Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978579

ABSTRACT

Background: Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. Methods: In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-ß-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1 Cre - ERT2 ;Slc11a2 flfl;APP/PS1 + or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b + microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. Results: DMT1 inhibition in vitro robustly decreased Aß-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2 KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2 KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2 KD cells from APP/PS1 females also exhibited decreased expression of markers associated with disease-associated microglia (DAMs), such as Apoe, Ctsb, Csf1, and Hif1α. Conclusions: This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2 KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.

2.
Biomolecules ; 14(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062570

ABSTRACT

Background: The regulation of divalent metal transporter-1 (DMT1) by insulin has been previously described in Langerhans cells and significant neuroprotection was found by insulin and insulin-like growth factor 1 treatment during experimental cerebral ischemia in acute ischemic stroke patients and in a rat 6-OHDA model of Parkinson's disease, where DMT1 involvement is described. According to the regulation of DMT1, previously described as a target gene of NF-kB in the early phase of post-ischemic neurodegeneration, both in vitro and in vivo, and because insulin controls the NFkB signaling with protection from ischemic cell death in rat cardiomyocytes, we evaluated the role of insulin in relation to DMT1 expression and function during ischemic neurodegeneration. Methods: Insulin neuroprotection is evaluated in differentiated human neuroblastoma cells, SK-N-SH, and in primary mouse cortical neurons exposed to oxygen glucose deprivation (OGD) for 8 h or 3 h, respectively, with or without 300 nM insulin. The insulin neuroprotection during OGD was evaluated in both cellular models in terms of cell death, and in SK-N-SH for DMT1 protein expression and acute ferrous iron treatment, performed in acidic conditions, known to promote the maximum DMT1 uptake as a proton co-transporter; and the transactivation of 1B/DMT1 mouse promoter, already known to be responsive to NF-kB, was analyzed in primary mouse cortical neurons. Results: Insulin neuroprotection during OGD was concomitant to the down-regulation of both DMT1 protein expression and 1B/DMT1 mouse promoter transactivation. We also showed the insulin-dependent protection from cell death after acute ferrous iron treatment. In conclusion, although preliminary, this evaluation highlights the peculiar role of DMT1 as a possible pharmacological target, involved in neuroprotection by insulin during in vitro neuronal ischemia and acute ferrous iron uptake.


Subject(s)
Cation Transport Proteins , Cell Death , Down-Regulation , Insulin , Neurons , Animals , Insulin/metabolism , Insulin/pharmacology , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Mice , Cell Death/drug effects , Neurons/metabolism , Neurons/drug effects , Down-Regulation/drug effects , Neuroprotection/drug effects , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Iron/metabolism , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Glucose/metabolism , Ferrous Compounds/pharmacology
3.
Gut Microbes ; 16(1): 2361660, 2024.
Article in English | MEDLINE | ID: mdl-38935764

ABSTRACT

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Subject(s)
Cation Transport Proteins , Duodenum , Gastrointestinal Microbiome , Hepcidins , Iron, Dietary , Liver , Animals , Mice , Gastrointestinal Microbiome/physiology , Iron, Dietary/metabolism , Iron, Dietary/administration & dosage , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Liver/metabolism , Liver/microbiology , Duodenum/metabolism , Duodenum/microbiology , Hepcidins/metabolism , Ferritins/metabolism , Germ-Free Life , Host Microbial Interactions , Lung/microbiology , Lung/metabolism , Iron/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Mice, Inbred C57BL , Hemoglobins/metabolism , Male
4.
Asia Pac J Clin Nutr ; 33(2): 184-193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38794978

ABSTRACT

BACKGROUND AND OBJECTIVES: This study aimed to assess the associations of maternal iron status and placental iron transport proteins expression with the risk of pre-eclampsia (PE) in Chinese pregnant women. METHODS AND STUDY DESIGN: A total of 94 subjects with PE and 112 healthy pregnant women were enrolled. Fasting blood samples were collected to detect maternal iron status. The placenta samples were collected at delivery to detect the mRNA and protein expression of divalent metal transporter 1 (DMT1) and ferroportin-1 (FPN1). Logistic analysis was used to explore the associations of maternal iron status with PE risk. The associations of placental iron transport proteins with maternal iron status were explored. RESULTS: After adjusting for covariates, dietary total iron, non-heme iron intake and serum hepcidin were negatively associated with PE, with adjusted ORs (95%CIs) were 0.40 (0.17, 0.91), 0.42 (0.18, 0.94) and 0.02 (0.002, 0.13) for the highest versus lowest tertile, respectively. For the highest tertile versus lowest tertile, serum iron (4.08 (1.58, 10.57)) and ferritin (5.61 (2.36, 13.31)) were positively associated with PE. The mRNA expressions and protein levels of DMT1 and FPN1 in placenta were up-regulated in the PE group (p < 0.05). The mRNA expressions of DMT1 and FPN1 in placenta showed a negative correlation with the serum hepcidin (r = -0.71, p < 0.001; r = -0.49, p < 0.05). CONCLUSIONS: In conclusion, the maternal iron status were closely associated with PE risk, placental DMT1 and FPN1 were upregulated in PE which may be a promising target for the prevention of PE.


Subject(s)
Cation Transport Proteins , Iron , Placenta , Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/epidemiology , Pre-Eclampsia/blood , Case-Control Studies , Adult , Iron/blood , Iron/metabolism , Placenta/metabolism , Cation Transport Proteins/genetics , Hepcidins/blood , Risk Factors , China/epidemiology , Nutritional Status
5.
FEBS Lett ; 598(12): 1506-1512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594214

ABSTRACT

Natural resistance-associated macrophage protein 2 (NRAMP 2; also known as DMT1 and encoded by SLC11A2) is mainly known for its iron transport activity. Recently, the DMT1 isoform lacking the iron-response element (nonIRE) was associated with aberrant NOTCH pathway activity. In this report, we investigated the function of DMT1 nonIRE in normal and malignant hematopoiesis. Knockdown of Dmt1 nonIRE in mice showed that it has non-canonical functions in hematopoietic stem cell differentiation: its knockdown suppressed development along the myeloid and lymphoid lineages, while promoting the production of platelets. These phenotypic effects on the hematopoietic system induced by Dmt1 nonIRE knockdown were linked to suppression of Notch/Myc pathway activity. Conversely, our data indicate a non-canonical function for DMT1 nonIRE overexpression in boosting NOTCH pathway activity in T-cell leukemia homeobox protein 1 (TLX1)-defective leukemia. This work sets the stage for future investigation using a multiple-hit T-cell acute lymphoblastic leukemia (T-ALL) model to further investigate the function of DMT1 nonIRE in T-ALL disease development and progression.


Subject(s)
Cation Transport Proteins , Hematopoiesis , Protein Isoforms , Receptors, Notch , Signal Transduction , Animals , Hematopoiesis/genetics , Mice , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Humans , Iron/metabolism , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
6.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656648

ABSTRACT

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Subject(s)
Astrocytes , Cell Differentiation , Iron Deficiencies , Oligodendroglia , Astrocytes/metabolism , Astrocytes/drug effects , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cation Transport Proteins/metabolism , Coculture Techniques , Culture Media, Conditioned/pharmacology , Rats , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Deferoxamine/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Iron/metabolism
7.
CNS Neurosci Ther ; 30(4): e14685, 2024 04.
Article in English | MEDLINE | ID: mdl-38634270

ABSTRACT

OBJECTIVE: Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS: Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.


Subject(s)
Cation Transport Proteins , Cerebral Hemorrhage , Ferroptosis , Nedd4 Ubiquitin Protein Ligases , Animals , Male , Mice , Brain/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Ferroptosis/genetics , Mice, Inbred C57BL , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Cation Transport Proteins/metabolism
8.
Mol Metab ; 84: 101944, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642891

ABSTRACT

High-fat diet (HFD) has long been recognized as risk factors for the development and progression of ulcerative colitis (UC), but the exact mechanism remained elusive. Here, HFD increased intestinal deoxycholic acid (DCA) levels, and DCA further exacerbated colonic inflammation. Transcriptome analysis revealed that DCA triggered ferroptosis pathway in colitis mice. Mechanistically, DCA upregulated hypoxia-inducible factor-2α (HIF-2α) and divalent metal transporter-1 (DMT1) expression, causing the ferrous ions accumulation and ferroptosis in intestinal epithelial cells, which was reversed by ferroptosis inhibitor ferrostatin-1. DCA failed to promote colitis and ferroptosis in intestine-specific HIF-2α-null mice. Notably, byak-angelicin inhibited DCA-induced pro-inflammatory and pro-ferroptotic effects through blocking the up-regulation of HIF-2α by DCA. Moreover, fat intake was positively correlated with disease activity in UC patients consuming HFD, with ferroptosis being more pronounced. Collectively, our findings demonstrated that HFD exacerbated colonic inflammation by promoting DCA-mediated ferroptosis, providing new insights into diet-related bile acid dysregulation in UC.


Subject(s)
Deoxycholic Acid , Diet, High-Fat , Ferroptosis , Mice, Inbred C57BL , Animals , Deoxycholic Acid/metabolism , Deoxycholic Acid/pharmacology , Deoxycholic Acid/adverse effects , Diet, High-Fat/adverse effects , Ferroptosis/drug effects , Mice , Male , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Inflammation/metabolism , Colitis/metabolism , Colitis/chemically induced , Colitis/pathology , Colon/metabolism , Colon/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Gastrointestinal Microbiome/drug effects , Mice, Knockout
9.
Phytomedicine ; 128: 155489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569295

ABSTRACT

BACKGROUND AND PURPOSE: Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS: 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS: MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION: STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.


Subject(s)
Atherosclerosis , Cation Transport Proteins , Drugs, Chinese Herbal , Ferroptosis , STAT6 Transcription Factor , Suppressor of Cytokine Signaling 1 Protein , Animals , Ferroptosis/drug effects , Atherosclerosis/drug therapy , STAT6 Transcription Factor/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Mice , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Signal Transduction/drug effects , Receptors, LDL/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Mice, Knockout
10.
Mol Cell Endocrinol ; 580: 112103, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38450475

ABSTRACT

BACKGROUND: Osteoporosis (OP) can be caused by an overactive osteoclastic function. Anti-osteoporosis considerable therapeutic effects in tissue repair and regeneration because bone resorption is a unique osteoclast function. In this study, we mainly explored the underlying mechanisms of osteoclasts' effects on osteoporosis. METHODS: RAW264.7 cells were used and induced toward osteoclast and iron accumulation by M-CSF and RANKL administration. We investigated Hepcidin and divalent metal transporter 1 (DMT1) on iron accumulation and osteoclast formation in an ovariectomy (OVX)-induced osteoporosis. Osteoporosis was induced in mice by OVX, and treated with Hepcidin (10, 20, 40, 80 mg/kg, respectively) and overexpression of DMT1 by tail vein injection. Hepcidin, SPI1, and DMT1 were detected by immunohistochemical staining, western blot and RT-PCR. The bioinformatics assays, luciferase assays, and Chromatin Immunoprecipitation (ChIP) verified that Hepcidin was a direct SPI1 transcriptional target. Iron accumulation was detected by laser scanning confocal microscopy, Perl's iron staining and iron content assay. The formation of osteoclasts was assessed using tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: We found that RAW264.7 cells differentiated into osteoclasts when exposed to M-CSF and RANKL, which increased the protein levels of osteoclastogenesis-related genes, including c-Fos, MMP9, and Acp5. We also observed higher concentration of iron accumulation when M-CSF and RANKL were administered. However, Hepcidin inhibited the osteoclast differentiation cells and decreased intracellular iron concentration primary osteoclasts derived from RAW264.7. Spi-1 proto-oncogene (SPI1) transcriptionally repressed the expression of Hepcidin, increased DMT1, facilitated the differentiation and iron accumulation of mouse osteoclasts. Overexpression of SPI1 significantly declined luciferase activity of HAMP promoter and increased the enrichment of HAMP promoter. Furthermore, our results showed that Hepcidin inhibited osteoclast differentiation and iron accumulation in mouse osteoclasts and OVX mice. CONCLUSION: Therefore, the study revealed that SPI1 could inhibit Hepcidin expression contribute to iron accumulation and osteoclast formation via DMT1 signaling activation in mouse with OVX.


Subject(s)
Osteoclasts , Osteoporosis , Female , Animals , Mice , Macrophage Colony-Stimulating Factor , Hepcidins , Luciferases
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331112

ABSTRACT

INTRODUCTION: Excess iron contributes to Hemophilic Arthropathy (HA) development. Divalent metal transporter 1 (DMT1) delivers iron into the cytoplasm, thus regulating iron homeostasis. OBJECTIVES: We aimed to investigate whether DMT1-mediated iron homeostasis is involved in bleeding-induced cartilage degeneration and the molecular mechanisms underlying iron overload-induced chondrocyte damage. METHODS: This study established an in vivo HA model by puncturing knee joints of coagulation factor VIII gene knockout mice with a needle, and mimicked iron overload conditions in vitro by treatment of Ferric ammonium citrate (FAC). RESULTS: We demonstrated that blood exposure caused iron overload and cartilage degeneration, as well as elevated expression of DMT1. Furthermore, DMT1 silencing alleviated blood-induced iron overload and cartilage degeneration. In hemophilic mice, articular cartilage degeneration was also suppressed by intro-articularly injection of DMT1 adeno-associated virus 9 (AAV9). Mechanistically, RNA-sequencing analysis indicated the association between iron overload and cGAS-STING pathway. Further, iron overload triggered mtDNA-cGAS-STING pathway activation, which could be effectively mitigated by DMT1 silencing. Additionally, we discovered that RU.521, a potent Cyclic GMP-AMP Synthase (cGAS) inhibitor, successfully suppressed the downward cascades of cGAS-STING, thereby protecting against chondrocyte damage. CONCLUSION: Taken together, DMT1-mediated iron overload promotes chondrocyte damage and murine HA development, and targeted DMT1 may provide therapeutic and preventive approaches in HA.


Subject(s)
Iron Overload , Joint Diseases , Animals , Mice , Cartilage , DNA, Mitochondrial/genetics , Iron/metabolism , Iron Overload/complications , Iron Overload/genetics , Iron Overload/metabolism , Mice, Knockout , Nucleotidyltransferases/metabolism
12.
Genes Nutr ; 19(1): 1, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243197

ABSTRACT

BACKGROUND: Obese patients have been found to be susceptible to iron deficiency, and malabsorption of dietary iron is the cause of obesity-related iron deficiency (ORID). Divalent metal transporter 1 (DMT1) and ferroportin (FPN), are two transmembrane transporter proteins expressed in the duodenum that are closely associated with iron absorption. However, there have been few studies on the association between these two proteins and the increased susceptibility to iron deficiency in obese patients. Chronic inflammation is also thought to be a cause of obesity-related iron deficiency, and both conditions can have an impact on spermatogenesis and impair male reproductive function. Based on previous studies, transgenerational epigenetic inheritance through gametes was observed in obesity. RESULTS: Our results  showed that obese mice had decreased blood iron levels (p < 0.01), lower protein and mRNA expression for duodenal DMT1 (p < 0.05), but no statistically significant variation in mRNA expression for duodenal FPN (p > 0.05); there was an increase in sperm miR-135b expression (p < 0.05). Bioinformatics revealed ninety overlapping genes and further analysis showed that they were primarily responsible for epithelial cilium movement, fatty acid beta-oxidation, protein dephosphorylation, fertilization, and glutamine transport, which are closely related to spermatogenesis, sperm development, and sperm viability in mice. CONCLUSIONS: In obese mice, we observed downregulation of DMT1 in the duodenum and upregulation of miR-135b in the spermatozoa.

13.
Br J Haematol ; 204(3): 759-773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253961

ABSTRACT

Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.


Subject(s)
Anemia, Iron-Deficiency , Iron Deficiencies , Iron Overload , Adult , Child , Female , Humans , Pregnancy , Iron/metabolism , Anemia, Iron-Deficiency/therapy , Iron Overload/drug therapy
14.
J Clin Biochem Nutr ; 74(1): 1-8, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38292117

ABSTRACT

Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.

15.
Mol Neurobiol ; 61(4): 2006-2020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37833459

ABSTRACT

Both neuroinflammation and iron accumulation play roles in the pathogenesis of Parkinson's disease (PD). However, whether inflammation induces iron dyshomeostasis in dopaminergic neurons at an early stage of PD, at which no quantifiable dopaminergic neuron loss can be observed, is still unknown. As for the inflammation mediators, although several cytokines have been reported to increase in PD, the functions of these cytokines in the SN are double-edged and controversial. In this study, whether inflammation could induce iron dyshomeostasis in dopaminergic neurons through high mobility group protein B1 (HMGB1) in the early stage of PD is explored. Lipopolysaccharide (LPS), a toxin that primarily activates glia cells, and 6-hydroxydopamine (6-OHDA), the neurotoxin that firstly impacts dopaminergic neurons, were utilized to mimic PD in rats. We found a common and exceedingly early over-production of HMGB1, followed by an increase of divalent metal transporter 1 with iron responsive element (DMT1+) in the dopaminergic neurons before quantifiable neuronal loss. HMGB1 neutralizing antibody suppressed inflammation in the SN, DMT1+ elevation in dopaminergic neurons, and dopaminergic neuronal loss in both LPS and 6-OHDA administration- induced PD models. On the contrary, interleukin-1ß inhibitor diacerein failed to suppress these outcomes induced by 6-OHDA. Our findings not only demonstrate that inflammation could be one of the causes of DMT1+ increase in dopaminergic neurons, but also highlight HMGB1 as a pivotal early mediator of inflammation-induced iron increase and subsequent neurodegeneration, thereby HMGB1 could serve as a potential target for early-stage PD treatment.


Subject(s)
HMGB1 Protein , Parkinson Disease , Parkinsonian Disorders , Animals , Rats , Cytokines/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , HMGB1 Protein/metabolism , Inflammation/pathology , Iron/metabolism , Lipopolysaccharides , Oxidopamine , Parkinson Disease/pathology , Parkinsonian Disorders/metabolism
16.
Brain Behav Immun ; 116: 370-384, 2024 02.
Article in English | MEDLINE | ID: mdl-38141840

ABSTRACT

Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1ß, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.


Subject(s)
Lipopolysaccharides , Microglia , Animals , Female , Male , Mice , Cytokines/metabolism , Inflammation/metabolism , Iron/metabolism , Lipopolysaccharides/metabolism , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Receptors, Immunologic/metabolism
17.
J Neuroimmune Pharmacol ; 18(3): 495-508, 2023 09.
Article in English | MEDLINE | ID: mdl-37661197

ABSTRACT

NeuroHIV and other neurologic disorders present with altered iron metabolism in central nervous system neurons. Many people with HIV also use opioids, which can worsen neuroHIV symptoms by further dysregulating neuronal iron metabolism. Our previous work demonstrated that the µ-opioid agonist morphine causes neuronal endolysosomes to release their iron stores, and neurons respond by upregulating ferritin heavy chain (FHC), an iron storage protein associated with cognitive impairment in neuroHIV. Here, we investigated if this process required divalent metal transporter 1 (DMT1), a well-known iron transporter expressed on endolysosomes. We first optimized conditions to detect DMT1 isoforms (DMT1 1B ± iron responsive element) using fluorescently labeled rat DMT1 constructs expressed in HEK-293 cells. We also expressed these constructs in primary rat cortical neurons to compare their expression and subcellular distribution with endogenous DMT1 isoforms. We found endogenous DMT1 isoforms in the cytoplasm that colocalized with lysosomal-associated protein 1 (LAMP1), a marker of endolysosomes. Next, we blocked endogenous DMT1 isoforms using ebselen, a potent pharmacological inhibitor of DMT1 iron transport. Ebselen pre-treatment blocked morphine's ability to upregulate FHC protein, suggesting this pathway requires DMT1 iron transport from endolysosomes. This was further validated using viral-mediated genetic silencing of DMT1±IRE in cortical neurons, which also blocked FHC upregulation in the presence of morphine. Overall, our work demonstrates that the µ-opioid agonist morphine utilizes the endolysosomal iron transporter DMT1 to modulate neuronal cellular iron metabolism, upregulate FHC protein, and contribute to cognitive decline in neuroHIV. Morphine requires DMT1 to upregulate neuronal FHC. Cortical neurons treated with morphine release their endolysosomal iron stores to the cytoplasm and upregulate FHC, an iron storage protein associated with dendritic spine deficits and cognitive impairment in neuroHIV. This pathway requires the endolysosomal iron transporter DMT1, as pharmacological and genetic inhibitors of the transporter completely block morphine's ability to upregulate FHC. Created with BioRender.com .


Subject(s)
Apoferritins , Morphine , Animals , Humans , Rats , Analgesics, Opioid/pharmacology , Analgesics, Opioid/metabolism , Apoferritins/metabolism , HEK293 Cells , Iron/metabolism , Lysosomes , Morphine/pharmacology , Neurons/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
18.
FEBS J ; 290(24): 5811-5834, 2023 12.
Article in English | MEDLINE | ID: mdl-37646174

ABSTRACT

Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling. Dmt1-deficient cells are defective in Notch signalling and have perturbed endolysosomal trafficking and function. Dmt1 encodes for two isoforms, with and without an iron response element (ire). We show that isoform-specific silencing of Dmt1-ire and Dmt1+ire has opposite consequences on Notch-dependent cell fates in cell lines and intestinal organoids. Loss of Dmt1-ire suppresses Notch activation and promotes differentiation, whereas loss of Dmt1+ire causes Notch activation and maintains stem-progenitor cell fates. Dmt1 isoform expression correlates with Notch and Wnt signalling in Apc-deficient intestinal organoids and human colorectal cancers. Consistently, Dmt1-ire silencing induces Notch-dependent differentiation in colorectal cancer cells. These data identify Dmt1 isoforms as binary switches controlling Notch cell fate decisions in normal and tumour cells.


Subject(s)
Amyloid Precursor Protein Secretases , Cation Transport Proteins , Iron , Humans , Amyloid Precursor Protein Secretases/metabolism , Cell Line , Iron/metabolism , Iron-Binding Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cation Transport Proteins/genetics , Regulatory Sequences, Nucleic Acid
19.
Biomolecules ; 13(8)2023 07 27.
Article in English | MEDLINE | ID: mdl-37627237

ABSTRACT

Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.


Subject(s)
Iron , Membrane Proteins , Biological Transport , Cell Membrane , Lysosomes
20.
Free Radic Biol Med ; 207: 32-44, 2023 10.
Article in English | MEDLINE | ID: mdl-37419216

ABSTRACT

Mitochondria are vital for energy production and redox homeostasis, yet knowledge of relevant mechanisms remains limited. Here, through a genome-wide CRISPR-Cas9 knockout screening, we have identified DMT1 as a major regulator of mitochondria membrane potential. Our findings demonstrate that DMT1 deficiency increases the activity of mitochondrial complex I and reduces that of complex III. Enhanced complex I activity leads to increased NAD+ production, which activates IDH2 by promoting its deacetylation via SIRT3. This results in higher levels of NADPH and GSH, which improve antioxidant capacity during Erastin-induced ferroptosis. Meanwhile, loss of complex III activity impairs mitochondrial biogenesis and promotes mitophagy, contributing to suppression of ferroptosis. Thus, DMT1 differentially regulates activities of mitochondrial complex I and III to cooperatly suppress Erastin-induced ferroptosis. Furthermore, NMN, an alternative method of increasing mitochondrial NAD+, exhibits similar protective effects against ferroptosis by boosting GSH in a manner similar to DMT1 deficiency, shedding a light on potential therapeutic strategy for ferroptosis-related pathologies.


Subject(s)
Cation Transport Proteins , Electron Transport Complex III , Ferroptosis , Mitochondria , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Ferroptosis/genetics , Glutathione/genetics , Glutathione/metabolism , Mitochondria/genetics , Mitochondria/metabolism , NAD/genetics , NAD/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL