus showed the opposite trend. In conclusion, the HF diet had a negative impact on grass carp, while sanguinarine supplementation enhanced intestinal antioxidant ability, alleviated intestinal barrier damage, and ameliorated the homeostasis of the intestinal microbiota.

8.
Dev Comp Immunol ; 146: 104746, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37257764

ABSTRACT

The polymeric immunoglobulin receptor (pIgR) have a vital function in transcytosis of polymeric immunoglobulins in order to defense against invading microorganisms, however, the regulation pathway of pIgR expression in teleosts remains unclear. In this investigation, to examine if the cytokine IFN-γ affected the expression of pIgR, the recombinant proteins of IFN-γ of grass carp was first prepared, after validating that natural pIgR expressed on grass carp (Ctenopharyngodon idellus) hepatocytes (L8824), the L8824 cells were supplemented by different recombinant IFN-γ concentrations at various times, the outcomes revealed a significant dose- and time-dependent increase in pIgR expressions at the gene and secretion component (SC) proteins levels. The levels of pIgR mRNA was measured increasing at 9 h, and increasing most significant during the 9-12 h period, the growth of SC was delayed until 24 h after IFN-γ stimulation. Moreover, protein synthesis inhibitors cycloheximide (CHX) was used to study on whether IFN-γ regulated pIgR expressions through a protein synthesis dependent pathway. Upon inhibitors CHX treatment, the expression of pIgR mRNA were inhibited significantly, and CHX treatment at any time during the first 9 h period demolished the growth in pIgR mRNA that was promoted by IFN-γ, suggesting that IFN-γ is required for the stimulation of pIgR mRNA, which needs de novo protein synthesis. All these outcomes revealed that IFN-γ could upregulate pIgR gene expression, and production of SC, and this IFN-γ stimulated pIgR expression through a protein synthesis dependent pathway, which provided evidences for IFN-γ serves as a regulator for the expression of pIgR, as well as our current knowledge of the expression of pIgR in teleost fish has been improved as a result.


Subject(s)
Carps , Receptors, Polymeric Immunoglobulin , Animals , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/metabolism , Interferon-gamma/metabolism , Carps/genetics , Carps/metabolism , Recombinant Proteins , RNA, Messenger/metabolism , Hepatocytes/metabolism , Liver/metabolism
9.
Fish Shellfish Immunol ; 137: 108745, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37054763

ABSTRACT

The polymeric immunoglobulin receptor (pIgR) is essential for controlling polymeric immunoglobulin to defend species from invading pathogens. However, the modulation pathway of pIgR expression in teleosts remains unclear. In this paper, to define that the cytokine TNF-α impacted the expression of pIgR, the recombinant proteins of TNF-α of grass carp were first prepared after approving that natural pIgR was expressed in liver cells of grass carp (Ctenopharyngodon idellus) (L8824). L8824 cells were incubated with variable amounts of recombinant TNF-α at various times, the results revealed that pIgR expressions showed a significant dose-dependent elevation at the gene and proteins, and a similar alteration trend was detected for the pIgR protein (secretory component: SC) secreted by L8824 cells into the culture supernatant. Moreover, nuclear factor kappa-B (NF-κB) inhibitors PDTC was used to study whether TNF-α regulated pIgR expressions through the NF-κB signaling pathways. L8824 cells were treated with TNF-α, inhibitor PDTC, and TNF-α + PDTC mixtures, respectively, and the levels of pIgR genes and pIgR protein in cells and SC in the culture supernatant decreased in cells treated with PDTC contrasted to the control, and subjected to reduced expression of PDTC + TNF-α reduced expression contrasted to that treated just with TNF-α, demonstrating that suppression of NF-κB obstructed the ability of TNF-α to elevate pIgR gene and pIgR protein in cells and SC in the culture supernatant. These outcomes indicated that TNF-α raised pIgR gene expression, pIgR protein, and SC creation, and this pIgR expression induced by TNF-α was modulated by complicated pathways that included NF-κB signaling mechanism, confirming TNF-α as a pIgR expression modulator and enhancing a deeper insight of the regulatory pathway for pIgR expression in teleosts.


Subject(s)
Carps , Receptors, Polymeric Immunoglobulin , Animals , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Receptors, Polymeric Immunoglobulin/genetics , Carps/genetics , Carps/metabolism , Signal Transduction , Immunologic Factors , Liver/metabolism
10.
J Sci Food Agric ; 103(1): 298-307, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-35861049

ABSTRACT

BACKGROUND: Apoptosis activation is an essential research to reveal the triggering mechanism of flesh quality deterioration. This study was aimed at explaining apoptotic mechanism of postmortem fish in terms of caspases activation, cytochrome c (cyt-c) release, B-cell lymphoma 2 (Bcl-2) and Bcl2-associated X (Bax) protein levels, transcriptional levels of its molecules, and apoptosis-inducing factor (AIF) translocation at 4 °C for 5 days. RESULTS: Activation of caspase-9, caspase-8, caspase-3 and the release of mitochondrial cyt-c were observed during storage. The decreased Bcl-2 protein levels, increased Bax protein expressions and Bax/Bcl-2 ratio were major steps for inducing apoptosis. Collectively, transcriptional regulation of Fas ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), inhibitors of apoptosis proteins (IAPs), myeloid cell leukemia-1 (Mcl-1), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) indicated that extrinsic apoptotic pathways (FasL/caspase-8/caspase-3) and intrinsic pathway [(JNK and p38 MAPK)/(Bcl-2, Bax and Mcl-1)/cyt-c/Apaf-1/caspase-9/caspase-3] were involved in apoptotic process. Mitochondrial AIF translocation to nuclear indicated that AIF mediated caspase-independent pathway. CONCLUSION: Therefore, transcriptional and translational alterations of multiple signaling molecules acted important roles in regulating apoptosis activation in postmortem process. © 2022 Society of Chemical Industry.


Subject(s)
Carps , Animals , Carps/genetics , Carps/metabolism , bcl-2-Associated X Protein/metabolism , Caspase 9/metabolism , Caspase 8/metabolism , Caspase 3/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Apoptosis , p38 Mitogen-Activated Protein Kinases/metabolism , Muscles/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
11.
Fish Shellfish Immunol ; 130: 103-113, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36044935

ABSTRACT

Alginate oligosaccharide (AOS) is widely used in agriculture because of its many excellent biological properties. However, the possible beneficial effects of AOS and their underlying mechanisms are currently not well known in grass carp (Ctenopharyngodon idellus). Here, grass carp were fed diets supplemented with 5, 10, or 20 g/kg AOS for six weeks. HE and PAS staining showed that the diets of AOS significantly increased the number of goblet cells in the intestinal. According to transcriptome and quantitative real-time PCR (qRT-PCR) data, AOS-supplemented diets activated the expression of fat metabolism-related pathways and genes. The 16S rRNA sequencing results showed that supplementation with AOS affected the distribution and abundance of the gut bacterial assembly. qRT-PCR and activity assays revealed that the AOS diets significantly increased the antioxidant resistance in gut of grass carp, and down-regulated the expression of inflammatory and up-regulated anti-inflammatory cytokines. Finally, the Aeromonas hydrophila infection assay suggested that the mortality in the groups fed dietary AOS was slightly lower than that in the control. Therefore, supplementing the diet of grass carp with an appropriate amount of AOS can improve fat metabolism and immune responses and alter the intestinal bacterial community, which may help to fight bacterial infection.


Subject(s)
Carps , Fish Diseases , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Aeromonas hydrophila/physiology , Alginates , Animal Feed/analysis , Animals , Antioxidants/metabolism , Carps/metabolism , Cytokines , Diet/veterinary , Fish Proteins/genetics , Immunity, Innate , Oligosaccharides , RNA, Ribosomal, 16S
12.
Ecotoxicol Environ Saf ; 237: 113510, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35468440

ABSTRACT

Nitrite in the aquatic environment potentially disturbs thyroid hormone (TH) homeostasis in peripheral tissues, but little is known about TH metabolism in the intestine. This study investigated the serum concentrations of THs and thyroid-stimulating hormone (TSH) as well as the activity of intestinal iodothyronine deiodinases (IDs) of grass carp (Ctenopharyngodon idellus) exposed to various concentrations of nitrite (0, 8, 25, or 50 mg/L) for 96 h. Acute nitrite exposure significantly altered the triiodothyronine (T3) levels and the morphology of thyroid follicles at 96 h. Thyroxine (T4), free T4 levels and intestinal IDs activities showed an increase trend under nitrite stress. After 96 h exposure, nitrite down-regulated the expressions levels of intestinal Akt1 protein, sugar transporter genes, and thyroid hormone receptor (TR) signaling pathway genes except for tr É‘1 and tr É‘2. Moreover, the expressions levels of pparγ, cpt1α, cd36, fabp2 and fatp4 were down-regulated, whereas fabp6 and lpl were up-regulated in the 50 mg/L exposure group at 96 h. The results indicate that acute nitrite exposure has the potential to disturb the homeostasis of intestinal TH metabolism, which in turn alters TRs genes transcription, down-regulates sugar transporter activities, and promotes the energy expenditure in gut of grass carp.


Subject(s)
Carps , Gastrointestinal Hormones , Animals , Carps/metabolism , Gastrointestinal Hormones/metabolism , Homeostasis , Iodide Peroxidase/genetics , Nitrites , Sugars/metabolism , Thyroid Gland/metabolism , Thyroid Hormones/metabolism , Thyroxine , Triiodothyronine/metabolism
13.
J Texture Stud ; 53(2): 277-286, 2022 04.
Article in English | MEDLINE | ID: mdl-35229305

ABSTRACT

Dried egg white powder (EWP) and purified ovalbumin (OVA, 98%) were used as supplements to improve grass carp (GC) fish balls (FB) quality. The effects of EWP and/or OVA contents on the gel strength, water holding capacity (WHC), moisture migration and distribution, and rheological properties of GC-FB, as well as on myofibrillar protein (MfP) structures in the GC-FB were evaluated. The results showed that with the increase of EWP addition from 0 to 4% (w/w), the gel strength, and WHC of the GC-FB samples were increased from 34.28 to 66.63 N × mm, and 83.02 to 88.36%, respectively, but the increases were insignificant between 3 and 4% EWP-added GC-FBs (p > .05). As the EWP increased, the T2 relaxation time shifted toward lower values, indicating a general decline in water mobility. The effects of EWP on rheological properties were insignificant. Addition of OVA and/or EWP led to changes in secondary structural units in the FB, with α-helix (27.53%) reaching the highest value in OVA-added GC-FB, ß-sheet (46.07%) reaching the highest value in GC-FB, and ß-turn (33.54%) reaching the highest value in EWP-added GC-FB, respectively. Raman spectroscopy revealed that OVA-added GC-FB had the lowest hydrophobic interlinkages. Protein pattern analysis suggested that the OVA (1.58%) might contribute to the decrease in the myosin heavy chain band intensity through cross-linked with MfP. These results suggested that EWP could improve the quality of GC-FBs and OVA played an important role with MfP gelation.


Subject(s)
Carps , Egg Proteins , Animals , Egg Proteins/chemistry , Eggs , Hydrophobic and Hydrophilic Interactions , Protein Conformation
14.
Food Chem ; 377: 132000, 2022 May 30.
Article in English | MEDLINE | ID: mdl-34999460

ABSTRACT

The aim of this study was to investigate the digestion and fermentation properties of fish protein fermented by Monascus. Semi-dried fish was fermented by applying Monascus purpureus Went M 3.439. Our results show that the Monascus fermentation of the fish protein enriched the free amino acids and achieved a relatively higher glutamate content than the control group. The Monascus treatment promoted the decomposition of the fish protein during in vitro digestion, reduced the ammonia and indole content and tended to increase the propionic acid content during in vitro fermentation. The Monascus treatment considerably changed the gut microbiota composition, and particularly increased the relative abundance of Parabacteroides in the in vitro fermentation model of human distal colon. Consumption of Monascus fermented fish protein could result in positive changes in fermentation metabolites and gut microbiota, which brings potential health benefits.


Subject(s)
Gastrointestinal Microbiome , Monascus , Animals , Digestion , Fermentation , Fish Proteins/metabolism , Humans , Monascus/metabolism
15.
Microb Pathog ; 165: 105386, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35031411

ABSTRACT

This study aims to highlight the effects (8 weeks) of dietary antimicrobial peptides (AMPs, a compound of 6 kDa and 5 kDa from intestine) on intestinal morphological functions and health status in grass carp (Ctenopharyngodon idellus). Fish were supplemented with various gradient concentrations of AMPs, including M0 (0 mg/kg), M1 (100 mg/kg), M2 (200 mg/kg), M3 (400 mg/kg), M4 (800 mg/kg) and M5 (1600 mg/kg). Our results showed that amylase, lipase, chymotrypsin enzymatic levels, and total antioxidant capacity (T-AOC) were significantly increased (p < 0.05), while malondialdehyde (MDA) content was significantly decreased in the intestines of the AMP treated groups compared to the M0. Histological analysis revealed villus height and crypt depth of foregut and midgut in the M4 group were significantly different (p < 0.05) compared to the M0. In the M3 group, the gene expression levels of IL-1ß were significantly up-regulated, while levels of IL10 and TGF-ß were significantly down-regulated than other treated and control groups. The abundance of Firmicutes was significantly increased (p < 0.05), while the Planctomycetes abundance was decreased at phylum level in M1-M5 groups. Subsequent to the AMP treatment, fish were injected with Aeromonas. hydrophila to assess disease resistant potential. In A. hydrophila injected M3-group, the gene expressions of IL-1ß, IL8, and TNF-α were significantly down-regulated while that of TGF-ß was significantly up-regulated, and IL10 showed no significant difference compared to the control. Further, AMPs also increased the abundance of the Acidobacteria, Proteobacteria, and Patescibacteria, and decreased the abundance of the Fusobacteria and Firmicutes. Therefore, dietary AMPs (400-800 mg/kg) boosted intestinal health by promoting intestinal morphology, digestive and antioxidant capacities, immunity, and intestinal microbiota in C. idellus.


Subject(s)
Carps , Fish Diseases , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/physiology , Animal Feed/analysis , Antimicrobial Peptides , Antioxidants/metabolism , Carps/metabolism , Diet/veterinary , Disease Resistance , Fish Diseases/microbiology , Fish Proteins/genetics , Gram-Negative Bacterial Infections/microbiology , Interleukin-10 , Intestines , Signal Transduction , Transforming Growth Factor beta
16.
Gene ; 809: 146035, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34688817

ABSTRACT

To investigate the variations in gene expression in grass carp under high-temperature stress, two libraries were constructed from a high-temperature treatment group (T33) and a control group (T27) and sequenced using Illumina sequencing technology. The results showed that sequencing generated a total of 279,398,348 raw reads, approximately 40.7-51.8 M clean reads were obtained from each library, and the percentage of uniquely mapped transcripts ranged from 80.13 to 84.58%. A total of 260 differentially expressed genes (DEGs) were identified under high-temperature stress, among which 84 genes were upregulated and 176 genes were downregulated. Ten DEGs were randomly selected for quantitative RT-PCR (qRT-PCR) analysis, and the results confirmed that the transcriptome analysis was reliable. Furthermore, the DEGs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the results showed that most of the DEGs were involved in protein, lipid and carbohydrate metabolism. Moreover, plasma urea nitrogen (Urea) and triglyceride (TG) contents were significantly lower in the high-temperature treatment group than in the control group (P < 0.01). In summary, these results indicated that high-temperature stress could inhibit protein synthesis, decrease fatty acid synthesis, and weaken carbohydrate metabolism in juvenile grass carp.


Subject(s)
Carps/genetics , Carps/metabolism , Fish Proteins/genetics , Animals , Aquaculture , Blood Urea Nitrogen , Carps/blood , Fish Proteins/metabolism , Gene Expression Profiling , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Temperature , Thermotolerance/genetics
17.
Dev Comp Immunol ; 126: 104207, 2022 01.
Article in English | MEDLINE | ID: mdl-34273355

ABSTRACT

Infectious bacterial and viral diseases that cause hemolysis are considered life-threatening to grass carp (Ctenopharyngodon idellus), which is a species used in aquaculture worldwide. After heme and hemeproteins (Hb) are released as a result of hemolysis, the effect of excess Hb and heme on tissues remains to be characterized. To decipher the mechanisms, after incubation with Hb, we showed that lipopolysaccharide (LPS), Hb, and heme increased the cytotoxicity and secretion of inflammatory cytokines such as interleukin (IL)-6, chemokine (C-C motif) ligand 1 (CCL1), tumor necrosis factor (TNF)-α, IL-6, and IL-1ß in vitro, which was due to stimulation of the expression of innate immune receptors, such as nucleotide-binding oligomerization domain (NOD2), toll-like receptor 2 (TLR2), TLR 4, and TLR3. The formation of reactive oxygen species (ROS) and the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB were important for increasing the cytokine production to induce heme, Hb, and LPS. Moreover, we confirmed that after LPS, Hb, and heme challenge, superoxide dismutase (SOD) and glutathione (GSH) synthetase (GSS) also caused remarkable destruction. However, catalase (CAT) and heme oxygenase-1 (HO-1) were strongly activated. In summary, our research findings present a framework through which heme and Hb concentrations amplify the secretions of inflammatory cytokines, which are induced by pattern recognition receptor (PRR) activation and present possible paths for immune intervention during infection with viral diseases and hemolytic bacterial.


Subject(s)
Carps , Hemeproteins , Animals , Carps/metabolism , Immunity, Innate , Kidney/metabolism , Lipopolysaccharides , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism
18.
Int J Biol Macromol ; 193(Pt A): 847-855, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34740680

ABSTRACT

Herein, the effects of chitosan (CH) coating with different water-soluble polyphenol extracts (pomegranate peel (PPE), grape seed (GSE) and green tea (GTE)) through vacuum impregnation on the quality retention and microflora of refrigerated grass carp fillets were studied. Generally, the quality degradation of carp fillets was remarkably alleviated using coatings when compared to the control. As suggested by microbial enumeration and high-throughput sequencing, protective coatings were conductive to inhibit bacteria growth, especially spoilage bacteria of Pseudomonas. As a result, the indicator related to bacteria such as total volatile basic nitrogen (TVB-N) and K value had lower levels in coating groups than that in control. In addition, coating also slowed down the deterioration of physical properties of color, texture and water holding capacity in fillets, giving fillets a better edible quality. By contrast, the fillets treated by composite coatings had better quality during storage when compared to chitosan coating alone, and a relatively good synergistic antibacterial effect between chitosan and extracts was also observed, especially for CH-GTE. Overall, the best performance to inhibit quality deterioration was recorded in CH-GTE, with the lowest values of TVB-N, TBARS, K-value and water loss, and highest values of shear force and sensory preference among groups.


Subject(s)
Carps/microbiology , Chitosan/pharmacology , Food Preservation/methods , Food Storage/methods , Seafood/microbiology , Animals , Bacteria/drug effects , Taste/drug effects
19.
Saudi J Biol Sci ; 28(11): 6653-6673, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34305428

ABSTRACT

Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.

20.
Fish Physiol Biochem ; 47(5): 1489-1505, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34331171

ABSTRACT

Grass carp (Ctenopharyngodon idellus) is one of the most essential fishing species in China. The bait for this fish is rapidly developing. However, the study on the attractants in the bait for this fish lacks. This study was designed to systematically investigate the effects of 16 kinds of test substances on the perspective of behaviour and physiology of grass carp by using different kinds of methods, including behavioral tests (maze test and biting-balls test) and electro-olfactogram (EOG). Our experiment's idea is mainly to imitate: in addition to vision, fish in nature also use smell to find food and finally swallow under the action of olfaction, taste, and other sensory systems. Firstly, the behavioral maze test was used to screen the attractive or suppressive effect of 16 test substances on grass carp, and the electronic olfactory recording method was used to further evaluate the olfactory response of grass carp to the eight stimuli selected from the maze test. Then, the best concentrations of these eight stimuli and their combination were investigated by the biting-balls test to compound a formula with the strongest appetite for grass carp. The results of behavioral maze test showed that dimethyl-ß-propiothetin (DMPT), dimethylthetin (DMT), glycine, taurine, L-glutamic, L-alanine, L-proline, and L-arginine have different degrees of usefulness in attracting grass carp. The electro-olfactogram recoding showed that the EOG response of grass carp to the stimuli is a transient biphasic potential change and all of the eight stimuli could induce the EOG response of grass carp. The biting-balls test showed that glycine, L-glutamic, and L-arginine at 10-2 mol/L had significant feeding stimulation and DMT at 10-1 mol/L had significant feeding stimulation than the other groups. Finally, formula 9 composed of DMT, glycine, L-glutamic acid, and L-arginine has the greatest attraction for grass carp. The results of this study verified the attractive effect of some amino acids and other chemicals on grass carp fishing, and would provide support for the production of specific grass carp attractants.


Subject(s)
Amino Acids/metabolism , Carps , Animals , Arginine , Carps/physiology , Glycine , Hunting
SELECTION OF CITATIONS
SEARCH DETAIL