Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 680
Filter
1.
bioRxiv ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39314315

ABSTRACT

American elderberry (Sambucus nigra subsp. canadensis) is a rapidly emerging new perennial crop for Missouri, recognized for its high level of bioactive compounds with significant health benefits, including antibacterial, antiviral, and antioxidant properties. A high-throughput screening assay combined with untargeted metabolomics analysis was utilized on American elderberry juice from 21 genotypes to explore and characterize these bioactive compounds. Our metabolomics study has identified 32 putative bioactive compounds in the American Elderberry juices. An array of high-throughput screening bioassays was conducted to evaluate 1) total antioxidant capacity, 2) activation of antioxidant response elements (ARE), 3) antiviral activity, and 4) antibacterial activity of the putatively identified compounds. Our results revealed that 14 of the 32 American elderberry compounds exhibited strong antioxidant activity. Four compounds (isorhamnetin 3-O-glucoside, kaempferol, quercetin, and naringenin) activated ARE activity and were found to be non-cytotoxic to cells. Notably, six of the 32 compounds demonstrated significant antiviral activity in an in vitro TZM-bl assay against two strains of HIV-1 virus, CXCR4-dependent NL4-3 virus and CCR5-dependent BaL virus. Luteolin showed the most potent anti-HIV activity against the NL4-3 virus (IC50 = 1.49 µM), followed by isorhamnetin (IC50 = 1.67 µM). The most potent anti-HIV compound against the BaL virus was myricetin (IC50 = 1.14 µM), followed by luteolin (IC50 = 4.38 µM). Additionally, six compounds were found to have antibacterial activity against gram-positive bacteria S. aureus, with cyanidin 3-O-rutinoside having the most potent antibacterial activity in vitro (IC50 = 2.9 µM), followed by cyanidin 3-O-glucoside (IC50 = 3.7 µM). These findings support and validate the potential health benefits of compounds found in American elderberry juices and highlight their potential for use in dietary supplements as well as innovative applications in health and medicine.

2.
Molecules ; 29(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203025

ABSTRACT

Raspberry plants need intensive anti-fungal protection. A solution to this problem could be the application of an ozonation process. For this purpose, a technical solution was proposed and implemented in raspberry plant production. The proposal suggests replacing 25% of standard fungicide treatments with ozonation. It was demonstrated that the use of ozone under the proposed conditions made it possible to maintain stable parameters of chlorophyll content and fluorescence (no significant differences), but the intensity of gas exchange was increased. The greatest differences were observed in the second measurement period (T2), when the plants were in the stage of most active development. Additionally, the content and profile of low-molecular-weight antioxidants and the microbial load were determined in the collected fruits. In periods T2 and T3, the proposed method caused a reduction reaching ~2 log cfu g-1 in the microbial content of raspberry fruits. It was shown that ozone treatment intensified the biosynthesis of low-molecular-weight antioxidants in fruit (increasing the total polyphenol content by more than 20%). The proposed scheme allows a 25% reduction in standard fungicide treatments while maintaining the health of cultivated raspberry plants. The reduction in fungicide use aligns with the EU regulations and produces fruit with better quality.


Subject(s)
Antioxidants , Fungicides, Industrial , Ozone , Rubus , Ozone/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Rubus/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fruit/chemistry , Chlorophyll/chemistry
3.
Food Chem X ; 23: 101698, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39211764

ABSTRACT

Peach fruit is an important natural source of phenolic compounds that are well-known to have health benefits, but their metabolic basis remain elusive. Here, we report on phenolic compounds accumulation and antioxidant activity of ripe fruits in peach. A considerable variation in phenolic compounds content was observed among peach germplasm, with significantly higher levels detected in red-fleshed peaches compared to non-red-fleshed peaches. Antioxidant activity of crude extracts from ripe fruits showed significant differences among peach germplasm, with red-fleshed peaches having the strongest antioxidant activity. Intriguingly, it was observed that total phenolics instead of anthocyanins were strongly associated with antioxidant activity. Phenolic compounds content and antioxidant activity showed dynamic changes throughout fruit development, and these were much higher in the peel than in the flesh. Metabolomic analysis unveiled a coordinated accumulation of anthocyanins as well as key components of flavonoids and phenolic acids, which endows red-fleshed peaches with superior antioxidant activity.

4.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39204144

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the aging population. An accumulation of amyloid plaques and neurofibrillary tangles causes degeneration of neurons, leading to neuronal cell death. The anthocyanin-rich fraction of black rice (Oryza sativa L. variety "Luem Pua") bran (AFBRB), extracted using a solution of ethanol and water and fractionated using Amberlite XAD7HP column chromatography, contains a high anthocyanin content (585 mg of cyanidin-3-O-glucoside and 24 mg of peonidin-3-O-glucoside per gram of the rich extract), which has been found to reduce neurodegeneration. This study focused on the neuroprotective effects of AFBRB in Aß25-35-induced toxicity in the human neuroblastoma cell line (SK-N-SH). SK-N-SH was exposed to Aß25-35 (10 µM) to induce an AD cell model in vitro. Pretreatment with AFBRB (0.1, 1, or 10 µg/mL) or C3G (20 µM) was conducted for 2 h prior to the treatment with Aß25-35 (10 µM) for an additional 24 h. The results indicate that AFBRB can protect against the cytotoxic effect of Aß25-35 through attenuation of intracellular ROS production, downregulation of the expression of the proteins Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3, upregulation of the expression of Bcl-2 in the mitochondrial death pathway, and reduction in the expression of the three major markers of ER stress pathways in similar ways. Interestingly, we found that pretreatment with AFBRB significantly alleviated Aß-induced oxidative stress, ER stress, and apoptosis in SK-N-SH cells. This suggests that AFBRB might be a potential therapeutic agent in preventing neurodegenerative diseases.

5.
Food Res Int ; 192: 114802, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147501

ABSTRACT

Ulcerative colitis is a public health issue with a rising worldwide incidence. It has been found that current medications for treating UC may cause varying degrees of damage to male fertility. Our previous study demonstrated that cyanidin-3-O-glucoside (C3G) treatment could effectively restore reproductive damage in a mouse model of DSS induced colitis. However, the underlying mechanism of C3G alleviates UC induced male reproductive disorders remain scarce. The aim of this study is to discover the molecular mechanisms of C3G on the amelioration of UC stimulated reproductive disorders. The targeted genes toward UC-induced reproductive injury upon C3G treatments were explored by transcriptomic analysis. Hematological analysis, histopathological examination, and real time transcription-polymerase chain reaction (RT-PCR) analysis were applied for conjoined identification. Results showed that C3G may effectively target for reducing pro-inflammatory cytokine IL-6 in testis through cytokine-cytokine receptor interaction pathway. Transcriptome sequencing found that a series of genetic pathways involved in the protective effects of C3G on male reproduction were identified by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Further results presented that C3G could effectively restore mRNA expression levels of Ly6a and Col1a1, closely linked with UC induced male reproductive damage pathways. Sufficient results implied that Ly6a and Col1a1 may be treated as the promising therapeutic targets for the mechanism of C3G in treating UC induced reproductive impairment. C3G administration might be an effective dietary supplementation strategy for male reproduction improvement.


Subject(s)
Anthocyanins , Cytokines , Glucosides , Transcriptome , Male , Animals , Anthocyanins/pharmacology , Glucosides/pharmacology , Mice , Cytokines/metabolism , Cytokines/genetics , Testis/drug effects , Testis/metabolism , Testis/pathology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Gene Expression Profiling , Disease Models, Animal , Infertility, Male/drug therapy , Reproduction/drug effects
6.
J Sci Food Agric ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179519

ABSTRACT

BACKGROUND: Anthocyanins are susceptible to degradation due to external factors. Despite the potential for improved anthocyanin stability with whey protein isolate (WPI), the specific effects of individual components within WPI on the stability of anthocyanins have yet to be studied extensively. This study investigated the interaction of WPI, ß-lactoglobulin (ß-Lg), bovine serum albumin (BSA), and lactoferrin (LF) with cyanidin-3-O-glucoside (C3G), and also considered their effects on stability. RESULTS: Fluorescence analysis revealed static quenching effects between C3G and WPI, ß-Lg, BSA, and LF. The binding constants were 1.923 × 103 L · mol⁻¹ for WPI, 24.55 × 103 L · mol⁻¹ for ß-Lg, 57.25 × 103 L · mol⁻¹ for BSA, and 1.280 × 103 L · mol⁻¹ for LF. Hydrogen bonds, van der Waals forces, and electrostatic attraction were the predominant forces in the interactions between C3G and WPI and between C3G and BSA. Hydrophobic interaction was the main binding force in the interaction between C3G and ß-Lg and between C3G and LF. The binding of C3G with WPI, ß-Lg, BSA, and LF was driven by different thermodynamic parameters. Enthalpy changes (∆H) were -38.76 kJ · mol⁻¹ for WPI, -17.59 kJ · mol⁻¹ for ß-Lg, -16.09 kJ · mol⁻¹ for BSA, and 39.50 kJ · mol⁻¹ for LF. Entropy changes (∆S) were -67.21 J · mol⁻¹·K⁻¹ for WPI, 3.72 J · mol⁻¹·K⁻¹ for ß-Lg, 37.09 J · mol⁻¹·K⁻¹ for BSA, and 192.04 J · mol⁻¹·K⁻¹ for LF. The addition of C3G influenced the secondary structure of the proteins. The decrease in the α-helix content suggested a disruption and loosening of the hydrogen bond network structure. The presence of proteins enhanced the light stability and thermal stability (stability in the presence of light and heat) of C3G. In vitro simulated digestion experiments demonstrated that the addition of proteins led to a delayed degradation of C3G and to improved antioxidant capacity. CONCLUSION: The presence of WPI and its components enhanced the thermal stability, light stability, and oxidation stability of C3G. Preheated proteins exhibited a more pronounced effect than unheated proteins. These findings highlight the potential of preheating protein at appropriate temperatures to preserve C3G stability and bioactivity during food processing. © 2024 Society of Chemical Industry.

7.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097751

ABSTRACT

BACKGROUND: Cyanidin-3-O-glucoside (C3G), is an anthocyanin mainly found in berries, and can also be produced by microorganisms. It has been traditionally used as a natural coloring agent for decades. Recently, it has been investigated for its high antioxidant activity and anti-cancer attributes. C3G has low bioavailability and is sensitive to oxidation and gastric pH; therefore, it is encapsulated in nanoliposomes to enhance its bio-availability, targeted delivery- and efficacy against chronic disease. SCOPE AND APPROACH: In this review, the role of C3G nanoliposomes against major chronic diseases has been discussed. The focus was on research findings and the mechanism of action to affect the proliferation of cancer, neuro disease and cardiovascular problems. It also discussed the formulation of nanoliposomes, their role in nutraceutical delivery and enhancement in C3G bioavailability. KEY FINDINGS AND CONCLUSIONS: Data suggested that nanoliposomes safeguard C3G, enhance bioavailability, and ensure safe, adequate and targeted delivery. It can reduce the impact of cancer and inflammation by inhibiting the ß-catenin/O6-methylguanine-DNA methyltransferase (MGMT) pathway and upregulating miR-214-5p. Formation of C3G nanoliposomes significantly enhances the nutraceutical efficacy of C3G against major chronic disease therefore, C3G nanoliposomes might be a future-based nutraceutical to treat major chronic diseases, including cancer, neuro problems and CVD, but challenges remain in finding correct dose and techniques to maximize its efficacy.

8.
Food Chem X ; 23: 101645, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113736

ABSTRACT

The instability of anthocyanins significantly reduces their bioavailability as food nutrients. This proof-of-concept study aimed to develop efficient carriers for anthocyanins to overcome this challenge. Characterization of the hydrogels via SEM (scanning electron microscope) and rheological analysis revealed the formation of typical gel structures. MTT (methyl thiazolyl tetrazolium) and hemolysis assays confirmed that their high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins by pH-responsive hydrogels. Stability studies further validated the effect of peptide hydrogels in helping anthocyanin molecules withstand factors such as gastric acid, high temperatures, and heavy metals. Subsequently, responsive studies in simulated gastric (intestinal) fluid demonstrated that the pH-responsive peptide hydrogels could protect anthocyanin molecules from gastric acid while achieving rapid and complete release in intestinal fluid environments. These results indicate that these peptide hydrogels could stabilize anthocyanins and facilitate their controlled release, potentially leading to personalized delivery systems.

9.
J Food Sci ; 89(8): 4899-4913, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980988

ABSTRACT

Nonenzymatic glycosylation of proteins can generate advanced glycosylation end products, which are closely associated with the pathogenesis of certain chronic physiological diseases and aging. In this study, we characterized the covalent binding of cyanidin-3-glucoside (C3G) to bovine serum albumin (BSA) and investigated the mechanism by which this covalent binding inhibits the nonenzymatic glycosylation of BSA. The results indicated that the covalent interaction between C3G and BSA stabilized the protein's secondary structure. Through liquid chromatography-electrospray ionization tandem mass spectrometry analysis, we identified the covalent binding sites of C3G on BSA as lysine, arginine, asparagine, glutamine, and cysteine residues. This covalent interaction significantly suppressed the nonenzymatic glycosylation of BSA, consequently reducing the formation of nonenzymatic glycosylation products. C3G competitively binds to nonenzymatic glycosylation sites (e.g., lysine and arginine) on BSA, thereby impeding the glycosylation process and preventing the misfolding and structural alterations of BSA induced by fructose. Furthermore, the covalent attachment of C3G to BSA preserves the secondary structure of BSA and hinders subsequent nonenzymatic glycosylation events.


Subject(s)
Anthocyanins , Glucosides , Serum Albumin, Bovine , Glycosylation , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Anthocyanins/chemistry , Anthocyanins/metabolism , Glucosides/metabolism , Glucosides/chemistry , Animals , Binding Sites , Cattle , Protein Structure, Secondary , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/metabolism , Protein Binding , Tandem Mass Spectrometry , Spectrometry, Mass, Electrospray Ionization
10.
Nat Prod Res ; : 1-5, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021079

ABSTRACT

Endometritis is a common disease that endangers human and animal health. Cyanidin-3-O-glucoside (C3G), a kind of anthocyanin, exists in a variety of plants and shows many biological activities. Here, we investigated the effect and mechanism of C3G on LPS-induced endometritis in mice. The results showed that C3G significantly decreased wet to dry weight (W/D) ratio of uterine, improved uterine pathological injury, and inhibited MPO activity. Further mechanism investigation showed that the activation of NFκB pathway and the levels of TNF-a, IL-1ß, and IL-6 were significantly suppressed after C3G treatment. Conversely, C3G promoted LPS-induced the activation of the PPARγ/ABCA1 pathway. Interestingly, the anti-inflammatory effect of C3G was significantly weakened by GW9662, a PPARγ inhibitor. In addition, the anti-oxidative stress effect of C3G was also found. For the first time, our results showed that treatment with C3G might be a new strategy for treating endometritis.

11.
J Agric Food Chem ; 72(30): 16790-16800, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39036896

ABSTRACT

Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.


Subject(s)
Anthocyanins , Glucosides , Anthocyanins/chemistry , Anthocyanins/metabolism , Humans , Glucosides/chemistry , Glucosides/metabolism , Hep G2 Cells , HeLa Cells , Protein Binding , Proteins/chemistry , Proteins/metabolism
12.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890868

ABSTRACT

Sweet potatoes (Ipomoea batatas) are highly profitable, contribute to food security, and their leaves rich in phytonutrients. This study examined the optimal leaf harvesting stage by harvesting newly formed leaves (leaves 1 to 5) to achieve the highest concentration of carotenoids, phenolic compounds, antioxidant properties and mineral content. Leaves of five purple-fleshed sweet potato genotypes '2019-11-2' and '2019-1-1', 'Purple-purple', and from the USA '08-21P' and '16-283P' were harvested based on tuber life cycle [vegetative 8 weeks after planting (VS-8WAP), tuber initiation (TIS-12WAP), and tuber maturation phases (TMS-16WAP)]. At the 8WAP stage, leaves of genotype '2019-11-2' had the highest concentrations of cyanidin-caffeoyl-sophoroside-glucoside (17.64 mg/kg), cyanidin-caffeoyl-feruloyl-sophoroside-glucoside (41.51 mg/kg), peonidin-caffeoyl-hydroxybenzoyl-sophoriside-glucoside (45.25 mg/kg), and peonidin caffeoyl-feruloyl-sophoriside-glucoside (24.47 mg/kg), as well as antioxidant scavenging activity. In contrast, 'Purple-purple' harvested at TIS-12WAP showed the highest concentration of caffeoylquinic acid derivatives. Zeaxanthin, lutein, all trans-ß-carotene, and cis-ß-carotene are the most abundant carotenoids in genotype '08-21P' at VS-8WAP. As a result, local genotypes '2019-11-2' harvested at 8WAP and 'Purple-purple' harvested at 12WAP are potential sources of anthocyanins and caffeoylquinic acid derivatives. Conversely, USA's genotype '08-21P' at the VS-8WAP stage is an excellent source of carotenoids. The leaves of USA's '08-21P' genotype and the local '2019-11-2' genotype at TMS-16WAP exhibited the highest content of Fe and Mn, respectively. The study identified the optimal leaf stage for consumption of leaves and for use as a functional ingredient.

13.
Toxicol In Vitro ; 99: 105873, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851601

ABSTRACT

Açaí (Euterpe oleracea MART) is a fruit of great importance for the Amazon region in nutritional, cultural and socioeconomic terms. In recent years, açaí has been the subject of several studies due to its beneficial properties for health, including effects against tumor cells. Therefore, the present work aimed to evaluate in vitro the genotoxic and cytotoxic effects of the clarified extract of açaí juice in a human metastatic gastric cancer cell line (AGP01 cells). For comparison purposes, a non-transformed cell line of African green monkey renal epithelial cells (VERO cells) was used. The viability assay by resazurin reduction, the comet assay, the determination of cell death by differential fluorescent dyes and the wound healing migration assay were performed. A reduction in viability was observed only in the AGP01 line within 72 h. There was no genotoxic damage or cell death (through apoptosis or necrosis) in any of the cell lines. However, açaí extract induced motility reduction in both cell lines. The reduction in cell viability and the induction of the anti-migratory effect in the AGP01 cell line opens perspectives for exploring the potential of açaí as an adjuvant in the treatment of gastric cancer.


Subject(s)
Cell Survival , DNA Damage , Euterpe , Plant Extracts , Stomach Neoplasms , Euterpe/chemistry , Cell Survival/drug effects , Animals , Humans , Stomach Neoplasms/drug therapy , Plant Extracts/toxicity , Plant Extracts/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , Chlorocebus aethiops , Cell Movement/drug effects , Comet Assay , Vero Cells
14.
Future Sci OA ; 10(1): FSO982, 2024.
Article in English | MEDLINE | ID: mdl-38827809

ABSTRACT

Aim: Purified anthocyanins lack a detailed safety profile, prompting the need for comprehensive oral toxicity research. Materials & methods: Sprague-Dawley rats aged 8 weeks received 300 mg/kg cyanidin orally for 14 days in acute toxicity (OECD 423). In the subacute study (OECD 407), adult SD rats were administered 7.5, 15 and 30 mg/kg/day cyanidin orally for 28 days. Results: Acute toxicity indicated an LD50 exceeding 300 mg/kg/day without adverse effects. Subacute toxicity at 7.5-30 mg/kg/day showed well-tolerated responses in both genders. No significant alterations in organ weights, hematological parameters, liver/kidney functions or adverse histopathological findings were observed. Conclusion: Oral cyanidin administration demonstrated high safety and tolerance in rats, establishing a NOAEL at 30 mg/kg/day, affirming cyanidin's safety for oral use.


Anthocyanins, natural pigments found in fruits and vegetables, lack a detailed safety profile. This study investigated the oral toxicity of cyanidin, a common anthocyanin. Acute toxicity testing in rats showed no adverse effects at doses up to 300 mg/kg. In the subacute study, doses of 7.5­30 mg/kg/day over 28 days were well tolerated, with no significant negative effects on organ function or histopathology. The findings suggest that cyanidin is safe for oral use in rats, with a No Observed Adverse Effect Level (NOAEL) established at 30 mg/kg/day.


Rat studies reveal cyanidin, a common anthocyanin, shows high oral safety at doses up to 300 mg/kg/day, paving the way for safer dietary supplement use. #Toxicology #SafetyResearch.

15.
Front Plant Sci ; 15: 1377899, 2024.
Article in English | MEDLINE | ID: mdl-38835869

ABSTRACT

The spines of Chinese red chestnut are red and the depth of their color gradually increases with maturity. To identify the anthocyanin types and synthesis pathways in red chestnut and to identify the key genes regulating the anthocyanin biosynthesis pathway, we obtained and analyzed the transcriptome and anthocyanin metabolism of red chestnut and its control variety with green spines at 3 different periods. GO and KEGG analyses revealed that photosynthesis was more highly enriched in green spines compared with red spines, while processes related to defense and metabolism regulation were more highly enriched in red spines. The analysis showed that the change in spine color promoted photoprotection in red chestnut, especially at the early growth stage, which resulted in the accumulation of differentially expressed genes involved in the defense metabolic pathway. The metabolome results revealed 6 anthocyanins in red spines. Moreover, red spines exhibited high levels of cyanidin, peonidin and pelargonidin and low levels of delphinidin, petunidin and malvidin. Compared with those in the control group, the levels of cyanidin, peonidin, pelargonidin and malvidin in red spines were significantly increased, indicating that the cyanidin and pelargonidin pathways were enriched in the synthesis of anthocyanins in red spines, whereas the delphinidin pathways were inhibited and mostly transformed into malvidin. During the process of flower pigment synthesis, the expression of the CHS, CHI, F3H, CYP75A, CYP75B1, DFR and ANS genes clearly increased, that of CYP73A decreased obviously, and that of PAL, 4CL and LAR both increased and decreased. Notably, the findings revealed that the synthesized anthocyanin can be converted into anthocyanidin or epicatechin. In red spines, the upregulation of BZ1 gene expression increases the corresponding anthocyanidin content, and the upregulation of the ANR gene also promotes the conversion of anthocyanin to epicatechin. The transcription factors involved in color formation included 4 WRKYs.

16.
Nanomaterials (Basel) ; 14(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38921910

ABSTRACT

Identification of a natural-based sensitizer with optimal stability and efficiency for dye-sensitized solar cell (DSSC) application remains a challenging task. Previously, we proposed a new class of sensitizers based on bio-nano hybrids. These systems composed of natural cyanidin dyes interacting with silver nanoclusters (NCs) have demonstrated enhanced opto-electronic and photovoltaic properties. In this study, we explore the doping of silver nanocluster within a cyanidin-Ag3 hybrid employing Density Functional Theory (DFT) and its time-dependent counterpart (TDDFT). Specifically, we investigate the influence of coinage metal atoms (Au and Cu) on the properties of the cyanidin-Ag3 system. Our findings suggest that cyanidin-Ag2Au and cyanidin-AgAuCu emerge as the most promising candidates for improved light harvesting efficiency, increased two-photon absorption, and strong coupling to the TiO2 surface. These theoretical predictions suggest the viability of replacing larger silver NCs with heterometallic trimers such as Ag2Au or AgAuCu, presenting new avenues for utilizing bio-nano hybrids at the surface for DSSC application.

17.
Int J Biol Macromol ; 273(Pt 2): 133133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876233

ABSTRACT

This study aimed to investigate the problem of color instability in mulberry juice, examine the effect of mannoprotein (MP) dosage on improving the stability of anthocyanins in mulberry juice, and explore the molecular binding mechanism between them. As the mass ratio of anthocyanins to MP of 1.07 × 10-3: 1-1.65 × 10-3: 1, the retention rates of anthocyanins in mulberry juice and simulated system were significantly improved in the photostability experiment, with the highest increase of 128.89 % and 24.11 %, respectively. In the thermal stability experiment, it increased by 7.96 % and 18.49 %, respectively. The synergistic effect of combining MP with anthocyanins has been demonstrated to greatly enhance their antioxidant capacity, as measured by ABTS, FRAP, and potassium ferricyanide reduction method. Furthermore, MP stabilized more anthocyanins to reach the intestine in simulated in vitro digestion. MP and cyanidin-3-glucoside (C3G) interacted with each other through hydrogen bonding and hydrophobic interactions. Specific amino acid residues involved of MP in binding process were identified as threonine (THR), isoleucine (ILE) and arginine (ARG). The identification of the effective mass concentration ratio range and binding sites of MP and anthocyanins provided valuable insights for the application of MP in mulberry juice.


Subject(s)
Anthocyanins , Fruit and Vegetable Juices , Morus , Morus/chemistry , Anthocyanins/chemistry , Fruit and Vegetable Juices/analysis , Antioxidants/chemistry
18.
Food Chem ; 455: 139793, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823128

ABSTRACT

Cyanidin-3-O-galactoside (Cy3-gal) is the most widespread anthocyanin that has been found to be applicable to nutraceutical and pharmaceutical ingredients. Nevertheless, the process of separation and purification, susceptibilities to heat, and pH inactivation present some limitations. In the present study, natural deep eutectic solvents (NADES) with an ultrasonic-assisted extraction method were briefly studied, and the recovery of Cy3-gal from Rhododendron arboreum was highlighted. The NADES, consisting of choline chloride and oxalic acid (1:1), was screened out as an extractant, and single-factor experiments combined with a two-site kinetic model were employed to describe the extraction process. Further, the work investigated ultrasound-assisted adsorption/desorption to efficiently purify Cy3-gal using macroporous resins. The optimal extraction conditions to attain maximum Cy3-gal yield was 30% water in a 50:1 (mL/g) solvent-to-sample ratio, 11.25 W/cm3 acoustic density, and 50% duty cycle for 16 min of extraction time. Under these conditions, the results revealed 23.07 ± 0.14 mg/g of Cy3-gal, two-fold higher than the traditional solvents. Furthermore, of the different resins used, Amberlite XAD-7HP showed significantly (p < 0.05) higher adsorption/desorption capacities (12.82 ± 0.18 mg/g and 10.97 ± 0.173 mg/g) and recovery (48.41 ± 0.76%) percent over other adsorbents. Experiments on the degrading behavior (40-80 °C) of the recovered Cy3-gal were performed over time, and the first-order kinetic model better explained the obtained data. In conclusion, the study asserts the use of ultrasonication with NADES and XAD-7HP resin for the improved purification of Cy3-gal from the crude extract.


Subject(s)
Anthocyanins , Plant Extracts , Rhododendron , Thermodynamics , Kinetics , Anthocyanins/chemistry , Anthocyanins/isolation & purification , Rhododendron/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Deep Eutectic Solvents/chemistry , Galactosides/chemistry , Galactosides/isolation & purification , Adsorption , Chemical Fractionation/methods
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167259, 2024 08.
Article in English | MEDLINE | ID: mdl-38796918

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver disease-related deaths worldwide. Unfortunately, approved medications for the treatment of this condition are quite limited. One promising candidate is the anthocyanin, Cyanidin-3-O-glucoside (C3G), which has been reported to protect mice against hepatic lipid accumulation, as well as fibrosis in different animal models. However, the specific effects and mechanisms of C3G on ALD remain to be investigated. EXPERIMENTAL APPROACH: In this report, a Gao-binge mouse model of ALD was used to investigate the effects of C3G on ethanol-induced liver injury. The mechanisms of these C3G effects were assessed using AML12 hepatocytes. RESULTS: C3G administration ameliorated ethanol-induced liver injury by suppressing hepatic oxidative stress, as well as through reducing hepatic lipid accumulation and inflammation. Mechanistically, C3G activated the AMPK pathway and enhanced mitophagy to eliminate damaged mitochondria, thus reducing mitochondria-derived reactive oxidative species in ethanol-challenged hepatocytes. CONCLUSIONS: The results of this study indicate that mitophagy plays a potentially important role underlying the hepatoprotective action of C3G, as demonstrated in a Gao-binge mouse model of ALD. Accordingly, C3G may serve as a promising, new therapeutic drug candidate for use in ALD.


Subject(s)
Anthocyanins , Disease Models, Animal , Ethanol , Glucosides , Liver Diseases, Alcoholic , Mitophagy , Oxidative Stress , Animals , Anthocyanins/pharmacology , Mitophagy/drug effects , Mice , Glucosides/pharmacology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Ethanol/toxicity , Ethanol/adverse effects , Oxidative Stress/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Mice, Inbred C57BL , Liver/metabolism , Liver/drug effects , Liver/pathology , Reactive Oxygen Species/metabolism , Lipid Metabolism/drug effects
20.
Toxicol Appl Pharmacol ; 487: 116953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705400

ABSTRACT

INTRODUCTION: Research has unveiled the neurotoxicity of Bisphenol A (BPA) linked to neuropathological traits of Alzheimer's disease (AD) through varied mechanisms. This study aims to investigate the neuroprotective properties of cyanidin, an anthocyanin, in an in vivo model of BPA-induced Alzheimer's-like neuropathology. METHODS: Three-week-old Sprague-Dawley rats were randomly assigned to four groups: vehicle control, negative control (BPA exposure), low-dose cyanidin treatment (BPA + cyanidin 5 mg/kg), and high-dose cyanidin treatment (BPA + cyanidin 10 mg/kg). Spatial memory was assessed through behavioral tests, including the Y-maze, novel object recognition, and Morris water maze. After behavioral tests, animals were euthanized, and brain regions were examined for acetylcholinesterase inhibition, p-tau, Wnt3, GSK3ß, and ß-catenin levels, antioxidant activities, and histopathological changes. RESULTS: BPA-exposed groups displayed memory impairments, while cyanidin-treated groups showed significant memory improvement (p < 0.0001). Cyanidin down regulated p-tau and glycogen synthase kinase-3ß (GSK3ß) and restored Wnt3 and ß-catenin levels (p < 0.0001). Moreover, cyanidin exhibited antioxidant properties, elevating catalase and superoxide dismutase levels. The intervention significantly reduced the concentrations of acetylcholinesterase in the cortex and hippocampus in comparison to the groups treated with BPA (p < 0.0001). Significant gender-based disparities were not observed. CONCLUSION: Cyanidin demonstrated potent neuroprotection against BPA-induced Alzheimer's-like neuropathology by enhancing antioxidant defenses, modulating tau phosphorylation by restoring the Wnt/ß-catenin pathway, and ameliorating spatial memory deficits. This study highlights the therapeutic potential of cyanidin in countering neurotoxicity linked to BPA exposure.


Subject(s)
Alzheimer Disease , Anthocyanins , Benzhydryl Compounds , Cognition , Neuroprotective Agents , Phenols , Rats, Sprague-Dawley , Spatial Memory , Wnt Signaling Pathway , Animals , Phenols/pharmacology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/pharmacology , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Spatial Memory/drug effects , Male , Rats , Wnt Signaling Pathway/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cognition/drug effects , Disease Models, Animal , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL