Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
J Mol Neurosci ; 74(3): 59, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890235

ABSTRACT

Binge drinking causes a range of problems especially damage to the nervous system, and the specific neural mechanism of brain loss and behavioral abnormalities caused by which is still unclear. Extracellular regulated protein kinases (ERK) maintain neuronal survival, growth, and regulation of synaptic plasticity by phosphorylating specific transcription factors to regulate expression of brain-derived neurotrophic factor (BDNF). Dual-specific phosphatase 1 (DUSP1) and DUSP6 dephosphorylate tyrosine and serine/threonine residues in ERK1/2 to inactivate them. To investigate the molecular mechanism by which alcohol affects memory and emotion, a chronic intermittent alcohol exposure (CIAE) model was established. The results demonstrated that mice in the CIAE group developed short-term recognition memory impairment and anxiety-like behavior; meanwhile, the expression of DUSP1 and DUSP66 in the mPFC was increased, while the levels of p-ERK and BDNF were decreased. Micro-injection of DUSP1/6 inhibitor BCI into the medial prefrontal cortex (mPFC) restored the dendritic morphology by reversing the activity of ERK-BDNF and ultimately improved cognitive and emotional impairment caused by CIAE. These findings indicate that CIAE inhibits ERK-BDNF by increasing DUSP1/6 in the mPFC that may be associated with cognitive and emotional deficits. Consequently, DUSP1 and DUSP6 appear to be potential targets for the treatment of alcoholic brain disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Dual Specificity Phosphatase 1 , Ethanol , Mice, Inbred C57BL , Prefrontal Cortex , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Male , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Ethanol/toxicity , Ethanol/pharmacology , Dual Specificity Phosphatase 6/metabolism , Dual Specificity Phosphatase 6/genetics , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Aminoacetonitrile/therapeutic use , Anxiety/drug therapy , Anxiety/etiology , MAP Kinase Signaling System
2.
Regen Ther ; 26: 33-41, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798745

ABSTRACT

Background: The morbidity and mortality of sepsis are increasing year by year. Statistically, 40-50% of patients with sepsis have concomitant myocardial injury, and its mortality rate is higher than that of patients with sepsis only. Therefore, it is of great significance to elucidate the mechanism of sepsis-induced myocardial injury. Methods and results: Human monocytes (THP-1) were used to induce M0 macrophages, followed by treated with lipopolysaccharide (LPS). Cardiomyocytes (AC16) were co-cultured with the conditioned medium of LPS-induced macrophages to induce injury. Quantitative real-time PCR was employed to detect the mRNA levels of peroxisome proliferator-activated receptor α (PPARA) and dual specificity phosphatase 1 (DUSP1). Protein levels of PPARA, macrophage polarization-related markers, apoptosis-related markers, mitochondria-related proteins, and DUSP1 were analyzed by Western blot. Flow cytometry was used to assess M1/M2 cell rates and apoptosis. Low PPARA expression could serve as a biomarker for patients with sepsis. PPARA overexpression enhanced M2 polarization and suppressed M1 polarization in LPS-induced macrophages, and it could alleviate cardiomyocyte injury in co-cultured system. PPARA bound to the DUSP1 promoter region and facilitated its expression. DUSP1 knockdown reversed the effect of PPARA overexpression on M2 polarization and cardiomyocyte injury. Conclusion: PPARA attenuated cardiomyocyte injury by promoting macrophage M2 polarization through increasing DUSP1 expression, suggesting that PPARA might be a therapy target for sepsis-induced myocardial injury.

3.
Exp Hematol Oncol ; 13(1): 42, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627863

ABSTRACT

Chemotherapy is a commonly effective treatment for most types of cancer. However, many patients experience a relapse due to minimal residual disease (MRD) after chemotherapy. Previous studies have analyzed the changes induced by chemotherapy for specific types of cancer, but our study is the first to comprehensively analyze MRD across various types of cancer. We included both bulk and single-cell RNA sequencing datasets. We compared the expression of the entire genome and calculated scores for canonical pathway signatures and immune infiltrates before and after chemotherapy across different types of cancer. Our findings revealed that DUSP1 was the most significantly and widely enriched gene in pan-cancer MRD. DUSP1 was found to be essential for MRD formation and played a role in T cell-fibroblast communications and the cytotoxic function of CD4 + T cells. Overall, our analysis provides a comprehensive understanding of the changes caused by chemotherapy and identifies potential targets for preventing and eliminating MRD, which could lead to long-term survival benefits for patients.

4.
Front Cell Dev Biol ; 12: 1342741, 2024.
Article in English | MEDLINE | ID: mdl-38550381

ABSTRACT

Background: Dynamin-related protein Drp1 -a major mitochondrial fission protein- is widely distributed in the central nervous system and plays a crucial role in regulating mitochondrial dynamics, specifically mitochondrial fission and the organelle's shaping. Upregulated Drp1 function may contribute to the pathological progression of neurodegenerative diseases by dysregulating mitochondrial fission/ fusion. The study aims to investigate the effects of Drp1 on retinoic acid-BDNF-induced (RA-BDNF) neuronal differentiation and mitochondrial network reorganization in SH-SY5Y neuroblastoma cells. Methods: We generated an SH-SY5Y cell line with stably depleted Drp1 (shDrp1). We applied RNA sequencing and analysis to study changes in gene expression upon stable Drp1 knockdown. We visualized the mitochondria by transmission electron microscopy and used high-content confocal imaging to characterize and analyze cell morphology changes and mitochondrial network reorganization during neuronal differentiation. Results: shDrp1 cells exhibited fused mitochondrial ultrastructure with perinuclear clustering. Stable knockdown of Drp1 resulted in the upregulation of genes involved in nervous system development. High content analysis showed improved neurite outgrowth, segmentation, and extremities in differentiated shDrp1 cells. Neuronal differentiation was associated with a significant reduction in ERK1/2 phosphorylation, and ERK1/2 phosphorylation was independent of the dual specificity phosphatases DUSP1/6 in shDrp1 cells. Differentiated control underwent mitochondrial morphology remodeling, whereas differentiated shDrp1 cells retained the highly fused mitochondria and developed long, elongated structures. The shDrp1 cells responded to specific apoptotic stimuli like control in vitro, suggesting that Drp1 is not a prerequisite for apoptosis in SH-SY5Y cells. Moreover, Drp1 downregulation reduced the formation of toxic mHtt aggregates in vitro. Discussion: Our results indicate that Drp1 silencing enhances RA-BDNF-induced neuronal differentiation by promoting transcriptional and mitochondrial network changes in undifferentiated cells. We also demonstrate that the suppression of Drp1 reduces toxic mHtt aggregate formation in vitro, suggesting protection against neurotoxicity. Thus, Drp1 may be an attractive target for further investigation in future strategies to combat neurodegenerative diseases.

5.
Mol Biotechnol ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551790

ABSTRACT

EGFR tyrosine kinase inhibitors (EGFR-TKIs) are the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC) patients, which remarkably improve the clinical outcomes. However, drug resistance has greatly impaired the efficacy of EGFR-TKIs and contributes to cancer treatment failure. DUSP1, a negative regulator of MAPK signaling pathway, was discovered to mediate drug resistance in multiple types of cancers. Our study aimed to explore the role of DUSP1 in NSCLC cell resistance to osimertinib, a third-generation EGFR-TKI. Human NSCLC cell lines PC-9 and HCC827 were exposed to increasing concentrations of osimertinib for over 6 months to generate osimertinib resistant cells (PC-9-OR and HCC827-OR). The viabilities of osimertinib-resistant and parental sensitive NSCLC cells in response to osimertinib stimulation were detected by MTS assay and the IC50 values for osimertinib were obtained. The differentially expressed genes in osimertinib-resistant and sensitive NSCLC cells were identified by analyzing the GEO dataset GSE106765 using bioinformatic tools. DUSP1 expression was knocked down by using the short hairpin RNAs (shRNAs). Then, the effects of DUSP1 silencing on osimertinib-resistant and sensitive NSCLC cell resistance to osimertinib, viability, proliferation and apoptosis were assessed through loss-of-function experiments. The expression of key molecules (JNK, ERK, and p38 MAPK) in the MAPK signaling pathway was detected through western blotting analysis. DUSP1 was overexpressed in osimertinib-resistant NSCLC cells versus parental sensitive cells. DUSP1 silencing attenuated the resistance of NSCLC cells to osimertinib. DUSP1 silencing markedly inhibited osimertinib-resistant and sensitive NSCLC cell proliferation but enhanced cell apoptosis. Mechanically, DUSP1 knockdown increased phosphorylated-JNK, ERK, and p38 MAPK levels in NSCLC cells. Treatment with SB203580, the p38 MAPK inhibitor, reversed the effects of DUSP1 silencing on osimertinib-resistant NSCLC cell resistance to osimertinib, cell proliferation and apoptosis. DUSP1 downregulation restores the sensitivity of NSCLC cells to osimertinib via activating the MAPK signaling pathway.

6.
Aging Cell ; 23(6): e14133, 2024 06.
Article in English | MEDLINE | ID: mdl-38459711

ABSTRACT

Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.


Subject(s)
Glucocorticoids , Macrophages, Alveolar , Tumor Necrosis Factor-alpha , Animals , Mice , Aging , Disease Susceptibility , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Glucocorticoids/pharmacology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/immunology , Streptococcus pneumoniae , Tumor Necrosis Factor-alpha/metabolism , Female
7.
Int J Med Sci ; 21(3): 547-561, 2024.
Article in English | MEDLINE | ID: mdl-38322592

ABSTRACT

Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.


Subject(s)
Cardio-Renal Syndrome , Dual Specificity Phosphatase 1 , Prohibitins , Animals , Mice , Cardio-Renal Syndrome/metabolism , Heart , Mice, Transgenic , Myocardium/metabolism , Prohibitins/metabolism , Dual Specificity Phosphatase 1/metabolism , Mitochondria
8.
Chinese Pharmacological Bulletin ; (12): 292-298, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013620

ABSTRACT

Aim To investigate the regulatory role and mechanism of resveratrol in inhibiting autophagy and promoting apoptosis in choroidal melanoma cells. Methods Choroidal melanoma cells (MUM2B) were divided into control and experimental groups, and treated with different concentrations of resveratrol (0, 10, 20,40,60,80 μmol ·L

9.
Virus Res ; 339: 199282, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37995964

ABSTRACT

The effects of porcine circovirus type 2b (PCV2b) and porcine reproductive and respiratory syndrome virus (PRRSV) co-infection in epithelial cells of the swine respiratory tract is unknown. In the present study, the newborn pig trachea cell line NPTr-CD163, which is permissive to both viruses, was persistently infected with PCV2b and then with PRRSV. Viral replication, cell viability, cytokines' mRNA expression, and modulation of cellular genes expression were evaluated in infected cells. In NPTr-CD163 co-infection model, PCV2b replication was enhanced while PRRSV replication was suppressed. Cell viability was significantly decreased during PCV2b single infection and co-infection compared to mock-infected and PRRSV single infected cells. However, no difference was observed in cell viability between PCV2b and PCV2b/PRRSV infected cells. The IL6, IL8 and IL10 mRNA expression was significantly higher in co-infected cells compared to PCV2b and PRRSV single infected cells. Moreover, the IFN-α/ß expression was significantly reduced in co-infected cells compared to PCV2b infected cells whereas it remained higher compared to PRRSV infected cells. The differential gene expression analysis revealed that the mRNA expression level of the cellular gene DUSP1 was significantly higher in all PRRSV infection models compared to PCV2b single infected cells. Knockdown of DUSP1 expression in co-infected cells significantly reduced PCV2b replication, suggesting a role for DUSP1 in PCV2b/PRRSV pathogenesis.


Subject(s)
Circovirus , Coinfection , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Circovirus/genetics , Virus Replication
10.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128678

ABSTRACT

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Bass/genetics , Iridovirus/physiology , Singapore , Cloning, Molecular , Apoptosis , Dual-Specificity Phosphatases/genetics , Fish Proteins/genetics , Phylogeny
11.
Cell Oncol (Dordr) ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082211

ABSTRACT

PURPOSE: Ovarian cancer is one of the leading causes of cancer-related death among women. CSGALNACT2 is a vital Golgi transferase and is related to a variety of human diseases. However, its expression pattern and function in ovarian cancer remain uncertain. METHODS: The Cancer Genome Atlas and GEPIA databases were used to assess the expression of CSGALNACT2 in ovarian cancer patients. RNA-seq, qRT-PCR, and IHC were used to verify the expression of CSGALNACT2 in ovarian cancer tissues. Then, in vivo and in vitro experiments were conducted to evaluate the role of CSGALNACT2 in the progression of ovarian cancer. RNA-seq and GSEA were used to reveal the potential biological function and oncogenic pathways of CSGALNACT2. RESULTS: We demonstrated that the mRNA expression and protein level of CSGALNACT2 were significantly downregulated in ovarian cancer and ovarian cancer metastatic tissues. CSGALNACT2 can significantly inhibit the migration, invasion, and clonogenic growth of ovarian cancer in vitro and is progressively lost during ovarian cancer progression in vivo. CSGALNACT2 suppresses ovarian cancer migration and invasion via DUSP1 modulation of the MAPK/ERK pathway through RNA-seq, KEGG analysis, and Western blotting. Moreover, CSGALNACT2 expression was correlated with immune cell infiltration and had prognostic value in different immune cell-enriched or decreased ovarian cancer. In addition, patients with CSGALNACT2 downregulation are less likely to benefit from immunotherapy. CONCLUSION: As an ovarian cancer suppressor gene, CSGALNACT2 inhibits the development of ovarian cancer, and it might be used as a prognostic biomarker in patients with ovarian cancer.

12.
Technol Cancer Res Treat ; 22: 15330338231207765, 2023.
Article in English | MEDLINE | ID: mdl-37872685

ABSTRACT

Objectives: Dual specificity phosphatase 1 (DUSP1) is high-expressed in various cancers and plays an important role in the cellular response to agents that damage DNA. We aimed to investigate the expressions and mechanisms of DUSP1 signaling pathway regulating cytarabine (Ara-C) resistance in acute myeloid leukemia (AML). Methods: Immunohistochemistry was performed on bone marrow biopsy specimens from AML and controls to explore the expression of DUSP1. Western blot and Q-PCR were used to detect the protein and mRNA expression levels. MTT assay was used to detect the proliferation of cells. Cell apoptosis was detected by flow cytometry. The immune protein-protein interaction (PPI) network of DUSP1 was analyzed in the platform of Pathway Commons, and immune infiltration analysis was used to study the immune microenvironment of AML. Results: We found that the expression levels of DUSP1 in AML patients exceeded that in controls. Survival analysis in public datasets showed that AML patients with higher levels of DUSP1 had poor clinical outcomes. Further public data analysis indicated that DUSP1 was overexpressed in NRAS mutated AML. DUSP1 knockdown by siRNA could sensitize AML cells to Ara-C treatments. The phosphorylation level of mitogen-activated protein kinase (MAPK) pathway was significantly elevated in DUSP1 down-regulated NRAS G13D mutated AML cells. The PPI analysis showed DUSP1 correlated with immune gene CREB1 and CXCL8 in NRAS mutated AML. We also revealed a correlation between tumor-infiltrating immune cells in RAS mutated AML microenvironment. Conclusion: Our findings suggest that DUSP1 signaling pathways may regulate Ara-C sensitivity in AML.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Humans , Cytarabine/pharmacology , Cytarabine/therapeutic use , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Signal Transduction , Apoptosis/genetics , Tumor Microenvironment
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(9): 1515-1524, 2023 Sep 20.
Article in Chinese | MEDLINE | ID: mdl-37814866

ABSTRACT

OBJECTIVE: To investigate the role of Hsa-miR-148a-3p in regulating biological behaviors of breast cancer cells and explore the mechanism. METHODS: TCGA database was used to identify the differential miRNAs and mRNAs in breast cancer, and the protein-protein interaction (PPI) network was constructed using String and Cytoscape to screen the top 10 hub genes and construct the miRNA-TOP10hub network. RT-qPCR was used to detect the expressions of Hsa-miR-148a-3p and DUSP1 in breast cancer tissues and cell lines. The effects of Hsa-miR-148a-3p mimic and inhibitor on proliferation, migration, invasion and apoptosis of MCF-7 cells were analyzed, and luciferase reporter gene experiment was performed to verify the binding of Hsa-miR-148a-3p to DUSP1. The effect of Hsa-miR-148a-3p overexpression on breast cancer cell xenograft growth was evaluated in nude mice. Kaplan-Meier survival curve analysis was used to analyze the survival of the tumor-bearing mice, and the expression level of DUSP1 in the xenografts was detected using immunohistochemistry. RESULTS: A total of 54 differential miRNAs and 799 differential mRNAs were identified in breast cancer; 3716 target genes were intersected with the differential mRNA, resulting in 150 intersected genes. The top 10 hub genes were downregulated in breast cancer tissues in the PPI network. Double luciferase reporter gene experiment confirmed that Hsa-miR-148a-3p was capable of binding to DUSP1. Hsa-miR-148a-3p was up-regulated and DUSP1 was down-regulated significantly in breast cancer tissues and cells (P<0.01). In breast cancer cells, Hsa-miR-148a-3p mimic strongly promoted cell proliferation, migration and invasion and inhibited cell apoptosis (P<0.01). Hsa-miR-148a-3p overexpression obviously promoted xenograft growth in nude mice (P<0.01), shortened survival time of the mice (P<0.01), and reduced the expression of DUSP1 in the xenografts (P<0.01). CONCLUSION: Hsa-miR-148a-3p promotes malignant behavior of breast cancer cells by inhibiting the expression of DUSP1.


Subject(s)
Breast Neoplasms , MicroRNAs , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/pharmacology , Luciferases , Mice, Nude , MicroRNAs/metabolism , RNA, Messenger
14.
Regen Ther ; 24: 417-425, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37727797

ABSTRACT

Background: Tanshinone IIA (TSIIA) exerts a protective role in spinal cord injury (SCI). However, the mechanism of TSIIA activity in SCI remains to be elucidated. Methods: Cell viability and apoptosis were gauged by CCK-8 assay and flow cytometry, respectively. The expression levels of lncRNA TCTN2, miR-125a-5p and DUSP1 were detected by qRT-PCR and western blot. Direct relationship between miR-125a-5p and TCTN2 or DUSP1 was verified by dual-luciferase reporter assay. Results: In mouse NSC-34 cells, LPS reduced the expression of TCTN2. TSIIA alleviated cell injury induced by LPS and increased TCTN2 expression in LPS-exposed NSC-34 cells. TCTN2 was a downstream mediator of TSIIA activity. TCTN2 targeted miR-125a-5p, and TCTN2 over-expression attenuated LPS-induced cell damage in NSC-34 cells by down-regulating miR-125a-5p. TCTN2 functioned as a post-transcriptional regulator of DUSP1 expression through miR-125a-5p. DUSP1 was a functional target of miR-125a-5p in controlling NSC-34 cell injury induced by LPS. TSIIA inhibited miR-125a-5p expression and increased the level of DUSP1 protein in LPS-exposed NSC-34 cells. Conclusion: Our study establishes a novel mechanism, the TCTN2/miR-125a-5p/DUSP1 axis, at least in part, for the protective activity of TSIIA in cell injury induced by LPS.

15.
Am J Physiol Cell Physiol ; 325(5): C1178-C1189, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37721003

ABSTRACT

Obesity is a major risk factor for the development of nonalcoholic fatty liver disease (NAFLD), and the subcutaneous white adipose tissue (scWAT) is the primary lipid storage depot and regulates lipid fluxes to other organs. Our previous work identified genes upregulated in scWAT of patients with NAFLD: SOCS3, DUSP1, and SIK1. Herein, we knocked down (KD) their expression in human adipose-derived mesenchymal stem cells (hADMSCs) using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology and characterized their phenotype. We found that SOCS3, DUSP1, and SIK1 expression in hADMSC-derived adipocytes was not critical for adipogenesis. However, the metabolic characterization of the cells suggested that the genes played important roles in lipid metabolism. Reduction of SIK1 expression significantly increased both de novo lipogenesis (DNL) and palmitate-induced lipogenesis (PIL). Editing out SOCS3 reduced DNL while increasing isoproterenol-induced lipolysis and insulin-induced palmitate accumulation. Conversely, DUSP1 reduced PIL and DNL. Moreover, RNA-sequencing analysis of edited cells showed that these genes not only altered lipid metabolism but also other biological pathways related to inflammatory processes, in the case of DUSP1, extracellular matrix remodeling for SOCS3, or cellular transport for SIK1. Finally, to evaluate a possible adipocyte-hepatocyte axis, human hepatoma HepG2 cells were cocultured with edited hADMSCs-derived adipocytes in the presence of [3H]-palmitate. All HepG2 cells cultured with DUSP1-, SIK1-, or SOCS3-KD adipocytes decreased [3H]-palmitate accumulation compared with control adipocytes. These results support our hypotheses that SOCS3, DUSP1, and SIK1 regulate multiple aspects of adipocyte function, which may play a role in the progression of obesity-associated comorbidities, such as NAFLD.NEW & NOTEWORTHY Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology successfully edited genomic DNA of human adipose-derived mesenchymal stem cells (hADMSC). SOCS3, SIK1, and DUSP1 regulate adipocyte lipid handling. Silencing SOCS3, SIK1, and DUSP1 expression in hADMSC-derived adipocytes reduces hepatocyte lipid storage in vitro.

16.
Mol Biotechnol ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37632672

ABSTRACT

This study aims to explore the molecular mechanism of LncRNA SNHG7 in Osteoarthritis (OA). Cartilage tissues of OA patients or patients with trauma or amputation were collected. Compared to normal cartilage tissues, SNHG7 was downregulated while miR-324-3p was upregulated in cartilage tissues of OA patients. IL-1ß was used to induce damage to chondrocytes and treatment with IL-1ß reduced SNHG7 expression in OA chondrocytes. In IL-1ß-treated OA chondrocytes, SNHG7 overexpression reduced the levels of TNF-α and IL-6, inhibited cell apoptosis, and increased cell viability. Additionally, the luciferase reporter assay proved that SNHG7 upregulated dual-specificity phosphatase 1 (DUSP1) by sponging miR-324-3p, thereby inactivating the p38 MAPK signaling pathway by regulating the miR-324-3p/DUSP1 axis. Anisomycin (a p38 MAPK activator) enhanced OA chondrocytes inflammation, promoted cell apoptosis, and reduced cell viability; however, this was reversed by SNHG7 overexpression. This study demonstrates that the SNHG7/miR-324-3p/DUSP1 axis suppresses OA chondrocytes inflammation and apoptosis by inhibiting the p38 MAPK signaling pathway. Thus, this study indicates that SNHG7 is a novel target for OA treatment.

17.
EMBO Rep ; 24(9): e56981, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37535645

ABSTRACT

Adolescent cocaine abuse increases the risk for developing addiction in later life, but the underlying molecular mechanism remains poorly understood. Here, we establish adolescent cocaine-exposed (ACE) male mouse models. A subthreshold dose of cocaine (sdC) treatment, insufficient to produce conditioned place preference (CPP) in adolescent mice, induces CPP in ACE mice during adulthood, along with more activated CaMKII-positive neurons, higher dual specificity protein kinase phosphatase-1 (Dusp1) mRNA, lower DUSP1 activity, and lower DUSP1 expression in CaMKII-positive neurons in the medial prefrontal cortex (mPFC). Overexpressing DUSP1 in CaMKII-positive neurons suppresses neuron activity and blocks sdC-induced CPP in ACE mice during adulthood. On the contrary, depleting DUSP1 in CaMKII-positive neurons activates more neurons and further enhances sdC-induced behavior in ACE mice during adulthood. Also, ERK1/2 might be a downstream signal of DUSP1 in the process. Our findings reveal a role of mPFC DUSP1 in ACE-induced higher sensitivity to the drug in adult mice. DUSP1 might be a potential pharmacological target to predict or treat the susceptibility to addictive drugs caused by adolescent substance use.


Subject(s)
Cocaine-Related Disorders , Cocaine , Mice , Male , Animals , Cocaine/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Prefrontal Cortex , Neurons/metabolism
18.
Int Immunopharmacol ; 123: 110701, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531825

ABSTRACT

Angiopoietin-like protein 2 (ANGPTL2) was implicated in various cardiovascular diseases; however, its role in lipopolysaccharide (LPS)-related septic cardiomyopathy remains unclear. Herein, mice were exposed to LPS to generate septic cardiomyopathy, and adeno-associated viral vector was employed to overexpress ANGPTL2 in the myocardium. Besides, mice were treated with adenoviral vector to knock down ANGPTL2 in hearts. ANGPTL2 expressions in hearts and cardiomyocytes were upregulated by LPS challenge. ANGPTL2 overexpression aggravated, while ANGPTL2 silence ameliorated LPS-associated cardiac impairment and inflammation. Mechanically, we found that ANGPTL2 activated NLRP3 inflammasome via suppressing DUSP1 signaling, and NLRP3 knockdown abrogated the detrimental role of ANGPTL2 in aggravating LPS-induced cardiac inflammation. Furthermore, DUSP1 overexpression significantly inhibited ANGPTL2-mediated NLRP3 activation, and subsequently improved LPS-related cardiac dysfunction. In summary, ANGPTL2 exacerbated septic cardiomyopathy via activating NLRP3-mediated inflammation in a DUSP1-dependent manner, and our study uncovered a promising therapeutic target in preventing septic cardiomyopathy.


Subject(s)
Angiopoietin-Like Protein 2 , Cardiomyopathies , Inflammasomes , Animals , Mice , Cardiomyopathies/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Lipopolysaccharides/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Dual Specificity Phosphatase 1/metabolism
19.
Front Immunol ; 14: 1199002, 2023.
Article in English | MEDLINE | ID: mdl-37503331

ABSTRACT

Introduction: Cellular senescence (CS) plays a critical role in cancer development, including clear cell renal cell carcinoma (ccRCC). Traditional RNA sequencing cannot detect precise molecular composition changes within tumors. This study aimed to analyze cellular senescence's biochemical characteristics in ccRCC using single RNA sequencing (ScRNA-seq) and traditional RNA sequencing (Bulk RNA-seq). Methods: Researchers analyzed the biochemical characteristics of cellular senescence in ccRCC using ScRNA-seq and Bulk RNA-seq. They combined these approaches to identify differences between malignant and non-malignant phenotypes in ccRCC across three senescence-related pathways. Genes from these pathways were used to identify molecular subtypes associated with senescence, and a new risk model was constructed. The function of the gene DUSP1 in ccRCC was validated through biological experiments. Results: The combined analysis of ScRNA-seq and Bulk RNA-seq revealed significant differences between malignant and non-malignant phenotypes in ccRCC across three senescence-related pathways. Researchers identified genes from these pathways to identify molecular subtypes associated with senescence, constructing a new risk model. Different subgroups showed significant differences in prognosis level, clinical stage and grade, immune infiltration, immunotherapy, and drug sensitivity. Discussion: Senescence signature markers are practical biomarkers and predictors of molecular typing in ccRCC. Differences in prognosis level, clinical stage and grade, immune infiltration, immunotherapy, and drug sensitivity between different subgroups indicate that this approach could provide valuable insights into senescence-related treatment options and prognostic assessment for patients with ccRCC. The function of the gene DUSP1 in ccRCC was validated through biological experiments, confirming its feasibility as a novel biomarker for ccRCC. These findings suggest that targeted therapies based on senescence-related mechanisms could be an effective treatment option for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Cellular Senescence/genetics , RNA-Seq , Kidney Neoplasms/genetics , Single-Cell Analysis
20.
Cell Mol Life Sci ; 80(8): 213, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464072

ABSTRACT

Dual specificity phosphatase 1 (DUSP1) and valosin-containing protein (VCP) have both been reported to regulate mitochondrial homeostasis. However, their impact on mitochondrial quality control (MQC) and myocardial function during LPS-induced endotoxemia remains unclear. We addressed this issue by modeling LPS-induced endotoxemia in DUSP1 transgenic (DUSP1TG) mice and in cultured DUSP1-overexpressing HL-1 cardiomyocytes. Accompanying characteristic structural and functional deficits, cardiac DUSP1 expression was significantly downregulated following endotoxemia induction in wild type mice. In contrast, markedly reduced myocardial inflammation, cardiomyocyte apoptosis, cardiac structural disorder, cardiac injury marker levels, and normalized systolic/diastolic function were observed in DUSP1TG mice. Furthermore, DUSP1 overexpression in HL-1 cells significantly attenuated LPS-mediated mitochondrial dysfunction by preserving MQC, as indicated by normalized mitochondrial dynamics, improved mitophagy, enhanced biogenesis, and attenuated mitochondrial unfolded protein response. Molecular assays showed that VCP was a substrate of DUSP1 and the interaction between DUSP1 and VCP primarily occurred on the mitochondria. Mechanistically, DUSP1 phosphatase domain promoted the physiological DUSP1/VCP interaction which prevented LPS-mediated VCP Ser784 phosphorylation. Accordingly, transfection with a phosphomimetic VCP mutant abolished the protective actions of DUSP1 on MQC and aggravated inflammation, apoptosis, and contractility/relaxation capacity in HL-1 cardiomyocytes. These findings support the involvement of the novel DUSP1/VCP/MQC pathway in the pathogenesis of endotoxemia-caused myocardial dysfunction.


Subject(s)
Cardiomyopathies , Endotoxemia , Animals , Mice , Cardiomyopathies/metabolism , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Endotoxemia/chemically induced , Endotoxemia/genetics , Endotoxemia/complications , Lipopolysaccharides/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...