Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36672738

ABSTRACT

The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.

2.
Front Oncol ; 12: 863329, 2022.
Article in English | MEDLINE | ID: mdl-35677155

ABSTRACT

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

3.
Oncotarget ; 8(13): 20525-20542, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28423528

ABSTRACT

Although breast cancer (BrCa) may be detected at an early stage, there is a shortage of markers that predict tumor aggressiveness and a lack of targeted therapies. Histone chaperone FACT, expressed in a limited number of normal cells, is overexpressed in different types of cancer, including BrCa. Recently, we found that FACT expression in BrCa correlates with markers of aggressive BrCa, which prompted us to explore the consequences of FACT inhibition in BrCa cells with varying levels of FACT.FACT inhibition using a small molecule or shRNA caused reduced growth and viability of all BrCa cells tested. Phenotypic changes were more severe in "high- FACT" cells (death or growth arrest) than in "low-FACT" cells (decreased proliferation). Though inhibition had no effect on the rate of general transcription, expression of individual genes was changed in a cell-specific manner. Initially distinct transcriptional profiles of BrCa cells became similar upon equalizing FACT expression. In "high-FACT" cells, FACT supports expression of genes involved in the regulation of cell cycle, DNA replication, maintenance of an undifferentiated cell state and regulated by the activity of several proto-oncogenes. In "low-FACT" cells, the presence of FACT reduces expression of genes encoding enzymes of steroid metabolism that are characteristic of differentiated mammary epithelia.Thus, we propose that FACT is both a marker and a target of aggressive BrCa cells, whose inhibition results in the death of BrCa or convertion of them to a less aggressive subtype.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , Transcriptional Elongation Factors/genetics , Biomarkers, Tumor , Blotting, Western , Breast Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Female , Flow Cytometry , High Mobility Group Proteins/metabolism , Humans , Oligonucleotide Array Sequence Analysis , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Transcriptional Elongation Factors/metabolism
4.
Pediatr Blood Cancer ; 64(4)2017 04.
Article in English | MEDLINE | ID: mdl-27650817

ABSTRACT

BACKGROUND: CBL0137 is a novel drug that modulates FAcilitates Chromatin Transcription (FACT), resulting in simultaneous nuclear factor-κB suppression, heat shock factor 1 suppression and p53 activation. CBL0137 has demonstrated antitumor effects in animal models of several adult cancers and neuroblastoma. PROCEDURES: CBL0137 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro cell line panel at concentrations ranging from 1.0 nM to 10.0 µM and against the PPTP in vivo solid tumor xenograft and acute lymphocytic leukemia (ALL) panels at 50 mg/kg administered intravenously weekly for 4 weeks. RESULTS: The median relative IC50 (rIC50 ) value for the PPTP cell lines was 0.28 µM (range: 0.13-0.80 µM). There were no significant differences in rIC50 values by histotype. CBL0137 induced significant differences in event-free survival (EFS) distribution compared to control in 10 of 31 (32%) evaluable solid tumor xenografts and in eight of eight (100%) evaluable ALL xenografts. Significance differences in EFS distribution were observed in four of six osteosarcoma lines, three of three rhabdoid tumor lines and two of six rhabdomyosarcoma lines. No objective responses were observed among the solid tumor xenografts. For the ALL panel, one xenograft achieved complete response and four achieved partial response. CONCLUSIONS: The most consistent in vivo activity for CBL0137 was observed against ALL xenografts, with some solid tumor xenograft lines showing tumor growth delay. It will be important to relate the drug levels in mice at 50 mg/kg to those in humans at the recommended phase 2 dose.


Subject(s)
Apoptosis/drug effects , Carbazoles/pharmacology , Cell Proliferation/drug effects , Neoplasms, Experimental/drug therapy , Adult , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Mice, SCID , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL