Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.188
Filter
1.
Front Microbiol ; 15: 1387643, 2024.
Article in English | MEDLINE | ID: mdl-38962136

ABSTRACT

Pleurotus ostreatus is one of the most consumed mushroom species, as it serves as a high-quality food, favors a rich secondary metabolism, and has remarkable adaptability to the environment and predators. In this study, we investigated the function of two key reactive oxygen species producing enzyme NADPH oxidase (PoNoxA and PoNoxB) in P. ostreatus hyphae growth, metabolite production, signaling pathway activation, and immune responses to different stresses. Characterization of the Nox mutants showed that PoNoxB played an important role in the hyphal formation of the multicellular structure, while PoNoxA regulated apical dominance. The ability of P. ostreatus to tolerate a series of abiotic stress conditions (e.g., osmotic, oxidative, membrane, and cell-wall stresses) and mechanical damage repair was enhanced with PoNoxA over-expression. PoNoxB had a greater responsibility in regulating the polysaccharide composition of the cell wall and methyl jasmonate and gibberellin GA1 biosynthesis, and improved mushroom resistance against Tyrophagus putrescentiae. Moreover, mutants were involved in the jasmonate and GA signaling pathway, and toxic protein defense metabolite production. Our findings shed light on how the oyster mushroom senses stress signals and responds to adverse environments by the complex regulators of Noxs.

2.
Food Chem ; 458: 140261, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964094

ABSTRACT

5-Azacytidine (AZ) is a DNA methylation inhibitor that has recently demonstrated potential in regulating fruit quality through exogenous application. In this study, we treated mandarin fruits for 4-day storage. Noteworthy were the induced degreening and the enhanced citrus aroma of fruits under AZ treatment, involving the promotion of chlorophyll degradation, carotenoid biosynthesis, and limonene biosynthesis. Key genes associated with these processes exhibited expression level increases of up to 123.8 times. Additionally, AZ treatment activated defense-related enzymes and altered phenylpropanoid carbon allocation towards lignin biosynthesis instead of flavonoid biosynthesis. The expression levels of lignin biosynthesis-related genes increased by nearly 100 times, leading to fortified lignin that is crucial for citrus defense against Penicillium italicum. Currently, the underlying mechanisms of such intense AZ-induced changes in gene expressions remain unclear and further research could help establish AZ treatment as a viable strategy for citrus preservation.

3.
New Phytol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952260

ABSTRACT

Securing agricultural supplies for the increasing population without negative impacts on environment demands new crop varieties with higher yields, better quality, and stronger stress resilience. But breeding such super crop varieties is restrained by growth-defense (G-D) trade-off. MicroRNAs (miRNAs) are versatile regulators of plant growth and immune responses, with several being demonstrated to simultaneously regulate crop growth and defense against biotic stresses and to balance G-D trade-off. Increasing evidence also links miRNAs to the metabolism and signaling of phytohormones, another type of master regulator of plant growth and defense. Here, we synthesize the reported functions of miRNAs in crop growth, development, and responses to bio-stressors, summarize the regulatory scenarios of miRNAs based on their relationship with target(s), and discuss how miRNAs, particularly those involved in crosstalk with phytohormones, can be applied in balancing G-D trade-off in crops. We also propose several open questions to be addressed for adopting miRNAs in balancing crop G-D trade-off.

4.
Cell Commun Signal ; 22(1): 352, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970078

ABSTRACT

BACKGROUND: In triple-negative breast cancer (TNBC) therapy, insufficient tumor infiltration by lymphocytes significantly hinders the efficacy of immune checkpoint inhibitors. We have previously demonstrated that Hainanenin-1 (HN-1), a host defense peptide (HDP) identified from Hainan frog skin, induces breast cancer apoptosis and boots anti-tumor immunity via unknown mechanism. METHODS: We used in vitro experiments to observe immunogenic cell death (ICD) indicators in HN-1-treated TNBC cell lines, a mouse tumor model to verify HN-1 promotion of mice anti-tumor immune response, and an in vitro drug sensitivity test of patient-derived breast cancer cells to verify the inhibitory effect of HN-1. RESULTS: HN-1 induced ICD in TNBC in a process during which damage-associated molecular patterns (DAMPs) were released that could further increase the anti-tumor immune response. The secretion level of interleukin 2 (IL-2), IL-12, and interferon γ in the co-culture supernatant was increased, and dendritic cells (DCs) were activated via a co-culture with HN-1-pretreated TNBC cells. As a result, HN-1 increased the infiltration of anti-tumor immune cells (DCs and T lymphocytes) in the mouse model bearing both 4T1 and EMT6 tumors. Meanwhile, regulatory T cells and myeloid-derived suppressor cells were suppressed. In addition, HN-1 induced DNA damage, and double-strand DNA release in the cytosol was significantly enhanced, indicating that HN-1 might stimulate ICD via activation of STING pathway. The knockdown of STING inhibited HN-1-induced ICD. Of note, HN-1 exhibited inhibitory effects on patient-derived breast cancer cells under three-dimensional culture conditions. CONCLUSIONS: Collectively, our study demonstrated that HN-1 could be utilized as a potential compound that might augment immunotherapy effects in patients with TNBC.


Subject(s)
Immunogenic Cell Death , Membrane Proteins , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Animals , Humans , Immunogenic Cell Death/drug effects , Female , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Mice, Inbred BALB C , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism
5.
Eur J Pharm Biopharm ; : 114398, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972467

ABSTRACT

Human cathelicidin LL-37, a cationic host defense peptide (CHDP), has several important physiological roles, including antimicrobial activity, immune modulation, and wound healing, and is a being investigated as a therapeutic candidate for several indications. While the effects of endogenously produced LL-37 are well studied, the biodistribution of exogenously administered LL-37 are less known. Here we assess the biodistribution of a gallium-67 labeled variant of LL-37 using nuclear imaging techniques over a 48 h period in healthy mice. When administered as an intravenous bolus just over 20 µg, the LL-37-based radiotracer was rapidly cleared from the blood, largely by the liver, while an appreciable fraction of the dose temporarily distributed to the lungs. When administered subcutaneously at the same dose level, the radiotracer was absorbed systemically following a two-phase kinetic model and was predominately cleared renally. Uptake into sites rich in immune cells, such as the lymph nodes and the spleen, was observed for both routes of administration. Scans of free gallium-67 were also performed as controls. Important preclinical insights into the biodistribution of exogenously administered LL-37 were gained from this study, which can aid in the understanding of this and related cationic host-defense peptides.

6.
Psychiatry Investig ; 21(6): 672-679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38960445

ABSTRACT

OBJECTIVE: Borderline personality disorder (BPD) is known to share characteristics with a variety of personality disorders (PDs) and exhibits diverse patterns of defense mechanisms. To enhance our understanding of BPD, it's crucial to shift our focus from traditional categorical diagnostics to the dimensional traits shared with other PDs, as the borderline personality organization (BPO) model suggests. This approach illuminates the nuanced spectrum of BPD characteristics, offering deeper insights into its complexity. While studies have investigated the comorbidity of BPD with other PDs, research exploring the relationship between various personality factors and defense mechanisms within BPD itself has been scarce. The present study was undertaken to investigate the complex interrelationships between various personality factors and defense styles in individuals diagnosed with BPD. METHODS: Using a network analysis approach, data from 227 patients diagnosed with BPD were examined using the Defense Style Questionnaire and Personality Disorder Questionnaire-4+ for assessment. RESULTS: Intricate connections were observed between personality factors and defense styles. Significant associations were identified between various personality factors and defense styles, with immature defense styles, such as maladaptive and image-distorting being particularly prominent in BPD in the centrality analysis. The maladaptive defense style had the highest expected influence centrality. Furthermore, the schizotypal, dependent, and narcissistic personality factors demonstrated relatively high centrality within the network. CONCLUSION: Network analysis can effectively delineate the complexity of various PDs and defense styles. These findings are expected to facilitate a deeper understanding of why BPD exhibits various levels of organization and presents with heterogeneous characteristics, consistent with the perspectives proposed by the BPO.

7.
Sci Rep ; 14(1): 15265, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961133

ABSTRACT

Cadmium (Cd) pollution is a serious threat to food safety and human health. Minimizing Cd uptake and enhancing Cd tolerance in plants are vital to improve crop yield and reduce hazardous effects to humans. In this study, we designed three Cd concentration stress treatments (Cd1: 0.20 mg·kg-1, Cd2: 0.60 mg·kg-1, and Cd3: 1.60 mg·kg-1) and two foliar silicon (Si) treatments (CK: no spraying of any material, and Si: foliar Si spraying) to conduct pot experiments on soil Cd stress. The results showed that spraying Si on the leaves reduced the Cd content in brown rice by 4.79-42.14%. Si application increased net photosynthetic rate (Pn) by 1.77-4.08%, stomatal conductance (Gs) by 5.27-23.43%, transpiration rate (Tr) by 2.99-20.50% and intercellular carbon dioxide (CO2) concentration (Ci) by 6.55-8.84%. Foliar spraying of Si significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD) in rice leaves by 9.84-14.09% and 4.69-53.09%, respectively, and reduced the content of malondialdehyde (MDA) by 7.83-48.72%. In summary, foliar Si spraying protects the photosynthesis and antioxidant system of rice canopy leaves, and is an effective method to reduce the Cd content in brown rice.


Subject(s)
Antioxidants , Cadmium , Oryza , Photosynthesis , Plant Leaves , Silicon , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Photosynthesis/drug effects , Silicon/pharmacology , Silicon/metabolism , Antioxidants/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Soil Pollutants , Peroxidase/metabolism
8.
Front Plant Sci ; 15: 1420068, 2024.
Article in English | MEDLINE | ID: mdl-38957597

ABSTRACT

Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.

9.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994969

ABSTRACT

During infection, adenoviruses inhibit the cellular RNA interference (RNAi) machinery by saturating the RNA-induced silencing complex (RISC) of the host cells with large amounts of virus-derived microRNAs (mivaRNAs) that bind to the key component of the complex, Argonaute 2 (AGO2). In the present study, we investigated AGO2 as a prominent player at the intersection between human adenovirus 5 (HAdV-5) and host cells because of its ability to interfere with the HAdV-5 life cycle. First, the ectopic expression of AGO2 had a detrimental effect on the ability of the virus to replicate. In addition, in silico and in vitro analyses suggested that endogenous microRNAs (miRNAs), particularly hsa-miR-7-5p, have similar effects. This miRNA was found to be able to target the HAdV-5 DNA polymerase mRNA. The inhibitory effect became more pronounced upon overexpression of AGO2, likely due to elevated AGO2 levels, which abolished the competition between cellular miRNAs and mivaRNAs for RISC incorporation. Collectively, our data suggest that endogenous miRNAs would be capable of significantly inhibiting viral replication if adenoviruses had not developed a mechanism to counteract this function. Eventually, AGO2 overexpression-mediated relief of the RISC-saturating action of mivaRNAs strongly enhanced the effectiveness of artificial miRNAs (amiRNAs) directed against the HAdV-5 preterminal protein (pTP) mRNA, suggesting a substantial benefit of co-expressing amiRNAs and AGO2 in RNAi-based strategies for the therapeutic inhibition of adenoviruses.


Subject(s)
Adenoviruses, Human , Argonaute Proteins , MicroRNAs , Virus Replication , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , RNA-Induced Silencing Complex/metabolism , RNA-Induced Silencing Complex/genetics , RNA Interference , HEK293 Cells
10.
Cells ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38994987

ABSTRACT

Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.


Subject(s)
Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Skin Aging , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Skin Aging/physiology , Mitochondria/metabolism , Animals , Skin/metabolism , Skin/pathology , Aging/metabolism , Oxidative Stress , Inflammation/metabolism , Inflammation/pathology , Cellular Senescence
11.
Cell Rep ; 43(7): 114450, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002129

ABSTRACT

Defense systems that recognize viruses provide important insights into both prokaryotic and eukaryotic innate immunity mechanisms. Such systems that restrict foreign DNA or trigger cell death have recently been recognized, but the molecular signals that activate many of these remain largely unknown. Here, we characterize one such system in pandemic Vibrio cholerae responsible for triggering cell density-dependent death (CDD) of cells in response to the presence of certain genetic elements. We show that the key component is the Lamassu DdmABC anti-phage/plasmid defense system. We demonstrate that signals that trigger CDD were palindromic DNA sequences in phages and plasmids that are predicted to form stem-loop hairpins from single-stranded DNA. Our results suggest that agents that damage DNA also trigger DdmABC activation and inhibit cell growth. Thus, any infectious process that results in damaged DNA, particularly during DNA replication, can in theory trigger DNA restriction and death through the DdmABC abortive infection system.

12.
J Hazard Mater ; 476: 135157, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39002488

ABSTRACT

Massive use of plastic products has caused their accumulation in soils, releasing large amounts of endogenous plastic additives (e.g., benzotriazole ultraviolet stabilizers, in short BZT-UVs) into terrestrial ecosystems. However, their plant toxicity is little known. Herein, we investigated the occurrence of BZT-UVs in contaminated farmland and selected three BZT-UV congeners to explore their toxic effects on the antioxidant, photosynthetic, and metabolic perturbation on rice (Oryza sativa). Results showed that the mean concentrations of ∑BZT-UVs in soil and plant samples were 180.7 ng/g dw and 156.4 ng/g dw, respectively. UV-P, UV-327 and UV-328 were the dominant BZT-UV congeners in both of soils and plants. Three BZT-UV congeners caused oxidative damages to rice in a dose-dependent manner, especially for UV-328. Functional genes involved in chlorophyll synthetases was inhibited by over 50 % under the stress of BZT-UVs, whereas those responsible for chlorophyll degradation were obviously promoted. The chlorophyll content was thus decreased, leading to a weakened photosynthesis system and an unbalanced carbon metabolism. The transcriptome and metabolome proved that the flux of carbohydrate metabolism and amino acid metabolism were obviously promoted in plants induced by BZT-UVs, which could inhibit the growth of rice. These findings offered insights into the coordinated responses of plants and advanced our understanding of potential ecological risks of BZT-UVs to terrestrial ecosystems.

13.
J Math Biol ; 89(2): 22, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951257

ABSTRACT

Group defense in prey and hunting cooperation in predators are two important ecological phenomena and can occur concurrently. In this article, we consider cooperative hunting in generalist predators and group defense in prey under a mathematical framework to comprehend the enormous diversity the model could capture. To do so, we consider a modified Holling-Tanner model where we implement Holling type IV functional response to characterize grazing pattern of predators where prey species exhibit group defense. Additionally, we allow a modification in the attack rate of predators to quantify the hunting cooperation among them. The model admits three boundary equilibria and up to three coexistence equilibrium points. The geometry of the nontrivial prey and predator nullclines and thus the number of coexistence equilibria primarily depends on a specific threshold of the availability of alternative food for predators. We use linear stability analysis to determine the types of hyperbolic equilibrium points and characterize the non-hyperbolic equilibrium points through normal form and center manifold theory. Change in the model parameters leading to the occurrences of a series of local bifurcations from non-hyperbolic equilibrium points, namely, transcritical, saddle-node, Hopf, cusp and Bogdanov-Takens bifurcation; there are also occurrences of global bifurcations such as homoclinic bifurcation and saddle-node bifurcation of limit cycles. We observe two interesting closed 'bubble' form induced by global bifurcations due to change in the strength of hunting cooperation and the availability of alternative food for predators. A three dimensional bifurcation diagram, concerning the original system parameters, captures how the alternation in model formulation induces gradual changes in the bifurcation scenarios. Our model highlights the stabilizing effects of group or gregarious behaviour in both prey and predator, hence supporting the predator-herbivore regulation hypothesis. Additionally, our model highlights the occurrence of "saltatory equilibria" in ecological systems and capture the dynamics observed for lion-herbivore interactions.


Subject(s)
Ecosystem , Food Chain , Mathematical Concepts , Models, Biological , Population Dynamics , Predatory Behavior , Animals , Population Dynamics/statistics & numerical data , Cooperative Behavior , Computer Simulation , Herbivory , Linear Models
14.
Plant Cell Rep ; 43(8): 190, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976088

ABSTRACT

KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.


Subject(s)
Gene Expression Regulation, Plant , Peptides , Plant Diseases , Prunus dulcis , Xylella , Xylella/pathogenicity , Plant Diseases/microbiology , Plant Diseases/immunology , Prunus dulcis/microbiology , Peptides/pharmacology , Peptides/metabolism , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Disease Resistance , Plant Leaves/microbiology , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Leaves/genetics
15.
BMC Ecol Evol ; 24(1): 95, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982371

ABSTRACT

BACKGROUND: Adaptation to a stressor can lead to costs on other traits. These costs play an unavoidable role on fitness and influence the evolutionary trajectory of a population. Host defense seems highly subject to these costs, possibly because its maintenance is energetically costly but essential to the survival. When assessing the ecological risk related to pollution, it is therefore relevant to consider these costs to evaluate the evolutionary consequences of stressors on populations. However, to the best of our knowledge, the effects of evolution in irradiate environment on host defense have never been studied. Using an experimental evolution approach, we analyzed fitness across 20 transfers (about 20 generations) in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h- 1 of 137Cs gamma radiation. Then, populations from transfer 17 were placed in the same environmental conditions without irradiation (i.e., common garden) for about 10 generations before being exposed to the bacterial parasite Serratia marcescens and their survival was estimated to study host defense. Finally, we studied the presence of an evolutionary trade-off between fitness of irradiated populations and host defense. RESULTS: We found a lower fitness in both irradiated treatments compared to the control ones, but fitness increased over time in the 50.0 mGy.h- 1, suggesting a local adaptation of the populations. Then, the survival rate of C. elegans to S. marcescens was lower for common garden populations that had previously evolved under both irradiation treatments, indicating that evolution in gamma-irradiated environment had a cost on host defense of C. elegans. Furthermore, we showed a trade-off between standardized fitness at the end of the multigenerational experiment and survival of C. elegans to S. marcescens in the control treatment, but a positive correlation between the two traits for the two irradiated treatments. These results indicate that among irradiated populations, those most sensitive to ionizing radiation are also the most susceptible to the pathogen. On the other hand, other irradiated populations appear to have evolved cross-resistance to both stress factors. CONCLUSIONS: Our study shows that adaptation to an environmental stressor can be associated with an evolutionary cost when a new stressor appears, even several generations after the end of the first stressor. Among irradiated populations, we observed an evolution of resistance to ionizing radiation, which also appeared to provide an advantage against the pathogen. On the other hand, some of the irradiated populations seemed to accumulate sensitivities to stressors. This work provides a new argument to show the importance of considering evolutionary changes in ecotoxicology and for ecological risk assessment.


Subject(s)
Biological Evolution , Caenorhabditis elegans , Animals , Caenorhabditis elegans/radiation effects , Caenorhabditis elegans/microbiology , Radiation, Ionizing , Serratia marcescens , Gamma Rays/adverse effects , Genetic Fitness
16.
Sci Rep ; 14(1): 15547, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969662

ABSTRACT

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Subject(s)
Aspergillus flavus , Endophytes , Pest Control, Biological , Plant Diseases , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitology , Solanum tuberosum/microbiology , Animals , Endophytes/physiology , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Tylenchoidea/drug effects , Tylenchoidea/physiology , Pest Control, Biological/methods , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Aspergillus flavus/drug effects , Plant Roots/parasitology , Plant Roots/microbiology , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Trigonella/microbiology
17.
J Exp Bot ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028261

ABSTRACT

Salicylic acid (SA) is a central phytohormone that orchestrates genetic and physiological responses involving defense mechanisms against pathogens. This review presents cutting-edge research on emerging molecular players identified within the past five years contributing to SA accumulation. Furthermore, we delve into two relatively underexplored domains: the dynamic production of SA throughout the plant life cycle, with a specific focus on senescence, and the intricate interplay between SA, nutrition, and its multifaceted implications on plant development and defense response. This synthesis aims to provide a contemporary and comprehensive understanding of the diverse roles of SA in plant biology.

18.
Int Microbiol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020234

ABSTRACT

The study aimed to understand the dynamic interplay between plants and their associated microbes to develop an efficient microbial consortium for managing Fusarium wilt of cumin. A total of 601 rhizospheric and endophytic bacteria and fungi were screened for antagonistic activity against Fusarium oxysporum f.sp. cumini (Foc). Subsequently, ten bacteria and ten fungi were selected for characterizing their growth promotion traits and ability to withstand abiotic stress. Furthermore, a pot experiment was conducted to evaluate the bioefficacy of promising biocontrol isolates-1F, 16B, 31B, and 223B in mono and consortium mode, focusing on disease severity, plant growth, and defense responses in cumin challenged with Foc. Promising isolates were identified as Trichoderma atrobruneum 15F, Pseudomonas sp. 2B, Bacillus amyloliquefaciens 9B, and Bacillus velezensis 32B. In planta, results revealed that cumin plants treated with consortia of 15F, 2B, 9B, and 32B showed highest percent disease control (76.35%) in pot experiment. Consortia of biocontrol agents significantly enhanced production of secondary metabolites and activation of antioxidant-defense enzymes compared to individual strain. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual strain and positive control. The four-microbe consortium significantly enhanced chlorophyll (~ 2.74-fold), carotenoid content (~ 2.14-fold), plant height (~ 1.8-fold), dry weight (~ 1.96-fold), and seed yield (~ 19-fold) compared to positive control in pot experiment. Similarly, four microbe consortia showed highest percent disease control (72.2%) over the positive control in field trial. Moreover, plant growth, biomass, yield, and yield attributes of cumin were also significantly increased in field trial over the positive control as well as negative control.

19.
Drug Discov Today ; : 104107, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032810

ABSTRACT

This review explores the potential antiviral properties of various plant-based compounds, including polyphenols, phytochemicals, and terpenoids. It emphasizes the diverse functionalities of compounds such as epigallocatechin-3-gallate (EGCG), quercetin, griffithsin (GRFT,) resveratrol, linalool, and carvacrol in the context of respiratory virus infections, including SARS-CoV-2. Emphasizing their effectiveness in modulating immune responses, disrupting viral envelopes, and influencing cellular signaling pathways, the review underlines the imperative for thorough research to establish safety and efficacy. Additionally, the review underscores the necessity of well-designed clinical trials to evaluate the efficacy and safety of these compounds as potential antiviral agents. This approach would establish a robust framework for future drug development efforts focused on bolstering host defense mechanisms against human respiratory viral infections.

20.
J Plant Physiol ; 302: 154314, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39033671

ABSTRACT

Copper (Cu) is an indispensable micronutrient for plants, animals, and microorganisms and plays a vital role in different physiological processes. However, excessive Cu accumulation in agricultural soil, often through anthropogenic action, poses a potential risk to plant health and crop productivity. This review article provided a comprehensive overview of the available information regarding Cu dynamics in agricultural soils, major sources of Cu contamination, factors influencing its mobility and bioavailability, and mechanisms of Cu uptake and translocation in rice plants. This review examined the impact of Cu toxicity on the germination, growth, and photosynthesis of rice plants. It also highlighted molecular mechanisms underlying Cu stress signaling and the plant defense strategy, involving chelation, compartmentalization, and antioxidant responses. This review also identified significant areas that need further research, such as Cu uptake mechanism in rice, Cu signaling process, and the assessment of Cu-polluted paddy soil and rice toxicity under diverse environmental conditions. The development of rice varieties with reduced Cu accumulation through comprehensive breeding programs is also necessary. Regulatory measures, fungicide management, plant selection, soil and environmental investigation are recommended to prevent Cu buildup in agricultural lands to achieve sustainable agricultural goals.

SELECTION OF CITATIONS
SEARCH DETAIL