Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Front Genet ; 15: 1429844, 2024.
Article in English | MEDLINE | ID: mdl-39015772

ABSTRACT

Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.

2.
Bioorg Chem ; 151: 107652, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39024804

ABSTRACT

DNA methyltransferases (DNMTs) play a crucial role in genomic DNA methylation. In mammals, DNMTs regulate the dynamic patterns of DNA methylation in embryonic and adult cells. Abnormal functions of DNMTs are often indicative of cancers, including overall hypomethylation and partial hypermethylation of tumor suppressor genes (TSG), which accelerate the malignancy of tumors, worsen the condition of patients, and significantly exacerbate the difficulty of cancer treatment. Currently, nucleoside DNMT inhibitors such as Azacytidine and Decitabine have been approved by the FDA and EMA for the treatment of acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML), and myelodysplastic syndrome (MDS). Therefore, targeting DNMTs is a very promising anti-tumor strategy. This review mainly summarizes the therapeutic effects of DNMT inhibitors on cancers. It aims to provide more possibilities for the treatment of cancers by discovering more DNMT inhibitors with high activity, high selectivity, and good drug-like properties in the future.

3.
Future Med Chem ; : 1-22, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082677

ABSTRACT

Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in tumor progression by regulating gene expression. EZH2 inhibitors have emerged as promising anti-tumor agents due to their potential in cancer treatment strategies. However, single-target inhibitors often face limitations such as drug resistance and side effects. Dual-target inhibitors, exemplified by EZH1/2 inhibitor HH-2853(28), offer enhanced efficacy and reduced adverse effects. This review highlights recent advancements in dual inhibitors targeting EZH2 and other proteins like BRD4, PARP1, and EHMT2, emphasizing rational design, structure-activity relationships, and safety profiles, suggesting their potential in clinical applications.


[Box: see text].

4.
PeerJ ; 12: e17363, 2024.
Article in English | MEDLINE | ID: mdl-38766487

ABSTRACT

Background: Promoter hypermethylation of the tumor suppressor gene is one of the well-studied causes of cancer development. The drugs that reverse the process by driving demethylation could be a candidate for anticancer therapy. This study was designed to investigate the effects of arsenic disulfide on PTPL1 methylation in diffuse large B cell lymphoma (DLBCL). Methods: We knocked down the expression of PTPL1 in two DLBCL cell lines (i.e., DB and SU-DHL-4 cells) using siRNA. Then the DLBCL proliferation was determined in the presence of PTPL1 knockdown. The methylation of PTPL1 in DLBCL cells was analyzed by methylation specific PCR (MSPCR). The effect of arsenic disulfide on the PTPL1 methylation was determined in DLBCL cell lines in the presence of different concentrations of arsenic disulfide (5 µM, 10 µM and 20 µM), respectively. To investigate the potential mechanism on the arsenic disulfide-mediated methylation, the mRNA expression of DNMT1, DNMT3B and MBD2 was determined. Results: PTPL1 functioned as a tumor suppressor gene in DLBCL cells, which was featured by the fact that PTPL1 knockdown promoted the proliferation of DLBCL cells. PTPL1 was found hypermethylated in DLBCL cells. Arsenic disulfide promoted the PTPL1 demethylation in a dose-dependent manner, which was related to the inhibition of DNMTs and the increase of MBD2. Conclusion: Experimental evidence shows that PTPL1 functions as a tumor suppressor gene in DLBCL progression. PTPL1 hyper-methylation could be reversed by arsenic disulfide in a dose-dependent manner.


Subject(s)
Arsenicals , DNA Methylation , Lymphoma, Large B-Cell, Diffuse , Humans , Arsenicals/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Disulfides/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , DNA Methyltransferase 3B , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Promoter Regions, Genetic/drug effects
5.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542110

ABSTRACT

Vascular smooth muscle cells (VSMCs) are crucial components of the arterial wall, controlling blood flow and pressure by contracting and relaxing the artery walls. VSMCs can switch from a contractile to a synthetic state, leading to increased proliferation and migratory potential. Epigenetic pathways, including DNA methylation, play a crucial role in regulating VSMC differentiation and phenotypic flexibility. DNA methylation involves attaching a methyl group to the 5' carbon of a cytosine base, which regulates gene expression by interacting with transcription factors. Understanding the key factors influencing VSMC plasticity may help to identify new target molecules for the development of innovative drugs to treat various vascular diseases. This review focuses on DNA methylation pathways in VSMCs, summarizing mechanisms involved in controlling vascular remodeling, which can significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches for complex and multifactorial diseases.


Subject(s)
DNA Methylation , Muscle, Smooth, Vascular , Muscle, Smooth, Vascular/metabolism , Cell Proliferation/genetics , Cells, Cultured , Phenotype , Myocytes, Smooth Muscle/metabolism
6.
J Pharm Biomed Anal ; 239: 115873, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38008045

ABSTRACT

BACKGROUND: Kawasaki disease (KD) patients often lack early and definitive diagnosis due to insufficient clinical criteria, whereas biomarkers might accelerate the diagnostic process and treatment. METHODS: The KD mouse models were established and thirteen amino acids were determined. A total of 551 serum samples were collected including KD patients (n = 134), HCs (n = 223) and KD patients after intravascular immunoglobulin therapy (IVIG, n = 194). A paired analysis of pre- and post-IVIG was employed in 10 KD patients. RESULTS: The pathological alterations of the aorta, myocardial interstitium and coronary artery vessel were observed in KD mice; the serum levels of methionine in KD mice (n = 40) were markedly altered and negatively correlated with the C-reactive protein levels. Consistent with the mouse model, serum methionine were significantly decreased in KD children, with the relative variation ratio of KD with HCs above 30% and AUROC value of 0.845. Serum methionine were correlated with Z-Score and significantly restored to the normal ranges after KD patient IVIG treatment. Another case-control study with 10 KD patients with IVIG sensitivity and 20 healthy controls validated serum methionine as a biomarker for KD patients with AUROC of 0.86. Elevation of serum DNMT1 activities, but no differences of DNMT3a and DNMT3b, were observed in KD patients when comparing with those in the HCs. CONCLUSIONS: Our study validated that serum methionine was a potential biomarker for KD, the alteration of which is associated with the activation of DNMT1 in KD patients.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Child , Humans , Animals , Mice , Infant , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/complications , Immunoglobulins, Intravenous , Methionine , Case-Control Studies , Amino Acids , Biomarkers , Racemethionine , Amines
7.
Eur J Haematol ; 112(3): 439-449, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37950514

ABSTRACT

OBJECTIVES: As a tumor suppressor gene, SOCS3 inhibits the growth of tumor cells by regulating JAK/STAT signaling pathway through negative feedback. This study aimed to investigate the biological function and mechanism of SOCS3 methylation mediated by DNMTs in the development of AML. METHODS: Bone marrow samples were collected from 70 AML patients and 20 healthy volunteers. The expression and methylation status of each gene were detected by RT-qPCR, western blot and MS-PCR, and the growth and apoptosis rate of leukemia cell lines were detected by CCK-8 and flow cytometry. The effects of changes in SOCS3 gene expression and methylation status of AML cell lines were observed by gene transfection and gene knockdown. RESULTS: The methylation rate of SOCS3 in AML initial treatment group was significantly higher than that in the remission group and the normal control group (60% vs. 0%, 0%). The expression of SOCS3 in the SOCS3 methylation group was significantly lower than that in the non-methylated group and control group, while the expression of DNMT1, DNMT3a, p-JAK2, p-STAT3 and p-STAT5 were significantly higher than those in the non-methylated group and control group. Demethylation treatment, SOCS3 transfection and DNMT3a knockdown could up-regulate the expression of SOCS3, which decreased the proliferation and increased the apoptosis of leukemia cell lines. CONCLUSION: SOCS3 methylation mediated by DNMTs promotes the occurrence and development of AML and can be used as a potential biomarker for the diagnosis and efficacy evaluation of AML.


Subject(s)
Leukemia, Myeloid, Acute , Signal Transduction , Humans , Cell Line, Tumor , Suppressor of Cytokine Signaling Proteins/genetics , DNA Methylation , Leukemia, Myeloid, Acute/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
8.
Mar Drugs ; 21(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38132942

ABSTRACT

Epigenetic modifications, mainly aberrant DNA methylation, have been shown to silence the expression of genes involved in epigenetic diseases, including cancer suppression genes. Almost all conventional cancer therapeutic agents, such as the DNA hypomethylation drug 5-aza-2-deoxycytidine, have insurmountable side effects. To investigate the role of the well-known DNA protectant (ectoine) in skin cell DNA methylation and cancer cell proliferation, comprehensive methylome sequence analysis, 5-methyl cytosine (5mC) analysis, proliferation and tumorigenicity assays, and DNA epigenetic modifications-related gene analysis were performed. The results showed that extended ectoine treatment globally hypomethylated DNA in skin cells, especially in the CpG island (CGIs) element, and 5mC percentage was significantly reduced. Moreover, ectoine mildly inhibited skin cell proliferation and did not induce tumorigenicity in HaCaT cells injected into athymic nude mice. HaCaT cells treated with ectoine for 24 weeks modulated the mRNA expression levels of Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l, Hdac1, Hdac2, Kdm3a, Mettl3, Mettl14, Snrpn, and Mest. Overall, ectoine mildly demethylates DNA in skin cells, modulates the expression of epigenetic modification-related genes, and reduces cell proliferation. This evidence suggests that ectoine is a potential anti-aging agent that prevents DNA hypermethylation and subsequently activates cancer-suppressing genes.


Subject(s)
DNA Methylation , Neoplasms , Animals , Mice , Mice, Nude , DNA/metabolism , Cell Proliferation , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics
9.
Elife ; 122023 11 06.
Article in English | MEDLINE | ID: mdl-37929702

ABSTRACT

Rheumatoid arthritis (RA) is characterized by joint synovitis and bone destruction, the etiology of which remains to be explored. Many types of cells are involved in the progression of RA joint inflammation, among which the overactivation of M1 macrophages and osteoclasts has been thought to be an essential cause of joint inflammation and bone destruction. Glioma-associated oncogene homolog 1 (GLI1) has been revealed to be closely linked to bone metabolism. In this study, GLI1 expression in the synovial tissue of RA patients was positively correlated with RA-related scores and was highly expressed in collagen-induced arthritis (CIA) mouse articular macrophage-like cells. The decreased expression and inhibition of nuclear transfer of GLI1 downregulated macrophage M1 polarization and osteoclast activation, the effect of which was achieved by modulation of DNA methyltransferases (DNMTs) via transcriptional regulation and protein interactions. By pharmacological inhibition of GLI1, the proportion of proinflammatory macrophages and the number of osteoclasts were significantly reduced, and the joint inflammatory response and bone destruction in CIA mice were alleviated. This study clarified the mechanism of GLI1 in macrophage phenotypic changes and activation of osteoclasts, suggesting potential applications of GLI1 inhibitors in the clinical treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Osteolysis , Zinc Finger Protein GLI1 , Animals , Humans , Mice , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , DNA/metabolism , Inflammation/metabolism , Methyltransferases/metabolism , Osteoclasts/metabolism , Osteolysis/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
10.
Mol Cell ; 83(23): 4370-4385.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38016475

ABSTRACT

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


Subject(s)
Interferon Type I , Virus Diseases , Humans , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Lipoylation , Epigenesis, Genetic , Immunity, Innate
11.
Nutrients ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571283

ABSTRACT

The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial in regulating cellular homeostasis and apoptosis. The NRF2 gene has been implicated in various biological activities, including antioxidant, anti-inflammatory, and anticancer properties. NRF2 can be regulated genetically and epigenetically at the transcriptional, post-transcriptional, and translational levels. Although DNA methylation is one of the critical biological processes vital for gene expression, sometimes, anomalous methylation patterns result in the dysregulation of genes and consequent diseases and disorders. Several studies have reported promoter hypermethylation downregulated NRF2 expression and its downstream targets. In contrast to the unalterable nature of genetic patterns, epigenetic changes can be reversed, opening up new possibilities in developing therapies for various metabolic disorders and diseases. This review discusses the current state of the NRF2-mediated antioxidative and chemopreventive activities of several natural phytochemicals, including sulforaphane, resveratrol, curcumin, luteolin, corosolic acid, apigenin, and most other compounds that have been found to activate NRF2. This epigenetic reversal of hypermethylated NRF2 states provides new opportunities for research into dietary phytochemistry that affects the human epigenome and the possibility for cutting-edge approaches to target NRF2-mediated signaling to prevent chronic disorders.


Subject(s)
DNA Methylation , NF-E2-Related Factor 2 , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Epigenesis, Genetic , Antioxidants/pharmacology , Antioxidants/metabolism , Chronic Disease , Polyphenols/pharmacology
12.
Clin Epigenetics ; 15(1): 121, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37528470

ABSTRACT

BACKGROUND: Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays elusive. RESULTS: Here, we show that CIMP in adrenocortical carcinoma is linked to the increased expression of DNA methyltransferases DNMT1 and DNMT3A driven by a gain of gene copy number and cell hyperproliferation. Importantly, we demonstrate that CIMP contributes to tumor aggressiveness by favoring tumor immune escape. This effect could be at least partially reversed by treatment with the demethylating agent 5-azacytidine. CONCLUSIONS: In sum, our findings suggest that co-treatment with demethylating agents might enhance the efficacy of immunotherapy and could represent a novel therapeutic approach for patients with high CIMP adrenocortical carcinoma.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Colorectal Neoplasms , Humans , Adrenocortical Carcinoma/genetics , DNA Methylation , Tumor Escape/genetics , Prognosis , Adrenal Cortex Neoplasms/genetics , DNA , CpG Islands , Phenotype , Colorectal Neoplasms/genetics
13.
Epigenomics ; 15(7): 401-415, 2023 04.
Article in English | MEDLINE | ID: mdl-37337726

ABSTRACT

Aim: This study aimed to elucidate the relationship between SCARA5 and RMRP in bladder cancer and their underlying mechanism. Methods: Biological functions were evaluated using cell-counting kit 8 assay, 5-ethynyl-2'-deoxyuridine incorporation, wound healing and Transwell assays. RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation were employed. A xenograft tumor model in nude mice was also conducted. Results & conclusion: RMRP and SCARA5 exhibited an inverse correlation. Downregulation of RMRP significantly suppressed bladder cancer cell proliferation, migration and invasion, which was reversed by SCARA5 overexpression. RMRP recruited DNA methyltransferases to the promoter region of SCARA5, thereby triggering the methylation of the SCARA5 promoter to epigenetically suppress its expression. Our findings elucidate the machinery by which RMRP, stabilized by METTL3, exerts a promoter role in bladder cancer tumorigenesis by triggering SCARA5 methylation.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Urinary Bladder Neoplasms , Animals , Mice , Humans , Up-Regulation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice, Nude , Urinary Bladder Neoplasms/genetics , Transcriptional Activation , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolism
14.
Animals (Basel) ; 13(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37048467

ABSTRACT

Endometrosis negatively affects endometrial function and fertility in mares, due to excessive deposition of type I (COL1) and type III (COL3) collagens. The pro-fibrotic transforming growth factor (TGF-ß1) induces myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, and collagen synthesis. In humans, fibrosis has been linked to epigenetic mechanisms. To the best of our knowledge, this has not been described in mare endometrium. Therefore, this study aimed to investigate the in vitro epigenetic regulation in TGF-ß1-treated mare endometrial fibroblasts and the use of 5-aza-2'-deoxycytidine (5-aza-dC), an epigenetic modifier, as a putative treatment option for endometrial fibrosis. Methods and Results: The in vitro effects of TGF-ß1 and of 5-aza-dC on DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), COL1A1, COL3A1, and α-SMA transcripts were analyzed in endometrial fibroblasts, and COL1 and COL3 secretion in a co-culture medium. TGF-ß1 upregulated DNMT3A transcripts and collagen secretion. In TGF-ß1-treated endometrial fibroblasts, DNA methylation inhibitor 5-aza-dC decreased collagen transcripts and secretion, but not α-SMA transcripts. Conclusion: These findings suggest a possible role of epigenetic mechanisms during equine endometrial fibrogenesis. The in vitro effect of 5-aza-dC on collagen reduction in TGF-ß1-treated fibroblasts highlights this epigenetic involvement. This may pave the way to different therapeutic approaches for endometrosis.

15.
Nutrients ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111085

ABSTRACT

Recently, the field of epigenetics has been intensively studied in relation to nutrition. In our study, the gene expression patterns of histone deacetylases (HDACs), which regulate the stability of histone proteins, and DNA methyltransferases (DNMTs), which regulate DNA methylation, were determined in mice. The animals were fed a human-equivalent dose of the aqueous extract of fruit seeds and peels, which is rich in flavonoids and polyphenols, for 28 days and then exposed to the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). The concentrations of trans-resveratrol and trans-piceid were determined in the consumed extract by HPLC and were 1.74 mg/L (SD 0.13 mg/L) and 2.37 mg/L (SD 0.32 mg/L), respectively, which corresponds to the consumption of 0.2-1 L of red wine, the main dietary source of resveratrol, in humans daily. Subsequently, 24 h after DMBA exposure, the expression patterns of the HDAC and DNMT genes in the liver and kidneys were determined by qRT-PCR. The DMBA-induced expression of the tested genes HDAC1, HDAC2, DNMT1, DNMT3A and DNMT3B was reduced in most cases by the extract. It has already been shown that inhibition of the DNMT and HDAC genes may delay cancer development and tumour progression. We hypothesise that the extract studied may exert chemopreventive effects.


Subject(s)
Flavonoids , Polyphenols , Humans , Animals , Mice , Flavonoids/pharmacology , Polyphenols/pharmacology , Fruit , Epigenesis, Genetic , DNA Methylation , DNA Modification Methylases , Resveratrol
16.
Clin Epigenetics ; 15(1): 48, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959680

ABSTRACT

BACKGROUND: To understand the molecular mechanisms involved in regulation of DNA methyltransferases (DNMTs) by metformin in non-small cell lung cancer (NSCLC) cells. METHODS: Expression levels of DNMTs in response to metformin were analyzed in NSCLC cells. MicroRNAs regulating expression of DNMTs at the post-transcriptional level were searched using miRNA-target databases (miRDB and miRTarBase), TCGA RNASeqV2 lung cancer data, and miRNA-seq. RESULTS: Metformin dose-dependently downregulated expression of DNMT1 and DNMT3a at the post-transcriptional level and expression of DNMT3b at the transcriptional level in A549 lung cancer cells. Activity of DNMTs was reduced by about 2.6-fold in A549 cells treated with 10 mM metformin for 72 h. miR-148/-152 family members (miR-148a, miR-148b, and miR-152) targeting the 3'UTR of DNMTs were associated with post-transcriptional regulation of DNMTs by metformin. Metformin upregulated expression of miR-148a, miR-148b, and miR-152 in A549 and H1650 cells. Transfection with an miR-148b plasmid or a mimic suppressed expression of DNMT1 and DNMT3b in A549 cells. Transfection with the miR-148a mimic in A549 and H1650 cells decreased the luciferase activity of DNMT1 3'UTR. A combination of metformin and cisplatin synergistically increased expression levels of miR-148/-152 family members but decreased expression of DNMTs in A549 cells. Low expression of miR-148b was associated with poor overall survival (HR = 2.56, 95% CI 1.09-6.47; P = 0.04) but not with recurrence-free survival. CONCLUSIONS: The present study suggests that metformin inhibits expression of DNMTs by upregulating miR-148/-152 family members in NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , MicroRNAs , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Metformin/pharmacology , 3' Untranslated Regions , DNA Methylation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , DNA Modification Methylases/genetics , DNA/metabolism , Cell Line, Tumor , Cell Proliferation
17.
Article in English | MEDLINE | ID: mdl-36634815

ABSTRACT

Dynamic epigenetic changes during hibernation occur in some hibernating rodents, but these changes are poorly understood in hibernating bats. Populations of the greater horseshoe bat (Rhinolophus ferrumequinum) in north China hibernate and provide an opportunity to study how epigenetic markers and modifiers differ in the active and torpid states of a chiropteran. We used fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) and qRT-PCR techniques to determine changes in the global DNA methylation levels and mRNA expression levels of methylation-related proteins. These included DNA methyltransferase (DNMTs), methyl-CpG-binding proteins (MBPs, including MBDs, UHRFs, and zinc-finger protein family) in active and torpid R. ferrumequinum. In the torpid state, both the relative global methylation and the relative mRNA expression levels of some DNMTs and MBPs, including dnmt3b and zbtb4, increased significantly compared to the expression levels of these in the active state. These changes may involve methylation or assist in regulation of a particular subset of genes according to hibernation status. This indicates that epigenetic mechanisms may exist and facilitate the hibernation process of R. ferrumequinum.


Subject(s)
Chiroptera , Epigenesis, Genetic , Hibernation , Animals , China , Chiroptera/genetics , Chiroptera/metabolism , Hibernation/genetics , RNA, Messenger/genetics
18.
J Neurochem ; 164(5): 624-642, 2023 03.
Article in English | MEDLINE | ID: mdl-36453259

ABSTRACT

Early life stress alters brain-derived neurotrophic factor (BDNF) promoter IV methylation and BDNF expression, which is closely related to the pathophysiological process of depression. However, the role of abnormal methylation of BDNF induced by stress during adolescence due to depression has not yet been clarified. In this study, adolescent mice were exposed to chronic unpredictable mild stress (CUMS). Depression-like behaviors, BDNF promoter IV methylation, expression of DNA methyltransferases (DNMTs), demethylation machinery enzymes, BDNF protein levels, and neuronal development in the prefrontal cortex (PFC) and hippocampus (HIP) were assessed in adolescent and adult mice. The DNMT inhibitor, 5-Aza-2-deoxycytidine (5-AzaD), was used as an intervention. Stress in adolescence induces behavioral dysfunction, elevated methylation levels of BDNF promoter IV, changes in the expression of DNMT, and demethylation machinery enzymes in adolescent and adult mice. Additionally, the stress in adolescence induced lower levels of BDNF and abnormal hippocampal doublecortin (DCX) expression in adolescent and adult mice. However, DNMT inhibitor treatment in adolescent-stressed mice relieved the abnormal behaviors, normalized the methylation level of BDNF promoter IV, BDNF protein expression, expression of DNMTs, and demethylation machinery enzymes, and improved the neuronal development of adult mice. These results suggest that stress in adolescence induces short- and long-term hypermethylation of BDNF promoter IV, which is regulated by DNMTs, and leads to the development of depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Prefrontal Cortex , Mice , Male , Animals , Brain-Derived Neurotrophic Factor/metabolism , Prefrontal Cortex/metabolism , DNA Methylation , Enzyme Inhibitors , Hippocampus/metabolism , Stress, Psychological/metabolism , Depression/metabolism , Disease Models, Animal
19.
Front Pharmacol ; 14: 1273993, 2023.
Article in English | MEDLINE | ID: mdl-38596245

ABSTRACT

For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.

20.
Cureus ; 14(10): e30743, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36447689

ABSTRACT

Renal cell carcinoma (RCC) refers to a group of tumors that develop from the epithelium of the kidney tubes, including clear cell RCC, papillary RCC, and chromophobe RCC. Most clear cell renal carcinomas have a large histologic subtype, genetic or epigenetic von Hippel-Lindau (VHL). A comprehensive analysis of the genetic modification genome suggested that chromosome 3p loss and chromosome gains 5q and 7 may be significant copy defects in the development of clear RCC. A more potent RCC may develop if chromosome 1p, 4, 9, 13q, or 14q is also lost. Renal carcinogenesis is not associated with chronic inflammation or histological changes. However, if regional hypermethylation of DNA in CpG C-type islands has already accumulated in cancer-free kidney tissue, it implies that the presence of malignant kidney lesions may also be detected by modified DNA methylation. Modification of DNA methylation in cancerous kidney tissue may advance kidney tissue to epigenetic mutations and genes, leading to more serious cancers and even determining a patient's outcome. The genetic and epigenetic profile provides accurate predictors for patients with kidney cancer. New genetic and epigenetic analysis technologies will help to speed up the identification of vital cells for kidney cancer prevention, diagnosis, and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL