Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
J Pharm Sci ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343099

ABSTRACT

Over recent years, confidence has been gained that predictive stability modeling approaches using statistical tools, prior knowledge and industry experience enable, in many instances, a robust and reliable shelf-life/expiry or retest period prediction for medicinal products. These science and risk-based approaches can compensate for not having a complete real-time stability data set to be included in regulatory applications at the time of initial submission and, thereby, accelerate the availability of new medicines. Examples of predictive stability modeling include accelerated stability assessment procedure (ASAP), advanced kinetic modeling (AKM), and novel modeling approaches that involve the use of Bayesian statistics and Artificial Intelligence (AI) applications such as Machine Learning (ML), with applicability to both synthetic and biological molecules. For biologics, product-specific and platform prior knowledge could be used to overcome model limitations known for non-quantitative stability indicating attributes. A successful ongoing verification approach by comparing the predicted data with real-time stability data would be an appropriate risk management approach which is intended to address regulatory concerns, and further build confidence in the robustness of these predictive modelling approaches with regulatory agencies. Global regulatory acceptance of stability modeling could allow patients to receive potential life-saving medications faster without compromising quality, safety or efficacy.

2.
Antibodies (Basel) ; 13(3)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39311379

ABSTRACT

Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific antibodies are pivotal in therapeutic protein development and have transformed disease treatments across various therapeutic areas. The integrity of therapeutic antibodies, however, is compromised by sequence liabilities, notably deamidation, where asparagine (N) and glutamine (Q) residues undergo chemical degradations. Deamidation negatively impacts the efficacy, stability, and safety of diverse classes of antibodies, thus necessitating the critical need for the early and accurate identification of vulnerable sites. In this article, a comprehensive antibody deamidation-specific dataset (n = 2285) of varied modalities was created by using high-throughput automated peptide mapping followed by supervised machine learning to predict the deamidation propensities, as well as the extents, throughout the entire antibody sequences. We propose a novel chimeric deep learning model, integrating protein language model (pLM)-derived embeddings with local sequence information for enhanced deamidation predictions. Remarkably, this model requires only sequence inputs, eliminating the need for laborious feature engineering. Our approach demonstrates state-of-the-art performance, offering a streamlined workflow for high-throughput automated peptide mapping and deamidation prediction, with the potential of broader applicability to other antibody sequence liabilities.

3.
Food Res Int ; 195: 114995, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277255

ABSTRACT

Common vetch protein, similar to pea protein, offers valuable qualities like being non-GMO, hypoallergenic, and nutritious. However, its strong beany flavor hinders consumer acceptance. This study explores enzymatic deamidation using glutaminase to address this issue. GC-MS analysis identified 54 volatile compounds in the raw material protein, with 2-pentylfuran, hexanal, and several nonenals contributing the most to the undesirable aroma. Principal component analysis (PCA) confirmed the effectiveness of glutaminase deamidation in removing these off-flavors. The study further reveals that deamidation alters the protein's secondary structure, with an increase in α - helix structure and a decrease in ß - sheet structure. The surface hydrophobicity increased from 587.33 ± 2.63 to 1855.63 ± 3.91 exposing hydrophobic clusters that bind flavor compounds. This disruption weakens the interactions that trap these undesirable flavors, ultimately leading to their release and a more pleasant aroma. These findings provide valuable insights for enzymatic deodorization of not only common vetch protein but also pea protein.


Subject(s)
Glutaminase , Glutaminase/metabolism , Glutaminase/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Gas Chromatography-Mass Spectrometry , Flavoring Agents/chemistry , Odorants/analysis , Hydrophobic and Hydrophilic Interactions , Humans , Plant Proteins/chemistry , Plant Proteins/metabolism , Principal Component Analysis , Protein Structure, Secondary
4.
J Anal Test ; 8(3): 288-299, 2024.
Article in English | MEDLINE | ID: mdl-39184306

ABSTRACT

While there have been significant advances in the development of peptide oral dosage forms in recent years, highlighted by the clinical and commercial success of approved peptides such as Rybelsus®, there remain several barriers in the way of broad range applicability of this approach to peptide delivery. One such barrier includes the poor physical and chemical stability inherent to their structures, which persists in the solid state although degradation typically occurs at different rates and via different pathways in comparison to the solution state. Using insulin as a model peptide, this work sought to contribute to the development of analytical techniques for investigating common insulin degradation pathways. Chemically denatured, deamidated and aggregated samples were prepared and used to benchmark circular dichroism spectroscopy, reverse phase HPLC and size exclusion chromatography methods for the investigation of unfolding, chemical modifications and covalent aggregation of the insulin molecule respectively. Solid state degraded samples were prepared by heating insulin powder at 60 °C and 75% relative humidity for 1, 3, 5 and 7 d, and the degradation profiles of the samples were evaluated and compared with those observed in solution. While no unfolding was observed to occur, significant deamidation and covalent aggregation were detected. Reductive disulfide bond cleavage using dithiothreitol allowed for separation of the insulin A- and B-chains, offering a facile yet novel means of assessing the mechanisms of deamidation and covalent aggregation occurring in the solid state. Supplementary Information: The online version contains supplementary material available at 10.1007/s41664-024-00302-5.

5.
J Agric Food Chem ; 72(33): 18697-18707, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39165163

ABSTRACT

Cronobacter sakazakii is a notorious foodborne opportunistic pathogen, particularly affecting vulnerable populations such as premature infants, and poses significant public health challenges. This study aimed to elucidate the role of the envZ/ompR genes in environmental tolerance, pathogenicity, and protein regulation of C. sakazakii. An envZ/ompR knockout mutant was constructed and assessed for its impact on bacterial growth, virulence, environmental tolerance, and protein regulation. Results demonstrate that deletion of envZ/ompR genes leads to reduced growth rate and attenuated virulence in animal models. Additionally, the knockout strain exhibited compromised environmental tolerance, particularly in desiccation and oxidative stress conditions, along with impaired adhesion and invasion abilities in epithelial cells. Proteomic analysis revealed significant alterations in protein expression and phosphorylation patterns, highlighting potential compensatory mechanisms triggered by gene deletion. Furthermore, investigation into protein deamidation and glucose metabolism uncovered a link between envZ/ompR deletion and energy metabolism dysregulation. Interestingly, the downregulation of MalK and GrxC proteins was identified as contributing factors to altered desiccation tolerance and disrupted redox homeostasis, respectively, providing mechanistic insights into the phenotypic changes observed. Overall, this study enhances understanding of the multifaceted roles of envZ/ompR in C. sakazakii physiology and pathogenesis, shedding light on potential targets for therapeutic intervention and food safety strategies.


Subject(s)
Bacterial Proteins , Cronobacter sakazakii , Gene Expression Regulation, Bacterial , Cronobacter sakazakii/genetics , Cronobacter sakazakii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence , Humans , Animals , Enterobacteriaceae Infections/microbiology , Mice , Oxidative Stress
6.
J Dairy Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004137

ABSTRACT

The lack of fat in yogurt can lead to alterations in taste and whey separation, reducing consumer acceptance. In this study, the feasibility of enhancing the quality of skim milk yogurt through a combination of transglutaminase (TG) and protein-glutaminase (PG) was investigated. The combination of TG and PG resulted in simultaneous cross-linking and deamidated of casein micelles, with PG deamidation taking priority over TG cross-linking, leading to higher solubility and lower turbidity of milk proteins compared with TG alone. When 0.06 U/mL TG and 0.03 U/mL PG were added, firmness and viscosity indexes significantly increased by 38.26 and 78.59%, respectively as compared with the control. Microscopic images revealed increased cross-linking with casein and filling of cavities by smaller sub-micelles in the combination of TG and PG treatment. Furthermore, the combination of TG and PG resolved issues of rough taste and whey separation, leading to improved overall liking. This study highlights the benefits of using both enzymes in dairy production and has important implication for future research.

7.
Int J Biol Macromol ; 275(Pt 2): 133660, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969030

ABSTRACT

Insulin is a small protein widely used to treat patients with diabetes and is a commonly used model for protein fibrillation studies. Under specific conditions, such as low pH and high temperature, insulin monomers aggregate to form fibrils. This aggregation is problematic for manufacturing and storage of insulin. The thioflavin T (ThT) assay is commonly used to study amyloid fibrillation but suffers from several limitations, such as the effect of protein concentration, the size of the amyloid fibrillar bundles, competitive binding, and fibril aggregation, all of which hinder precise quantitative analysis. Here, we present a method for studying the kinetics of insulin fibrillation utilizing ultra-performance liquid chromatography (UPLC). This method enables the quantitative detection of soluble insulin components, including chemically modified components. The formation of a deamidated species could be monitored at the early stage of fibrillation, and this species was likely included in the fibrils. In addition, in the presence of inhibitors known to compete with ThT for binding to fibrils, UPLC analysis showed the disappearance of soluble components even though the ThT assay did not indicate the presence of fibrils. These results suggest that the UPLC-based analysis presented here can complement the ThT assay for investigating the kinetics of protein fibrillation.


Subject(s)
Insulin , Kinetics , Insulin/chemistry , Protein Aggregates , Chromatography, High Pressure Liquid/methods , Amyloid/chemistry , Humans , Benzothiazoles/chemistry
8.
Protein Sci ; 33(8): e5120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39022918

ABSTRACT

Deamidation frequently is invoked as an important driver of crystallin aggregation and cataract formation. Here, we characterized the structural and biophysical consequences of cumulative Asn to Asp changes in γD-crystallin. Using NMR spectroscopy, we demonstrate that N- or C-terminal domain-confined or fully Asn to Asp changed γD-crystallin exhibits essentially the same 1H-15N HSQC spectrum as the wild-type protein, implying that the overall structure is retained. Only a very small thermodynamic destabilization for the overall Asn to Asp γD-crystallin variants was noted by chaotropic unfolding, and assessment of the colloidal stability, by measuring diffusion interaction parameters, yielded no substantive differences in association propensities. Furthermore, using molecular dynamics simulations, no significant changes in dynamics for proteins with Asn to Asp or iso-Asp changes were detected. Our combined results demonstrate that substitution of all Asn by Asp residues, reflecting an extreme case of deamidation, did not affect the structure and biophysical properties of γD-crystallin. This suggests that these changes alone cannot be the major determinant in driving cataract formation.


Subject(s)
Asparagine , Aspartic Acid , Molecular Dynamics Simulation , Protein Stability , gamma-Crystallins , gamma-Crystallins/chemistry , gamma-Crystallins/metabolism , gamma-Crystallins/genetics , Asparagine/chemistry , Asparagine/metabolism , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Thermodynamics , Cataract/metabolism , Cataract/genetics , Amino Acid Substitution
9.
Vaccines (Basel) ; 12(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39066371

ABSTRACT

Deamidation is a post-translational chemical modification that occurs within proteins and can be influenced by many factors, including temperature and pH. In vaccines, deamidation is considered undesirable as it may lead to changes in structure, function, stability, and immunogenicity. Detecting deamidation in vaccines, especially adjuvanted vaccines, can be challenging due to the lack of simple quantitative techniques. In this study, the quantification of isoaspartic acid (isoAsp) was used to assess deamidation in model antigens in the presence and absence of common vaccine adjuvants. This study shows that the detection of isoAsp was possible in the presence of various types of adjuvants with little to no interference. High levels of isoAsp were detected in thermally and pH-stressed adjuvanted vaccines, suggesting significant deamidation and highlighting the stability-indicating capabilities of the assay. The quantification of isoAsp in stability programs of a vaccine drug product could possibly find applications in product shelf-life determination, using thermal kinetic modeling to predict deamidation over time. The ability to detect deamidation early in vaccine development enhances process improvements and ultimately improves the vaccine's stability. To summarize, this paper describes a rapid and simple method to determine deamidation in adjuvanted vaccines. This method could be applicable to formulation development, stability assessment, or shelf-life determination.

10.
Sci China Life Sci ; 67(9): 1915-1927, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38913236

ABSTRACT

The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.


Subject(s)
Signal Transduction , Smad6 Protein , Humans , Smad6 Protein/metabolism , Smad6 Protein/genetics , HEK293 Cells , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Mutation
11.
Protein Sci ; 33(6): e4991, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757381

ABSTRACT

The de novo design of miniprotein inhibitors has recently emerged as a new technology to create proteins that bind with high affinity to specific therapeutic targets. Their size, ease of expression, and apparent high stability makes them excellent candidates for a new class of protein drugs. However, beyond circular dichroism melts and hydrogen/deuterium exchange experiments, little is known about their dynamics, especially at the elevated temperatures they seemingly tolerate quite well. To address that and gain insight for future designs, we have focused on identifying unintended and previously overlooked heat-induced structural and chemical changes in a particularly stable model miniprotein, EHEE_rd2_0005. Nuclear magnetic resonance (NMR) studies suggest the presence of dynamics on multiple time and temperature scales. Transiently elevating the temperature results in spontaneous chemical deamidation visible in the NMR spectra, which we validate using both capillary electrophoresis and mass spectrometry (MS) experiments. High temperatures also result in greatly accelerated intrinsic rates of hydrogen exchange and signal loss in NMR heteronuclear single quantum coherence spectra from local unfolding. These losses are in excellent agreement with both room temperature hydrogen exchange experiments and hydrogen bond disruption in replica exchange molecular dynamics simulations. Our analysis reveals important principles for future miniprotein designs and the potential for high stability to result in long-lived alternate conformational states.


Subject(s)
Hot Temperature , Nuclear Magnetic Resonance, Biomolecular , Molecular Dynamics Simulation , Protein Conformation , Proteins/chemistry , Protein Stability
12.
Article in English | MEDLINE | ID: mdl-38743960

ABSTRACT

Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. Carbamoyl-phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the de novo pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis via deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation via up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.

13.
Curr Alzheimer Res ; 21(1): 24-49, 2024.
Article in English | MEDLINE | ID: mdl-38623984

ABSTRACT

Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.


Subject(s)
Alzheimer Disease , Protein Processing, Post-Translational , tau Proteins , tau Proteins/metabolism , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Processing, Post-Translational/physiology , Animals , Phosphorylation
14.
AAPS J ; 26(3): 42, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570351

ABSTRACT

Aggregation stability of monoclonal antibody (mAb) therapeutics is influenced by many critical quality attributes (CQA) such as charge and hydrophobic variants in addition to environmental factors. In this study, correlation between charge heterogeneity and stability of mAbs for bevacizumab and trastuzumab has been investigated under a variety of stresses including thermal stress at 40 °C, thermal stress at 55 °C, shaking (mechanical), and low pH. Size- and charge-based heterogeneities were monitored using analytical size exclusion chromatography (SEC) and cation exchange chromatography (CEX), respectively, while dynamic light scattering was used to assess changes in hydrodynamic size. CEX analysis revealed an increase in cumulative acidic content for all variants of both mAbs post-stress treatment attributed to increased deamidation. Higher charge heterogeneity was observed in variants eluting close to the main peak than the ones eluting further away (25-fold and 42-fold increase in acidic content for main and B1 of bevacizumab and 19-fold for main of trastuzumab, respectively, under thermal stress; 50-fold increase in acidic for main and B1 of bevacizumab and 10% rise in basic content of main of trastuzumab under pH stress). Conversely, variants eluting far away from main exhibit greater aggregation as compared to close-eluting ones. Aggregation kinetics of variants followed different order for the different stresses for both mAbs (2nd order for thermal and pH stresses and 0th order for shaking stress). Half-life of terminal charge variants of both mAbs was 2- to 8-fold less than main indicating increased degradation propensity.


Subject(s)
Antibodies, Monoclonal , Liquid Chromatography-Mass Spectrometry , Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Bevacizumab , Tandem Mass Spectrometry , Trastuzumab
15.
Food Chem X ; 22: 101312, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38559444

ABSTRACT

Protein glutaminase (PG), originating from Chryseobacterium proteolyticum, can catalyze the deamidation of glutamine residues in plant proteins into glutamic acid, thus enhancing its functional properties. However, the low yield of PG limits its industrial production. In this study, the yield of PG in C. proteolyticum TM1040 increased by 121 %, up to 7.30 U/mL in a 15 L fermenter after medium optimization. Subsequently, purified PG was obtained by cation exchange chromatography (CEX) coupled with hydrophobic interaction chromatography (HIC). The degree of deamidation (DD) of wheat gluten after purified PG deamidation was 87.11 %, which is superior to chemical deamidation in safety and DD. The emulsifying and foaming properties of deamidated wheat gluten were 2.67 and 18.86 times higher, and the water- and oil-holding properties were 4.23 and 18.77 times higher, respectively. The deamidated wheat gluten with enhanced functional properties was used to improve the flavor and texture in baking cakes.

16.
Front Nutr ; 11: 1308463, 2024.
Article in English | MEDLINE | ID: mdl-38549745

ABSTRACT

In celiac disease, intestinal transglutaminase (TG2) produces immunogenic peptides by deamidation of gluten proteins. These products drive the celiac immune response. We have previously identified an interaction between gliadin and a food additive, E304i, which prevents gliadin processing (both deamidation and transamidation) by TG2, in vitro. In this study, we investigated if E304i could prevent TG2 processing of gluten in flours and if the effect was evident after simulated gastrointestinal digestion. We also confirmed the outcome in vivo in a human cross-over intervention study in healthy non-celiac participants. TG2 transamidation experiments (in vitro) of digested wheat and rye flours supplemented with E304i at 30 mg/g indicated full prevention of TG2 processing. In the intervention study, participant serum levels of deamidated gliadin peptides (dGDPs) increased after the intake of reference wheat rolls (80 g per day for a week; 41% ± 4% compared to washout), while the intake of the intervention E304i/zinc sulfate wheat rolls generated a modest response (80 g per day for a week; 8 ± 10% of control). The difference between the groups (32.8 ± 15.6%) was significant (p = 0.00003, n = 9), confirming that E304i /zinc addition to wheat rolls prevented TG2 deamidation of gluten. In conclusion, this study shows that E304i /zinc addition to wheat rolls prevents TG2 deamidation of gluten in non-celiac participants. Clinical trial registration: clinicaltrials.gov, identifier (NCT06005376).

17.
J Agric Food Chem ; 72(13): 7344-7353, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502793

ABSTRACT

Amadori rearrangement products of asparagine with glucose (Asn-Glc-ARP) were first prepared through Maillard model reactions and identified via liquid chromatography-mass spectroscopy. With the study on the effect of the reaction temperature, pH values, and reaction time, the ideal reaction condition for accumulation of Asn-Glc-ARP was determined at 100 °C for 40 min under pH 7. Asparagine (Asn) was prone to degrade from Asn-Glc-ARP in alkaline pH values within a lower temperature range, while in an acidic environment with high temperatures, deamidation of Asn-Glc-ARP to Asp-Glc-ARP (Amadori rearrangement products of aspartic acid with glucose) was displayed as the dominant pathway. The deamidation reaction on the side chain of the amide group took place at Asn-Glc-ARP and transferred it into the hydroxyl group, forming Asp-Glc-ARP at the end. Considering that lyophilization as pretreatment led to limited water activity, a single aspartic acid was not deamidated from Asn directly nor did it degrade from Asp-Glc-ARP even at 120 °C. The degradation of Asn-Glc-ARP through tandem mass spectrometry (MS/MS) analysis showed the obvious fragment ion at m/z 211, indicating that the stable oxonium ion formed during fragmentation. The structure of Asn-Glc-ARP was proposed as 1-deoxy-1-l-asparagino-d-fructose after separation and purification. Also, the content of Asn-Glc-ARP within dry jujube fruit (HeTianYuZao) was quantitated as high as 8.1 ± 0.5 mg/g.


Subject(s)
Asparagine , Glucose , Plant Extracts , Ziziphus , Asparagine/chemistry , Glucose/chemistry , Tandem Mass Spectrometry , Maillard Reaction , Aspartic Acid
18.
MAbs ; 16(1): 2333436, 2024.
Article in English | MEDLINE | ID: mdl-38546837

ABSTRACT

Asparagine (Asn) deamidation and aspartic acid (Asp) isomerization are common degradation pathways that affect the stability of therapeutic antibodies. These modifications can pose a significant challenge in the development of biopharmaceuticals. As such, the early engineering and selection of chemically stable monoclonal antibodies (mAbs) can substantially mitigate the risk of subsequent failure. In this study, we introduce a novel in silico approach for predicting deamidation and isomerization sites in therapeutic antibodies by analyzing the structural environment surrounding asparagine and aspartate residues. The resulting quantitative structure-activity relationship (QSAR) model was trained using previously published forced degradation data from 57 clinical-stage mAbs. The predictive accuracy of the model was evaluated for four different states of the protein structure: (1) static homology models, (2) enhancing low-frequency vibrational modes during short molecular dynamics (MD) runs, (3) a combination of (2) with a protonation state reassignment, and (4) conventional full-atomistic MD simulations. The most effective QSAR model considered the accessible surface area (ASA) of the residue, the pKa value of the backbone amide, and the root mean square deviations of both the alpha carbon and the side chain. The accuracy was further enhanced by incorporating the QSAR model into a decision tree, which also includes empirical information about the sequential successor and the position in the protein. The resulting model has been implemented as a plugin named "Forecasting Reactivity of Isomerization and Deamidation in Antibodies" in MOE software, completed with a user-friendly graphical interface to facilitate its use.


Subject(s)
Antibodies, Monoclonal , Asparagine , Isomerism , Asparagine/chemistry , Antibodies, Monoclonal/chemistry , Amides/chemistry , Software
19.
Food Res Int ; 179: 114012, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342536

ABSTRACT

Rice is one of the most consumed grains in the world. Rice protein has great nutritional value as a hypoallergenic protein and due to its high lysine content, a limiting amino acid in several other plant protein sources. However, rice protein has low solubility, hampering its use in many applications in the food industry. In this context, alkaline deamidation (0.5 h, 343 K, and pH 11) was applied to modify the protein structure of rice protein concentrate (RPC). After deamidation, two protein powders were produced: (i) one containing the whole protein fraction recovered after RPC deamidation (DT) and (ii) another containing only the soluble fraction recovered after RPC deamidation (DS). Protein dispersions were characterized by SDS-PAGE, zeta potential, solubility, surface hydrophobicity, and capacity to hold water and oil. RPC could not structure canola oil into a high internal phase emulsion (HIPE) due to its low solubility. DT and DS dispersions displayed solubility much higher than RPC and enabled the structuration of HIPEs with 75 % (w/w) canola oil and 25 % of DT or DS dispersions (2, 4, and 6 % w/w). HIPEs were characterized regarding particle size, microstructure, Turbiscan and oil loss stabilities, and rheological behavior for 60 days. Turbiscan analysis and oil loss measurements showed high stability, and the thixotropy tests showed high recovery in all HIPEs. Higher protein concentrations and DS dispersions produced HIPEs with smaller particle sizes. However, rheological measurements indicate that HIPEs produced with DT dispersions had better results, maintaining their structure over the 60 days. Furthermore, DT is cheaper to produce; therefore, DT 4 and 6 % w/w were the most promising for producing HIPEs. The HIPEs produced in this study displayed great potential as fat replacers.


Subject(s)
Oryza , Emulsions/chemistry , Oryza/metabolism , Rapeseed Oil , Particle Size
20.
Appl Spectrosc ; : 37028241231824, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38419510

ABSTRACT

Clinical antibodies are an important class of drugs for the treatment of both chronic and acute diseases. Their manufacturability is subject to evaluation to ensure product quality and efficacy. One critical quality attribute is deamidation, a non-enzymatic process that is observed to occur during thermal stress, at low or high pH, or a combination thereof. Deamidation may induce antibody instability and lead to aggregation, which may pose immunogenicity concerns. The introduction of a negative charge via deamidation may impact the desired therapeutic function (i) within the complementarity-determining region, potentially causing loss of efficacy; or (ii) within the fragment crystallizable region, limiting the effector function involving antibody-dependent cellular cytotoxicity. Here we describe a transformative solution that allows for a comparative assessment of deamidation and its impact on stability and aggregation. The innovative streamlined method evaluates the intact protein in its formulation conditions. This breakthrough platform technology is comprised of a quantum cascade laser microscope, a slide cell array that allows for flexibility in the design of experiments, and dedicated software. The enhanced spectral resolution is achieved using two-dimensional correlation, co-distribution, and two-trace two-dimensional correlation spectroscopies that reveal the molecular impact of deamidation. Eight re-engineered immunoglobulin G4 scaffold clinical antibodies under control and forced degradation conditions were evaluated for deamidation and aggregation. We determined the site of deamidation, the overall extent of deamidation, and where applicable, whether the deamidation event led to self-association or aggregation of the clinical antibody and the molecular events that led to the instability. The results were confirmed using orthogonal techniques for four of the samples.

SELECTION OF CITATIONS
SEARCH DETAIL