Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Genes Cells ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252397

ABSTRACT

RNA-DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA-DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA-DNA hybrids and map their genomic locations in fission yeast cells. The RNA-DNA hybrids appear as multiple nuclear foci in rnh1∆rnh201∆ cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA-DNA hybrid loci are detected at the protein coding regions and tRNA. In rnh1∆rnh201∆ cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA-DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA-DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA-DNA hybrids in the protein coding region in rnh1∆rnh201∆ cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.

2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125763

ABSTRACT

In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Humans , DNA Repair/drug effects , DNA Breaks, Double-Stranded/drug effects , Alkylation , Temozolomide/pharmacology , DNA/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Animals , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/genetics
3.
Sci Rep ; 14(1): 18650, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134627

ABSTRACT

Exposure to ionizing radiation can induce genetic aberrations via unrepaired DNA strand breaks. To investigate quantitatively the dose-effect relationship at the molecular level, we irradiated dry pBR322 plasmid DNA with 3 MeV protons and assessed fragmentation yields at different radiation doses using long-read sequencing from Oxford Nanopore Technologies. This technology applied to a reference DNA model revealed dose-dependent fragmentation, as evidenced by read length distributions, showing no discernible radiation sensitivity in specific genetic sequences. In addition, we propose a method for directly measuring the single-strand break (SSB) yield. Furthermore, through a comparative study with a collection of previous works on dry DNA irradiation, we show that the irradiation protocol leads to biases in the definition of ionizing sources. We support this scenario by discussing the size distributions of nanopore sequencing reads in the light of Geant4 and Geant4-DNA simulation toolkit predictions. We show that integrating long-read sequencing technologies with advanced Monte Carlo simulations paves a promising path toward advancing our comprehension and prediction of radiation-induced DNA fragmentation.


Subject(s)
DNA Fragmentation , Monte Carlo Method , Plasmids , Plasmids/genetics , DNA Fragmentation/radiation effects , Dose-Response Relationship, Radiation , Sequence Analysis, DNA/methods , DNA Breaks, Single-Stranded/radiation effects , DNA/genetics
4.
J Appl Toxicol ; 44(7): 1014-1027, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523572

ABSTRACT

The present investigation dealt with harmful effects of hexavalent chromium (Cr [VI]) on liver of Swiss albino mice. This variant exhibited cytotoxicity, mutagenicity, and carcinogenicity. Our study focused on elucidating the hepatotoxic effects of chronic low-dose exposure to Cr (VI) (2, 5, and 10 ppm) administered via drinking water for 4 and 8 months. The observed elevation in SGPT, ALP, and SGOT and increased oxidative stress markers unequivocally confirmed the severe disruption of liver homeostasis at these low treatment doses. Noteworthy alterations in histoarchitecture, body weight, and water intake provided further evidences of the harmful effects of Cr (VI). Production of reactive oxygen species (ROS) during metabolism led to DNA damages. Immunohistochemistry and qRT-PCR analyses revealed that chronic low-dose exposure of Cr (VI) induced apoptosis in liver tissue. Our study exhibited alterations in the expression pattern of DNA repair genes (Rad51, Mutyh, Mlh1, and Ogg1), coupled with promoter hypermethylation of Mutyh and Rad51, leading to transcriptional inhibition. Our findings underscored the potential of low-dose Cr (VI) exposure on hepatotoxicity by the intricate interplay between apoptosis induction and epigenetic alterations of DNA repair genes.


Subject(s)
Apoptosis , Chromium , DNA Methylation , DNA Repair , Liver , Oxidative Stress , Promoter Regions, Genetic , Animals , Chromium/toxicity , Oxidative Stress/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Mice , Apoptosis/drug effects , DNA Repair/drug effects , DNA Methylation/drug effects , Promoter Regions, Genetic/drug effects , Male , Reactive Oxygen Species/metabolism , DNA Glycosylases/genetics , Dose-Response Relationship, Drug , DNA Damage/drug effects , Rad51 Recombinase/genetics
5.
J Assist Reprod Genet ; 41(2): 277-291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38165506

ABSTRACT

Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.


Subject(s)
DNA Repair , Telomere , Humans , Animals , Male , Female , DNA Repair/genetics , Telomere/genetics , DNA Damage , Germ Cells , Blastocyst , Mammals
6.
J Cell Physiol ; 239(2): e31163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009273

ABSTRACT

Many studies have indicated that tumor growth factor-beta (TGF-ß) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-ß signaling to regulate diverse cellular processes. But whether the PC participates in TGF-ß induced RIBEs remains unclear. The cellular levels of TGF-ß1 were detected by western blot analysis and the secretion of TGF-ß1 was measured by ELISA kit. The ciliogenesis was altered by CytoD treatment, STIL siRNA transfection, IFT88 siRNA transfection, or KIF3a siRNA transfection, separately, and was detected by western blot analysis and immunofluorescence staining. G0 /G1 phase cells were arrested by serum starvation and S phase cells were induced by double thymidine block. The TGF-ß1 signaling was interfered by LY2109761, a TGF-ß receptor 1 (TßR1) inhibitor, or TGF-ß1 neutral antibody. The DNA damages were induced by TGF-ß1 or radiated conditional medium (RCM) from irradiated cells and were reflected by p21 expression, 53BP1 foci, and γH2AX foci. Compared with unirradiated control, both A549 and Beas-2B cells expressed and secreted more TGF-ß1 after carbon ion beam or X-ray irradiation. RCM collected from irradiated cells or TGF-ß1 treatment caused an increase of DNA damage in cocultured unirradiated Beas-2B cells while blockage of TGF-ß signaling by TßR1 inhibitor or TGF-ß1 neutral antibody alleviates this phenomenon. IFT88 siRNA or KIF3a siRNA impaired PC formation resulted in an aggravated DNA damage in bystander cells, while elevated PC formation by CytoD or STIL siRNA resulted in a decrease of DNA damage. Furthermore, TGF-ß1 induced more DNA damages in S phases cells which showed lower PC formation rate and less DNA damages in G0 /G1 phase cells which showed higher PC formation rate. This study demonstrates the particular role of primary cilia during RCM induced DNA damages through TGF-ß1 signaling restriction and thereby provides a functional link between primary cilia and RIBEs.


Subject(s)
Bystander Effect , Transforming Growth Factor beta1 , Bystander Effect/genetics , Bystander Effect/radiation effects , Cilia/metabolism , DNA , RNA, Small Interfering/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Humans , Cell Line, Tumor
7.
Biomaterials ; 305: 122426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134473

ABSTRACT

Microglial cells, as the primary defense line in the central nervous system, play a crucial role in responding to various mechanical signals that can trigger their activation. Despite extensive research on the impact of chemical signaling on brain cells, the understanding of mechanical signaling in microglia remains limited. To bridge this gap, we subjected microglial cells to a singular mechanical stretch and compared their responses with those induced by lipopolysaccharide treatment, a well-established chemical activator. Here we show that stretching microglial cells leads to their activation, highlighting their significant mechanosensitivity. Stretched microglial cells exhibited distinct features, including elevated levels of Iba1 protein, a denser actin cytoskeleton, and increased persistence in migration. Unlike LPS-treated microglial cells, the secretory profile of chemokines and cytokines remained largely unchanged in response to stretching, except for TNF-α. Intriguingly, a single stretch injury resulted in more compacted chromatin and DNA damage, suggesting potential long-term genomic instabilities in stretched microglia. Using compartmentalized microfluidic chambers with neuronal networks, we observed that stretched microglial cells exhibited enhanced phagocytic and synaptic stripping activities. These findings collectively suggest that stretching events can unlock the immune potential of microglial cells, contributing to the maintenance of brain tissue homeostasis following mechanical injury.


Subject(s)
Microglia , Phagocytes , Microglia/metabolism , Central Nervous System , Brain , Signal Transduction , Lipopolysaccharides/pharmacology
8.
Environ Pollut ; 324: 121423, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36906053

ABSTRACT

Crabs can live in diverse lifestyles in both water and benthic environments, which are the basin of microplastics (MPs) inputs. Edible crabs with large consuming quantity, e.g., Scylla serrata were subjected to accumulate MPs in their tissues from surrounding environments and generate biological damages. However, no related research has been conducted. In order to accurately assess the potential risks to both crabs and humans consuming MPs contaminated crabs, S. serrata were exposed to different concentrations (2, 200 and 20,000 µg/L) of polyethylene (PE) microbeads (10-45 µm) for 3 days. The physiological conditions of crabs and a series of biological responses, including DNA damage, antioxidant enzymes activities and their corresponding gene expressions in functional tissues (gills and hepatopancreas) were investigated. PE-MPs accumulated in all tissues of crabs with concentration- and tissue-dependent manner, which was assumed to be via the internal distribution initialized by gills' respiration, filtration and transportation. Significantly increased DNA damages were observed in both gills and hepatopancreas under exposures, however, the physiological conditions of crabs showed no dramatic alterations. Under low and middle concentration exposures, gills energetically activated the first line of antioxidant defense to against oxidative stress, e.g., superoxide dismutase (SOD) and catalase (CAT), but lipid peroxidation damage still occurred under high concentration exposure. In comparison, SOD and CAT composed antioxidant defense in hepatopancreas tended to collapse under severe MPs exposure and the defense mechanism attempted to switch to the secondary antioxidant response by compensatively stimulating the activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and the content of glutathione (GSH). The diverse antioxidant strategies in gills and hepatopancreas were proposed to be closely related to the accumulation capacity of tissues. The results confirmed the relation between PE-MPs exposure and antioxidant defense in S. serrata, and will help to clarify the biological toxicity and corresponding ecological risks.


Subject(s)
Antioxidants , Brachyura , Animals , Humans , Antioxidants/metabolism , Microplastics/toxicity , Microplastics/metabolism , Plastics/metabolism , Brachyura/metabolism , Oxidative Stress/physiology , Catalase/metabolism , Superoxide Dismutase/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Polyethylene/metabolism , Gills/metabolism , Lipid Peroxidation , Glutathione Transferase/metabolism
9.
Biol Trace Elem Res ; 201(2): 968-983, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35368229

ABSTRACT

The present study aimed to determine the cytotoxicity of chromium(III) oxide micro particles (Cr2O3-Ps) in rainbow trout (Oncorhynchus mykiss) spermatozoa. Firstly, Cr2O3-Ps were synthesized and structurally characterized the surface, morphological for particle size and thermal properties. In addition, its structural and elemental purity was determined using energy-dispersive X-ray (EDX) spectrum and elemental maps. Structural purity, thermal properties, and stability of Cr2O3-Ps were also examined in detail by performing thermal analysis techniques. The cytotoxicity of Cr2O3-Ps was measured by the observation of velocities, antioxidant activities, and DNA damages in rainbow trout spermatozoa after exposure during 3 h in vitro incubation. The straight line velocity (VSL), the curvilinear velocity (VCL), and the angular path velocity (VAP) of spermatozoa decreased after exposure to Cr2O3-Ps. While the superoxide dismutase (SOD) and the catalase (CAT) decreased, the lipid peroxidation increased in a dose-dependent manner. However, the total glutathione (tGSH) was not affected in this period. DNA damages were also determined in spermatozoa using Comet assay. According to DNA in tail (%) data, DNA damages have been detected with gradually increasing concentrations of Cr2O3-Ps. Furthermore, all of class types which are categorized as the intensity of DNA fragmentation has been observed between 50 and 500 µg/L concentrations of Cr2O3-Ps exposed to rainbow trout spermatozoa. At the end of this study, we determined that the effective concentrations (EC50) were 76.67 µg/L for VSL and 87.77 µg/L for VCL. Finally, these results about Cr2O3-Ps may say to be major risk concentrations over 70 µg/L for fish reproduction in aquatic environments.


Subject(s)
Oncorhynchus mykiss , Animals , Male , DNA Fragmentation , Oxides/pharmacology , Chromium/toxicity , Spermatozoa
10.
Animals (Basel) ; 12(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36230294

ABSTRACT

The roughscale sole, Clidoderma asperrimum is categorized as an endangered species. Sperm freezing is essential for preserving gametes. This study examined the CPA concentration, diluent, dilution ratio, and thawing temperature to design a sperm cryopreservation protocol for roughscale sole. The variables examined included sperm motility and kinematics, cell survival, fertilization, and DNA fragmentation. Sperm motility parameters were assessed via computer-assisted sperm analysis using a CEROS II instrument. Cell survival rate and DNA damage were assessed using the Cell Counting Kit-8 and single-cell gel electrophoresis assay, respectively. Sperm preservation was tested using several CPAs, including ethylene glycol, dimethyl sulfoxide (DMSO), glycerol, propylene glycol, and methanol. The diluents tested were 300 mM sucrose, 300 mM glucose, Stein's solution, Ringer's solution, and Hank's solution. The optimal conditions for sperm cryopreservation were 10% DMSO + Stein's solution. After thawing, sperm motility was highest with a 1:1 dilution ratio (sperm to CPA + diluent), at 69.20 ± 0.32%; thawing at 10 °C was optimal for post-thaw motility (72.03 ± 0.95%). The highest fertilization rate (40.00 ± 1.22%) was obtained using DMSO. The fresh sperm had the lowest tail DNA, followed by 10% DMSO + Stein's solution. The developed cryopreservation methods can be used in roughscale sole hatcheries.

11.
Chemosphere ; 303(Pt 2): 135152, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35649441

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that pose serious challenges to aquatic animals and environments. Compared with BDE-47 which was one of the most toxic congeners known to date, BDE-209 is less toxic with higher abundance in biotic and abiotic samples. In this study, we have explored the effects of BDE-47 and BDE-209 at different concentrations on the radical oxygen species (ROS) levels and the antioxidant defense system of Brachionus plicatilis. Antioxidant indexes were measured, including total protein content (TSP), the activities of antioxidant enzymes, lipid peroxidation and DNA damage. The results indicated that while low concentrations of PBDEs could activate the antioxidant defense mechanisms, prolonged exposure to higher concentrations of PBDEs could impair the antioxidative capacity of B.plicatilis (P < 0.05). The overwhelming of the B.plicatilis antioxidant defense mechanism led to an accumulation of free radicals, resulting in the overactivation of lipid peroxidation and the increased frequency of DNA damage (P < 0.05). By studying the toxicity of PBDEs and the detoxification mechanism of B.plicatilis, our research has revealed useful indexes for detecting and monitoring the level of BDE-47 and BDE-209 in the future. Altogether, this study holds immense value in the field of ecotoxicology and environmental safety and will aid in the proper management of PBDEs pollution.


Subject(s)
Halogenated Diphenyl Ethers , Rotifera , Animals , Antioxidants/metabolism , Defense Mechanisms , Environmental Monitoring , Halogenated Diphenyl Ethers/metabolism
12.
J Hazard Mater ; 424(Pt C): 127578, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34736209

ABSTRACT

Given the wide use of plastic and pesticides in agriculture, microplastics (MP) and the herbicide 2,4 dichloro-phenoxy-acetic acid (2-4-D) can be present simultaneously in soil. Nevertheless, little is known about their combined toxicity. In this study, Eisenia andrei was exposed to environmental MP (100 µg kg-1 soil) and 2,4-D (7 mg kg-1 soil) for 7 and 14 days. Bioaccumulation, genotoxicity, oxidative stress and gene expression level were assessed. Results revealed that MP increased 2,4-D bioaccumulation in earthworms. Simultaneous exposure to both these pollutants caused a significant reduction in lysosomal membrane stability (LMS) and an increase in micronuclei (MNi) frequency. Biochemical analysis revealed oxidative alterations in earthworms exposed to all treatments; being very pronounced in earthworms exposed to the mixture in terms of increase in glutathione-S-Transferase (GST), catalase (CAT) and malondialdehydes accumulation (MDA). Furthermore, an up-regulation in cat and gst expression level was recorded in worms exposed to single or mixture treatment, except MP in case of gst. Our data highlight the toxicity of the combined exposure to MP and 2,4-D and afford new insights into the potential ecological risks posed by MP in terrestrial ecosystems.


Subject(s)
Herbicides , Oligochaeta , Soil Pollutants , 2,4-Dichlorophenoxyacetic Acid/toxicity , Animals , Catalase/metabolism , Ecosystem , Herbicides/toxicity , Microplastics , Oligochaeta/metabolism , Oxidative Stress , Plastics , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
13.
Acta Naturae ; 13(3): 122-125, 2021.
Article in English | MEDLINE | ID: mdl-34707905

ABSTRACT

The nucleotide excision repair (NER) is one of the main repair systems present in the cells of living organisms. It is responsible for the removal of a wide range of bulky DNA lesions. We succeeded in developing a method for assessing the efficiency of NER in the cell (ex vivo), which is a method based on the recovery of TagRFP fluorescent protein production through repair of the damage that blocks the expression of the appropriate gene. Our constructed plasmids containing bulky nFlu or nAnt lesions near the tagrfp gene promoter were shown to undergo repair in eukaryotic cells (HEK 293T) and that they can be used to analyze the efficiency of NER ex vivo. A comparative analysis of the time dependence of fluorescent cells accumulation after transfection with nFlu- and nAnt-DNA revealed that there are differences in how efficient their repair by the NER system of HEK 293T cells can be. The method can be used to assess the cell repair status and the repair efficiency of different structural damages.

14.
BMC Med Genomics ; 14(1): 192, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34320984

ABSTRACT

BACKGROUND: Recently, a next-generation sequencing (NGS)-based method has been used for the successful detection of circulating tumor DNA (ctDNA) in various cancer types. Thus, the use of NGS on liquid biopsies will improve cancer diagnosis and prognosis. However, the low-allelic fraction of ctDNA poses a challenge for the sensitive and specific detection of tumor variants in cell-free DNA (cfDNA). To distinguish true variants from false positives, the characteristics of errors that occur during sample preparation and sequencing need to be elucidated. METHODS: We generated capture-based targeted deep sequencing data from plasma cfDNA and peripheral blood leucocyte (PBL) gDNA to profile background errors. To reveal cfDNA-associated DNA lesions, background error profiles from two sample types were compared in each nucleotide substitution class. RESULTS: In this study, we determined the prevalence of single nucleotide substitutions in cfDNA sequencing data to identify DNA damage preferentially associated with cfDNA. On comparing sequencing errors between cfDNA and cellular genomic DNA (gDNA), we observed that the total substitution error rates in cfDNA were significantly higher than those in gDNA. When the substitution errors were divided into 12 substitution error classes, C:G>T:A substitution errors constituted the largest difference between cfDNA and gDNA samples. When the substitution error rates were estimated based on the location of DNA-fragment substitutions, the differences in error rates of most substitution classes between cfDNA and gDNA samples were observed only at the ends of the DNA fragments. In contrast, C:G>T:A substitution errors in the cfDNA samples were not particularly associated with DNA-fragment ends. All observations were verified in an independent dataset. CONCLUSIONS: Our data suggested that cytosine deamination increased in cfDNA compared to that in cellular gDNA. Such an observation might be due to the attenuation of DNA damage repair before the release of cfDNA and/or the accumulation of cytosine deamination after it. These findings can contribute to a better understanding of cfDNA-associated DNA damage, which will enable the accurate analysis of somatic variants present in cfDNA at an extremely low frequency.


Subject(s)
Circulating Tumor DNA
15.
BMC Complement Med Ther ; 21(1): 198, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34253216

ABSTRACT

BACKGROUND: Degenerative kidney diseases are mostly associated with oxidative stress. Natural products are considered as the antioxidants enrich food that can restrict the progress of oxidative stress induced disorders. Therefore, the present study was aimed to evaluate the renal protective effect of Ajuga parviflora leaf extract in carbon tetrachloride intoxicated rats. METHODS: The hydromethanolic extract of A. parviflora leaves was obtained by extracting twice in 60% methanol. The principal bioactive constituents were detected by LC/MS analysis. Toxicity of plant extract was assessed using brine shrimp lethal toxicity test and acute toxicity model on healthy Sprague-Dawley male rats. Nephroprotective effects of plant extract were also evaluated on rats by inducing CCl4 renal toxicity in comparison with positive control and naïve groups. The dose of A. parviflora administered to animal was 100, 200 and 300 mg/kg. All administrations were given orally on an alternate day basis for 30 days. Urine and serum biomarkers were analyzed, along with antioxidant enzymes. Finally, the DNA damages, lipid peroxides, hydrogen peroxides and nitrites were assessed in rat's renal tissue. The histopathology alterations in renal tissues were further studied for kidney damages. RESULTS: The LC/MS analysis confirmed the presence of different important pharmacological compounds in A. parviflora methanolic leaf extract. The key bioactive compounds include pyocyanin, zonisamide, D Saccharic acid, altretamine, carbocyclic thromboxane A2, Sinapyl alcohol, and vitamin C. The important polypeptides identified include Lys-Tyr-Lys, His-His-Lys, Met-Asp-Arg, Phe-Val-Arg, and PyroGlu-Val-Arg. The LD50 of A. parviflora was found to be > 1000 µg/mL. A. parviflora administration significantly subsides CCl4 toxicity in rats, reduced the elevated level of RBCs, pus and epithelial cells. The abnormal elevated level of specific gravity, creatinine, urobilinogen, urea and albumin were also reduced to normal physiological level. The reduced urinary protein and pH were also normalized. The serum urobilinogen, urea and total bilirubin levels were also reversed to normal levels while the diminished albumin and total protein levels also came to normal. The important phase I and II enzyme levels were also reversed in A. parviflora administered rats. The H2O2, thiobarbituric acid reactive substance (TBARS) and nitrite levels were significantly decreased. Furthermore, the damaged DNA and histopathological changes in CCl4 exposed rats were also highly significantly reversed after the administration of A. parviflora. All effects were significant (P < 0.05) and highly significant (P < 0.005) at 100 and 300 mg/kg respectively. CONCLUSION: The restored urine and serum profile of various parameters to normal physiological levels suggests that the A. parviflora has potential antioxidant and repairing potential in renal disorders.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Ajuga/metabolism , Ajuga/toxicity , Antioxidants/pharmacology , Carbon Tetrachloride/toxicity , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Rats , Rats, Sprague-Dawley
16.
Breast Dis ; 40(3): 143-154, 2021.
Article in English | MEDLINE | ID: mdl-33867352

ABSTRACT

Breast cancer is one of the leading cancers nowadays. The genetical mechanism behind breast cancer development is an intricate one. In this review, the genetical background of breast cancer, particularly BRCA 1 and BRCA 2 had been included. Moreover, to summarize the genetics of breast cancer, the recent and ongoing preclinical and clinical studies on the treatment of BRCA-associated breast cancer had also been included. A prime knowledge is that the BRCA gene is the basis of breast cancer risk. How it mediates cell proliferation and associated mechanisms are reviewed here. BRCA 1 gene can influence all phases of the cell cycle and regulate cell cycle progression. BRCA 1 gene can also respond to DNA damages and induce responsive mechanisms. The action of the BRCA gene on associated protein has a wide consideration in breast cancer development. Heterogeneity in breast cancer makes them a fascinating and challenging stream to diagnose and treat. Several clinical therapies are available for breast cancer treatments. Chemotherapy, endocrine therapy, radiation therapy and immunotherapy are the milestones in the cancer treatments. Ral binding protein 1 is a promising target for breast cancer treatment and the platinum-based chemotherapies are the other remarkable fields. In immunotherapy, the usage of anti-programmed death (PD)-1 antibody is a new class of cancer immunotherapy that hinders immune effecter inhibition and potentially expanding preexisting anticancer immune responses. Breast cancer genetics and treatment strategies are crucial in escalating survival rates.


Subject(s)
Breast Neoplasms/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Drug Therapy , Female , Humans , Immunotherapy , Risk Factors
17.
Anticancer Agents Med Chem ; 21(8): 1019-1026, 2021.
Article in English | MEDLINE | ID: mdl-32951579

ABSTRACT

BACKGROUND: The search for novel metallic chemical compounds with toxicogenic effects has been of great importance for more efficient cancer treatment. OBJECTIVE: The study evaluated the cytotoxic, genotoxic and mutagenic activity of organoteluran RF07 in the S-180 cell line. METHODS: The bioassays used were cell viability with 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test, evaluation of apoptosis and necrosis using fluorescence and flow cytometry, cytokinesisblock micronucleus test and comet assay. The compound was tested at 1; 2.5 and 5µM. RESULTS: The results showed the cytotoxicity of RF07 at concentrations of 2.5, 5, 10 and 20µM when compared to the negative control. For genotoxicity tests, RF07 showed effects in all concentrations assessed by increased index and frequencies of damage and mutagenic alterations. The compound was also cytotoxic due to the significant decrease in the nuclear division index, with significant values of apoptosis and necrosis. The results of fluorescence and flow cytometry showed apoptosis as the main type of cell death caused by RF07 at 5µM, which is thought to avoid an aggressive immune response of the organism. CONCLUSION: In addition to cytotoxic and genotoxic effects, RF07 creates good perspectives for future antitumor formulations.


Subject(s)
Antineoplastic Agents/chemistry , DNA Damage/drug effects , Organometallic Compounds/chemistry , Sarcoma 180/drug therapy , Spiro Compounds/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Mutagenicity Tests , Mutagens/metabolism , Necrosis/drug therapy , Organometallic Compounds/pharmacology , Signal Transduction , Spiro Compounds/pharmacology
18.
Anticancer Agents Med Chem ; 20(10): 1266-1273, 2020.
Article in English | MEDLINE | ID: mdl-32275495

ABSTRACT

AIMS: Arsenic has carcinogenic properties because of the formation of Reactive Oxygen Species (ROS). ROS damages different macromolecules, tissues and organs, and severely exhausts cellular antioxidants. BACKGROUND: Cytosolic and mitochondrial contribution of ROS production by arsenic are not well reported. In regard to the issues of therapy against arsenic or any other toxicity, natural product has gained its popularity due to its less side-effects and non-invasive nature. OBJECTIVES: Here, as an ethnomedicine, the flesh-extract (BBE; 100mg/100g bw) of Bellamya bengalensis (an aquatic mollusk) was applied in arsenic intoxicated (0.6 ppm/100g bw/for 28 days alone or in combination with BBE) experimental rats. Our objective was to study the anti-oxidative and anti-apoptotic role of BBE in hepato-gastrointestinal tissue damage by arsenic. METHODS: DNA fragmentation assay, catalase activity (gel-zymogram assay) suggests that BBE has a strong protective role against arsenic toxicity, which is decisively demonstrated in hepatic histoarchitecture study by HE (hematoxylin and eosin) staining and by intestinal PAS (Periodic Acid Schiff) staining. RESULTS: Measurement of mitochondrial-membrane-potential by fluorescent microcopy clearly demonstrated less membrane damage and lower release of the redox-active inner-membrane product (cytochrome-C, ubiquinone, etc.) in BBE supplemented group compared to that of the only arsenic fed group. The present study clearly suggests that mitochondrial disintegrity is one of the major causes of ROS mediated tissue damage by arsenic. CONCLUSION: This study also offers an option for prevention/treatment against arsenic toxicity and its carcinogenicity by widely available low-cost, non-invasive Bellamya extract by protecting cytoskeleton, DNA and mitochondria in the cell.


Subject(s)
DNA/drug effects , Intestines/drug effects , Liver/drug effects , Mitochondria/drug effects , Protective Agents/pharmacology , Administration, Oral , Animals , Arsenites/administration & dosage , Dose-Response Relationship, Drug , Fresh Water , Intestines/pathology , Liver/pathology , Male , Medicine, Traditional , Molecular Structure , Oxidative Stress/drug effects , Protective Agents/chemistry , Protective Agents/isolation & purification , Rats , Snails , Sodium Compounds/administration & dosage , Structure-Activity Relationship
19.
Lipids Health Dis ; 19(1): 46, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32178678

ABSTRACT

BACKGROUND: Myrin®-p Forte is an anti-tuberclosis agent that can cause hepatic injuries in clinical settings. Maytenus royleanus (Celastraceae) is a medicinal plant, possesses antioxidant and anticancer activities. The hepatoprotective effect of the methanol extract of Maytenus royleanus leaves (MEM) against Myrin®-p Forte induced hepatotoxicity in mice was investigated. METHODS: Mice were randomly parted into six groups (n = 6). Fixed-dose combination of Myrin®-p Forte (13.5 mg/kg Rifampicin, 6.75 mg/kg Isoniazid, 36.0 mg/kg Pyrazinamide and 24.8 mg/kg Ethambutol; RIPE] was administered for 15 days to induce liver injury. In treatment groups MEM (200 mg/kg and 400 mg/kg doses) and Vitamin B6 (180mg/kg) were administered prior to RIPE. Control group received 2% DMSO. Serum liver function tests, DNA damage, tissue antioxidant enzymes and histopathological alterations were studied. HPLC analysis was performed to determine the chemical composition using standard compounds. RESULTS: The quercitin, gallic acid, luteolin, viteixin, apigenin, kaempherol, hyperoside and myricetin contents of all samples were determined by reverse-phase HPLC. Quercetin (0.217 mg/g dry weight) and luteolin (0.141 mg/g dry weight) were the major flavonoids identified in MEM. Myrin®-p Forte markedly (p < 0.05) deteriorated lipid profile and upregulated the concentration of LDH, AST, ALP, ALT and γ-GT in serum along with DNA fragmentation (37.13 ± 0.47%) and histopathological injuries in hepatic tissues of mice compared with the control group. Myrin®-p Forte increased (p < 0.001) lipid peroxidation and H2O2 while decreased (p < 0.001) the activity level of CAT, SOD, POD, GPx, GST, GSR, γ-GT and GSH. Co-administration of MEM (200 mg/kg; 400 mg/kg) or the vitamin B6 (180 mg/kg) to Myrin®-p Forte administered mice significantly ameliorated LDL, cholesterol, HDL and triglyceride content. Furthermore, MEM dose dependently corrected serum liver function tests, decrease % DNA fragmentation (17.82 ± 0.35 and 7.21 ± 0.32 respectively), DNA damage. MEM treated protect RIPE induced oxidative damage by enhancing antioxidants to oxidants balance. Histological examination comprehends biochemical findings. CONCLUSION: The antioxidant effects of MEM exerted the hepatoprotective potential against the Myrin®-p Forte induced hepatotoxicity in mice.


Subject(s)
Antineoplastic Agents/adverse effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Maytenus/chemistry , Plant Leaves/chemistry , Animals , Chromatography, High Pressure Liquid , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Male , Mice , Oxidative Stress/drug effects , Peroxidase/metabolism , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
20.
Environ Sci Pollut Res Int ; 27(8): 7957-7966, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31893363

ABSTRACT

The increased use of pesticides is the origin of multiple damages to the environment and to humans; thus, the search for new strategies to reduce or even protect the toxic effects caused by these synthetic products became a necessity. In this context, our study attempted to evaluate the protective effects of fennel essential oil (FEO), the main essential oil extracted from Faeniculum vulgare Mill., a plant with aromatic, flavorful, and medicinal uses, against toxicity induced by an insecticide-triflumuron (TFM)-in human carcinoma cells (HCT116). Our methodological approach consists of the cytotoxicity assay starting with the cell viability test, the ROS generation, the malondialdehyde (MDA) production, the DNA fragmentation, and the measurement of some antioxidant enzymes activities such as catalase (CAT) and superoxide dismutase (SOD). Also, we measured the mitochondrial transmembrane potential. The outcome of the current study showed clearly that after 2 h of HCT 116 cell pretreatment with FEO, there were increase in cell viability, reduction in ROS generation, and modulation in CAT and SOD activities induced by TFM. In the same manner, significant decreases in MDA levels were found. Mainly, the results indicated a perceptible decrease in DNA damages and a significant reduction in the mitochondrial membrane potential loss. Our work demonstrates that FEO can be an important protector against toxic effects induced by TFM in HCT 116 cells.


Subject(s)
Antioxidants/chemistry , Benzamides/chemistry , Catalase/chemistry , Colonic Neoplasms/physiopathology , Foeniculum , Insecticides , Oils, Volatile , Superoxide Dismutase/chemistry , Benzamides/toxicity , Catalase/metabolism , Colonic Neoplasms/chemistry , DNA Damage , Humans , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL