Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Chembiochem ; : e202400368, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954271

ABSTRACT

Binary (also known as split) nucleic acid enzymes have emerged as novel tools in biosensors. We report a new split strategy to split the DNAzyme kinase into two independent and non-functional fragments, denoted DK1sub and DK1enz. In the presence of the specific target, their free ends are brought sufficiently close to interact with each other without the formation of Watson-Crick base pairings between Dk1sub and Dk1enz, thus allowing the DNA phosphorylation reaction. We term this approach proximity-dependent activation of split DNAzyme kinase (ProxSDK). The utility of ProxSDK is demonstrated by engineering a biosensing system that is capable of measuring specific DNA-protein interactions. We envision that the approach described herein will find useful applications in biosensing, imaging, and clinical diagnosis.

2.
Adv Colloid Interface Sci ; 326: 103133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547652

ABSTRACT

DNA is a highly charged polyelectrolyte and is prone to associative phase separation driven by the presence of multivalent cations, charged surfactants, proteins, polymers and colloids. The process of DNA phase separation induced by positively charged species is often called DNA condensation. Generally, it refers to either intramolecular DNA compaction (coil-globule transition) or intermolecular DNA aggregation with macroscopic phase separation, but the formation of a DNA liquid crystalline system is also displayed. This has traditionally been described by polyelectrolyte theory and qualitative (Flory-Huggins-based) polymer theory approaches. DNA in the cell nucleus is packed into chromatin wound around the histone octamer (a protein complex comprising two copies each of the four histone proteins H2A, H2B, H3 and H4) to form nucleosomes separated by linker DNA. During the last decade, the phenomenon of the formation of biomolecular condensates (dynamic droplets) by liquid-liquid phase separation (LLPS) has emerged as a generally important mechanism for the formation of membraneless organelles from proteins, nucleic acids and their complexes. DNA and chromatin droplet formation through LLPS has recently received much attention by in vitro as well as in vivo studies that established the importance of this for compartmentalisation in the cell nucleus. Here, we review DNA and chromatin LLPS from a general colloid physical chemistry perspective. We start with a general discussion of colloidal phase separation in aqueous solutions and review the original (pre-LLPS era) work on DNA (macroscopic) phase separation for simpler systems with DNA in the presence of multivalent cations and well-defined surfactants and colloids. Following that, we discuss and illustrate the similarities of such macroscopic phase separation with the general behaviour of LLPS droplet formation by associative phase separation for DNA-protein systems, including chromatin; we also note cases of segregative association. The review ends with a discussion of chromatin LLPS in vivo and its physiological significance.


Subject(s)
Chromatin , Histones , Histones/metabolism , Polyelectrolytes , Phase Separation , DNA , Polymers/metabolism , Chemistry, Physical , Colloids , Cations/metabolism , Surface-Active Agents
3.
Annu Rev Microbiol ; 77: 1-22, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713460

ABSTRACT

My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium Listeria monocytogenes. All this has been possible thanks to a number of talented team members who ultimately became friends.


Subject(s)
Listeria , Humans , Models, Biological , Bacteria , Virulence
4.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176041

ABSTRACT

High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.


Subject(s)
HMGB1 Protein , HMGB2 Protein , HMGB2 Protein/genetics , HMGB2 Protein/metabolism , HMGB1 Protein/metabolism , HMGB Proteins/metabolism , Transcription Factors , DNA/metabolism , Nuclear Proteins , High Mobility Group Proteins
5.
Comput Struct Biotechnol J ; 21: 2858-2872, 2023.
Article in English | MEDLINE | ID: mdl-37216015

ABSTRACT

Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.

6.
Proc Natl Acad Sci U S A ; 120(22): e2214209120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216533

ABSTRACT

Poly(ADP-ribose) polymerases (PARPs) play key roles in DNA damage repair pathways in eukaryotic cells. Human PARPs 1 and 2 are catalytically activated by damage in the form of both double-strand and single-strand DNA breaks. Recent structural work indicates that PARP2 can also bridge two DNA double-strand breaks (DSBs), revealing a potential role in stabilizing broken DNA ends. In this paper, we have developed a magnetic tweezers-based assay in order to measure the mechanical stability and interaction kinetics of proteins bridging across the two ends of a DNA DSB. We find that PARP2 forms a remarkably stable mechanical link (rupture force ~85 pN) across blunt-end 5'-phosphorylated DSBs and restores torsional continuity allowing DNA supercoiling. We characterize the rupture force for different overhang types and show that PARP2 switches between bridging and end-binding modes depending on whether the break is blunt-ended or has a short 5' or 3' overhang. In contrast, PARP1 was not observed to form a bridging interaction across blunt or short overhang DSBs and competed away PARP2 bridge formation, indicating that it binds stably but without linking together the two broken DNA ends. Our work gives insights into the fundamental mechanisms of PARP1 and PARP2 interactions at double-strand DNA breaks and presents a unique experimental approach to studying DNA DSB repair pathways.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Humans , Poly(ADP-ribose) Polymerases/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA/metabolism , Spectrum Analysis , DNA Damage
8.
J Biol Chem ; 299(5): 104637, 2023 05.
Article in English | MEDLINE | ID: mdl-36963493

ABSTRACT

The bacterial chromosome, known as its nucleoid, is an amorphous assemblage of globular nucleoprotein domains. It exists in a state of phase separation from the cell's cytoplasm, as an irregularly-shaped, membrane-less, intracellular compartment. This state (the nature of which remains largely unknown) is maintained through bacterial generations ad infinitum. Here, we show that HU and Dps, two of the most abundant nucleoid-associated proteins (NAPs) of Escherichia coli, undergo spontaneous complex coacervation with different forms of DNA/RNA, both individually and in each other's presence, to cause accretion and compaction of DNA/RNA into liquid-liquid phase separated condensates in vitro. Upon mixing with nucleic acids, HU-A and HU-B form (a) biphasic heterotypic mixed condensates in which HU-B helps to lower the Csat of HU-A and also (b) multiphasic heterotypic condensates, with Dps, in which demixed domains display different contents of HU and Dps. We believe that these modes of complex coacervation that are seen in vitro can serve as models for the in vivo relationships among NAPs in nucleoids, involving local and global variations in the relative abundances of the different NAPs, especially in demixed subdomains that are characterized by differing grades of phase separation. Our results clearly demonstrate some quantitative, and some qualitative, differences in the coacervating abilities of different NAPs with DNA, potentially explaining (i) why E. coli has two isoforms of HU, and (ii) why changes in the abundances of HU and Dps facilitate the lag, logarithmic, and stationary phases of E. coli growth.


Subject(s)
Bacterial Outer Membrane Proteins , DNA, Bacterial , DNA-Binding Proteins , Escherichia coli Proteins , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/ultrastructure , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Protein Isoforms/metabolism , RNA, Bacterial
9.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834988

ABSTRACT

Non-histone nuclear proteins HMGB1 and HMGB2 (High Mobility Group) are involved in many biological processes, such as replication, transcription, and repair. The HMGB1 and HMGB2 proteins consist of a short N-terminal region, two DNA-binding domains, A and B, and a C-terminal sequence of glutamic and aspartic acids. In this work, the structural organization of calf thymus HMGB1 and HMGB2 proteins and their complexes with DNA were studied using UV circular dichroism (CD) spectroscopy. Post-translational modifications (PTM) of HMGB1 and HMGB2 proteins were determined with MALDI mass spectrometry. We have shown that despite the similar primary structures of the HMGB1 and HMGB2 proteins, their post-translational modifications (PTMs) demonstrate quite different patterns. The HMGB1 PTMs are located predominantly in the DNA-binding A-domain and linker region connecting the A and B domains. On the contrary, HMGB2 PTMs are found mostly in the B-domain and within the linker region. It was also shown that, despite the high degree of homology between HMGB1 and HMGB2, the secondary structure of these proteins is also slightly different. We believe that the revealed structural properties might determine the difference in the functioning of the HMGB1 and HMGB2 as well as their protein partners.


Subject(s)
HMGB1 Protein , HMGB2 Protein , DNA/chemistry , DNA/metabolism , High Mobility Group Proteins , HMGB1 Protein/chemistry , HMGB1 Protein/metabolism , HMGB2 Protein/chemistry , HMGB2 Protein/metabolism , Transcription Factors , Protein Binding , Animals , Cattle
10.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674785

ABSTRACT

The androgen receptor (AR) is an important drug target in prostate cancer and a driver of castration-resistant prostate cancer (CRPC). A significant challenge in designing effective drugs lies in targeting constitutively active AR variants and, most importantly, nearly all AR variants lacking the ligand-binding domain (LBD). Recent findings show that an AR's constitutive activity may occur in the presence of somatic DNA mutations within non-coding regions, but the role of these mutations remains elusive. The discovery of new drugs targeting CRPC is hampered by the limited molecular understanding of how AR binds mutated DNA sequences, frequently observed in prostate cancer, and how mutations within the protein and DNA regulate AR-DNA interactions. Using atomistic molecular dynamics (MD) simulations and quantum mechanical calculations, we focused our efforts on (i) rationalising the role of several activating DBD mutations linked to prostate cancer, and (ii) DBD interactions in the presence of abasic DNA lesions, which frequently occur in CRPC. Our results elucidate the role of mutations within DBD through their modulation of the intrinsic dynamics of the DBD-DNA ternary complex. Furthermore, our results indicate that the DNA apurinic lesions occurring in the androgen-responsive element (ARE) enhance direct AR-DNA interactions and stabilise the DBD homodimerisation interface. Moreover, our results strongly suggest that those abasic lesions may form reversible covalent crosslinks between DNA and lysine residues of an AR via a Schiff base. In addition to providing an atomistic model explaining how protein mutations within the AR DNA-binding domain affect AR dimerisation and AR-DNA interactions, our findings provide insight into how somatic mutations occurring in DNA non-coding regions may activate ARs. These mutations are frequently observed in prostate cancer and may contribute to disease progression by enhancing direct AR-DNA interactions.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgens/metabolism , Protein Domains , DNA/genetics
11.
Tree Physiol ; 43(4): 675-689, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36637421

ABSTRACT

The regulation of DNA accessibility by histone modification has emerged as a paradigm of developmental and environmental programming. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a versatile tool to investigate in vivo protein-DNA interaction and has enabled advances in mechanistic understanding of physiologies. The technique has been successfully demonstrated in several plant species and tissues; however, it has remained challenging in woody tissues, in particular complex structures such as perennating buds. Here we developed a ChIP method specifically for mature dormant buds of grapevine (Vitis vinifera cv. Cabernet Sauvignon). Each step of the protocol was systematically optimized, including crosslinking, chromatin extraction, sonication and antibody validation. Analysis of histone H3-enriched DNA was performed to evaluate the success of the protocol and identify occupancy of histone H3 along grapevine bud chromatin. To our best knowledge, this is the first ChIP experiment protocol optimized for the grapevine bud system.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Vitis , Histones/genetics , Wood , Chromatin , Vitis/genetics
12.
Mol Cell ; 83(2): 167-185.e9, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36577401

ABSTRACT

The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.


Subject(s)
DNA Repair , DNA , Cryoelectron Microscopy , DNA/genetics , Acid Anhydride Hydrolases/genetics , DNA Breaks, Double-Stranded , DNA Repair Enzymes/metabolism , Adenosine Triphosphate/metabolism , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Cell Cycle Proteins/metabolism
13.
Methods Mol Biol ; 2599: 1-10, 2023.
Article in English | MEDLINE | ID: mdl-36427138

ABSTRACT

DNA-protein interactions (DPIs) are critical to all living organisms, particularly in the regulation of gene expression, replication, packing, recombination, and DNA repair, as well as RNA transport and translation. Many laboratory techniques have been developed to study the complex interactions of proteins with DNA, such as chromatin immunoprecipitation (ChIP) assays, DNA electrophoretic mobility shift assay (EMSA), and oligonucleotide pull-down assays. Here we describe an effective approach to identify potential DNA-binding proteins: a pull-down assay using DNA-conjugated beads with a customized competition strategy, which conferred a more effective and efficient approach to determine the interaction between DNA and protein(s), therefore dramatically improving the progress to investigate novel DNA-binding proteins.


Subject(s)
Biological Assay , DNA , DNA/genetics , Electrophoretic Mobility Shift Assay , Oligonucleotides , DNA-Binding Proteins/genetics
14.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499388

ABSTRACT

The peptide hormone insulin-like 3 (INSL3) is produced almost exclusively by Leydig cells of the male gonad. INSL3 has several functions such as fetal testis descent and bone metabolism in adults. Insl3 gene expression in Leydig cells is not hormonally regulated but rather is constitutively expressed. The regulatory region of the Insl3 gene has been described in various species; moreover, functional studies have revealed that the Insl3 promoter is regulated by various transcription factors that include the nuclear receptors AR, NUR77, COUP-TFII, LRH1, and SF1, as well as the Krüppel-like factor KLF6. However, these transcription factors are also found in several tissues that do not express Insl3, indicating that other, yet unidentified factors, must be involved to drive Insl3 expression specifically in Leydig cells. Through a fine functional promoter analysis, we have identified a 35-bp region that is responsible for conferring 70% of the activity of the mouse Insl3 promoter in Leydig cells. All tri- and dinucleotide mutations introduced dramatically reduced Insl3 promoter activity, indicating that the entire 35-bp sequence is required. Nuclear proteins from MA-10 Leydig cells bound specifically to the 35-bp region. The 35-bp sequence contains GC- and GA-rich motifs as well as potential binding elements for members of the CREB, C/EBP, AP1, AP2, and NF-κB families. The Insl3 promoter was indeed activated 2-fold by NF-κB p50 but not by other transcription factors tested. These results help to further define the regulation of Insl3 gene transcription in Leydig cells.


Subject(s)
Insulin , Leydig Cells , NF-kappa B , Animals , Male , Mice , Gene Expression Regulation , Insulin/metabolism , Leydig Cells/metabolism , NF-kappa B/metabolism , Promoter Regions, Genetic , Testis/metabolism
15.
Mol Cell ; 82(22): 4353-4367.e6, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36272411

ABSTRACT

Adaptation in CRISPR-Cas systems immunizes bacteria and archaea against mobile genetic elements. In many DNA-targeting systems, the Cas4-Cas1-Cas2 complex is required for selection and processing of DNA segments containing PAM sequences prior to integration of these "prespacer" substrates as spacers in the CRISPR array. We determined cryo-EM structures of the Cas4-Cas1-Cas2 adaptation complex from the type I-C system that encodes standalone Cas1 and Cas4 proteins. The structures reveal how Cas4 specifically reads out bases within the PAM sequence and how interactions with both Cas1 and Cas2 activate Cas4 endonuclease activity. The Cas4-PAM interaction ensures tight binding between the adaptation complex and the prespacer, significantly enhancing integration of the non-PAM end into the CRISPR array and ensuring correct spacer orientation. Corroborated with our biochemical results, Cas4-Cas1-Cas2 structures with substrates representing various stages of CRISPR adaptation reveal a temporally resolved mechanism for maturation and integration of functional spacers into the CRISPR array.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/metabolism
16.
J Bacteriol ; 204(9): e0020022, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36043862

ABSTRACT

It was previously demonstrated that anthrax toxin activator (AtxA) binds directly to the σA-like promoter region of pagA (encoding protective antigen, PA) immediately upstream of the RNA polymerase binding site. In this study, using electrophoretic mobility shift assays and in vivo analyses, we identified AtxA-binding sites in the promoter regions of the lef and cya genes (encoding lethal and edema factors, respectively) and of two Bacillus anthracis small RNAs (XrrA and XrrB). Activities of all four newly studied promoters were enhanced in the presence of CO2/bicarbonate and AtxA, as previously seen for the pagA promoter. Notably, the cya promoter was less activated by AtxA and CO2/bicarbonate conditions. The putative promoter of a recently described third small RNA, XrrC, showed a negligible response to AtxA and CO2/bicarbonate. RNA polymerase binding sites of the newly studied promoters show no consensus and differ from the σA-like promoter region of pagA. In silico analysis of the probable AtxA binding sites in the studied promoters revealed several palindromes. All the analyzed palindromes showed very little overlap with the σA-like pagA promoter. It remains unclear as to how AtxA and DNA-dependent RNA-polymerase identify such diverse DNA-sequences and differentially regulate promoter activation of the studied genes. IMPORTANCE Anthrax toxin activator (AtxA) is the major virulence regulator of Bacillus anthracis, the causative agent of anthrax. Understanding AtxA's mechanism of regulation could facilitate the development of therapeutics for B. anthracis infection. We provide evidence that AtxA binds to the promoters of the cya, lef, xrrA, and xrrB genes. In vivo assays confirmed the activities of all four promoters were enhanced in the presence of AtxA and CO2/bicarbonate, as previously seen for the pagA promoter. The cya and lef genes encode important toxin components. The xrrA and xrrB genes encode sRNAs with a suggested function as cell physiology regulators. Our data provides further evidence for the direct regulatory role of AtxA that was previously shown with the pagA promoter.


Subject(s)
Bacillus anthracis , Antigens, Bacterial/metabolism , Bacillus anthracis/metabolism , Bacterial Proteins/metabolism , Bicarbonates/metabolism , Carbon Dioxide/metabolism , DNA/metabolism , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , RNA/metabolism
17.
Biophys Rev ; 14(3): 635-654, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35791380

ABSTRACT

There are over 700,000 putative G4-quadruplexes (G4Qs) in the human genome, found largely in promoter regions, telomeres, and other regions of high regulation. Growing evidence links their presence to functionality in various cellular processes, where cellular proteins interact with them, either stabilizing and/or anchoring upon them, or unwinding them to allow a process to proceed. Interest in understanding and manipulating the plethora of processes regulated by these G4Qs has spawned a new area of small-molecule binder development, with attempts to mimic and block the associated G4-binding protein (G4BP). Despite the growing interest and focus on these G4Qs, there is limited data (in particular, high-resolution structural information), on the nature of these G4Q-G4BP interactions and what makes a G4BP selective to certain G4Qs, if in fact they are at all. This review summarizes the current literature on G4BPs with regards to their interactions with G4Qs, providing groupings for binding mode, drawing conclusions around commonalities and highlighting information on specific interactions where available.

18.
Chembiochem ; 23(18): e202200355, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35849116

ABSTRACT

2-(Aminooxy)-N-(quinolin-8-yl)acetamide was synthesized, and its ability to regulate activities of DNA polymerase was tested. In addition, we used the isothermal amplification technology to detect the content of 5-formyluracil sites in irradiated genomic DNA, which confirmed its capability for the detection of 5-formyluracil content in general samples. This study presents the first example of the determination of 5fU based on coordination chemistry.


Subject(s)
Nucleotides , Oximes , Acetamides , DNA/chemistry , Fluorouracil , Uracil/analogs & derivatives
19.
Curr Protoc ; 2(6): e445, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35714350

ABSTRACT

Cleavage under targets and release using nuclease (CUT&RUN) is a recently developed chromatin profiling technique that uses a targeted micrococcal nuclease cleavage strategy to obtain high-resolution binding profiles of protein factors or to map histones with specific post-translational modifications. Due to its high sensitivity, CUT&RUN allows quality binding profiles to be obtained with only a fraction of the starting material and sequencing depth typically required for other chromatin profiling techniques such as chromatin immunoprecipitation. Although CUT&RUN has been widely adopted in multiple model systems, it has rarely been utilized in Caenorhabditis elegans, a model system of great importance to genomic research. Cell dissociation techniques, which are required for this approach, can be challenging in C. elegans due to the toughness of the worm's cuticle and the sensitivity of the cells themselves. Here, we describe a robust CUT&RUN protocol for use in C. elegans to determine the genome-wide localization of protein factors and specific histone marks. With a simple protocol utilizing live, uncrosslinked tissue as the starting material, performing CUT&RUN in worms has the potential to produce physiologically relevant data at a higher resolution than chromatin immunoprecipitation. This protocol involves a simple dissociation step to uniformly permeabilize worms while avoiding sample loss or cell damage, resulting in high-quality CUT&RUN profiles with as few as 100 worms and detectable signal with as few as 10 worms. This represents a significant advancement over chromatin immunoprecipitation, which typically uses thousands or hundreds of thousands of worms for a single experiment. The protocols presented here provide a detailed description of worm growth, sample preparation, CUT&RUN workflow, library preparation for high-throughput sequencing, and a basic overview of data analysis, making CUT&RUN simple and accessible for any worm lab. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Growth and synchronization of C. elegans Basic Protocol 2: Worm dissociation, sample preparation, and optimization Basic Protocol 3: CUT&RUN chromatin profiling Alternate Protocol: Improving CUT&RUN signal using a secondary antibody Basic Protocol 4: CUT&RUN library preparation for Illumina high-throughput sequencing Basic Protocol 5: Basic data analysis using Linux.


Subject(s)
Caenorhabditis elegans , Chromatin , Animals , Caenorhabditis elegans/genetics , Chromatin/genetics , Chromatin Immunoprecipitation/methods , Histone Code , Histones/genetics
20.
Front Mol Biosci ; 9: 826593, 2022.
Article in English | MEDLINE | ID: mdl-35281261

ABSTRACT

DNA polymerases are intrinsically dynamic macromolecular machines. The purpose of this review is to describe the single-molecule Förster resonance energy transfer (smFRET) methods that are used to probe the conformational dynamics of DNA polymerases, focusing on E. coli DNA polymerase I. The studies reviewed here reveal the conformational dynamics underpinning the nucleotide selection, proofreading and 5' nuclease activities of Pol I. Moreover, the mechanisms revealed for Pol I are likely employed across the DNA polymerase family. smFRET methods have also been used to examine other aspects of DNA polymerase activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...