Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39201694

ABSTRACT

The Coulomb coupling between transition densities of the pigments in photosynthetic pigment-protein complexes, termed excitonic coupling, is a key factor for the description of optical spectra and energy transfer. A challenging question is the quantification of the screening of the excitonic coupling by the optical polarizability of the environment. We use the equivalence between the sophisticated quantum chemical polarizable continuum (PCM) model and the simple electrostatic Poisson-TrEsp approach to analyze the distance and orientation dependence of the dielectric screening between chlorophylls in photosystem I trimers. On the basis of these calculations we find that the vacuum couplings Vmn(0) and the couplings in the dielectric medium Vmn=fmnVmn(0) are related by the empirical screening factor fmn=0.60+39.6θ(|κmn|-1.17)exp(-0.56Rmn/Å), where κmn is the usual orientational factor of the dipole-dipole coupling between the pigments, Rmn is the center-to-center distance, and the Heaviside-function θ(|κmn|-1.17) ensures that the exponential distance dependence only contributes for in-line type dipole geometries. We are confident that the present expression can be applied also to other pigment-protein complexes with chlorophyll or related pigments of similar shape. The variance between the Poisson-TrEsp and the approximate coupling values is found to decrease by a factor of 8 and 3-4 using the present expression, instead of an exponential distance dependent or constant screening factor, respectively, assumed previously in the literature.


Subject(s)
Chlorophyll , Photosystem I Protein Complex , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Chlorophyll/metabolism , Chlorophyll/chemistry , Energy Transfer , Models, Molecular , Static Electricity
2.
Nano Lett ; 24(26): 8030-8037, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912680

ABSTRACT

Dielectric screening plays a vital role in determining physical properties at the nanoscale and affects our ability to detect and characterize nanomaterials using optical techniques. We study how dielectric screening changes electromagnetic fields and many-body effects in nanostructures encapsulated inside carbon nanotubes. First, we show that metallic outer walls reduce the scattering intensity of the inner tube by 2 orders of magnitude compared to that of air-suspended inner tubes, in line with our local field calculations. Second, we find that the dielectric shift of the optical transition energies in the inner walls is greater when the outer tube is metallic than when it is semiconducting. The magnitude of the shift suggests that the excitons in small-diameter inner metallic tubes are thermally dissociated at room temperature if the outer tube is also metallic, and in essence, we observe band-to-band transitions in thin metallic double-walled nanotubes.

3.
Nano Lett ; 24(27): 8386-8393, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934731

ABSTRACT

Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs' electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn2+)-doped CsPbI3 NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn2+ doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials' electronic structure.

4.
Nanomicro Lett ; 16(1): 205, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819522

ABSTRACT

Metal halide perovskites, particularly the quasi-two-dimensional perovskite subclass, have exhibited considerable potential for next-generation electroluminescent materials for lighting and display. Nevertheless, the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices. In this study, we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide. The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and, on the other hand, can screen the charged defects at the grain boundaries with potassium cations. This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films, leading to a significant enhancement of photoluminescence quantum yield to near-unity values (95%). Meanwhile, the potassium bromide treatment promoted the growth of homogeneous and smooth film, facilitating the charge carrier injection in the devices. Consequently, the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of ~ 21% and maximum luminance of ~ 60,000 cd m-2. This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.

5.
Materials (Basel) ; 17(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612022

ABSTRACT

Bio-orthogonal chemistry provides a powerful tool for drug delivery systems due to its ability to generate therapeutic agents in situ, minimizing off-target effects. Bio-orthogonal transition metal catalysts (TMCs) with stimuli-responsive properties offer possibilities for controllable catalysis due to their spatial-, temporal-, and dosage-controllable properties. In this paper, we fabricated a stimuli-responsive bio-orthogonal catalysis system based on an enhanced green fluorescent protein (EGFP)-nanozyme (NZ) complex (EGFP-NZ). Regulation of the catalytic properties of the EGFP-NZ complex was directly achieved by modulating the ionic strength of the solution. The dielectric screening introduced by salt ions allows the dissociation of the EGFP-NZ complex, increasing the access of substrate to the active site of the NZs and concomitantly increasing nanozyme activity. The change in catalytic rate of the NZ/EGFP = 1:1 complex was positively correlated with salt concentration from 0 mM to 150 mM.

6.
Adv Mater ; 36(13): e2309998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108580

ABSTRACT

While significant advancements in power conversion efficiencies (PCEs) of α-FAPbI3perovskite solar cells (PSCs) have been made, attaining controllable perovskite crystallization is still a considerable hurdle. This challenge stems from the initial formation of δ-FAPbI3, a more energetically stable phase than the desired black α-phase, during film deposition. This disrupts the heterogeneous nucleation of α-FAPbI3, causing the formation of mixed phases and defects. To this end, polarity engineering using molecular additives, specifically ((methyl-sulfonyl)phenyl)ethylamines (MSPEs) are introduced. The findings reveal that the interaction of PbI2-MSPEs-FAI intermediates is enhanced with the increased polarity of MSPEs, which in turn expedites the nucleation of α-FAPbI3. This leads to the development of high-quality α-FAPbI3 films, characterized by vertical crystal orientation and reduced residual stresses. Additionally, the increased dipole moment of MSPE at perovskite grain boundaries attenuates Coulomb attractions among charged defects and screens carrier capture process, thereby diminishing non-radiative recombination. Utilizing these mechanisms, PSCs treated with highly polar 2-(4-MSPE) achieve an impressive PCE of 25.2% in small-area devices and 20.5% in large-area perovskite solar modules (PSMs) with an active area of 70 cm2. These results demonstrate the effectiveness of this strategy in achieving controllable crystallization of α-FAPbI3, paving the way for scalable-production of high-efficiency PSMs.

7.
Nano Lett ; 23(17): 8155-8161, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37656044

ABSTRACT

Halide double perovskites comprise an emerging class of semiconductors with tremendous chemical and electronic diversity. While their band structure features can be understood from frontier-orbital models, chemical intuition for optical excitations remains incomplete. Here, we use ab initio many-body perturbation theory within the GW and the Bethe-Salpeter equation approach to calculate excited-state properties of a representative range of Cs2BB'Cl6 double perovskites. Our calculations reveal that double perovskites with different combinations of B and B' cations display a broad variety of electronic band structures and dielectric properties and form excitons with binding energies ranging over several orders of magnitude. We correlate these properties with the orbital-induced anisotropy of charge-carrier effective masses and the long-range behavior of the dielectric function by comparing them with the canonical conditions of the Wannier-Mott model. Furthermore, we derive chemically intuitive rules for predicting the nature of excitons in halide double perovskites using computationally inexpensive density functional theory calculations.

8.
Nanotechnology ; 34(50)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37708882

ABSTRACT

The reduced dielectric screening in atomically thin two-dimensional materials makes them very sensitive to the surrounding environment, which can be modulated to tune their optoelectronic properties. In this study, we significantly improved the optoelectronic properties of monolayer MoS2by varying the surrounding environment using different liquid dielectrics, each with a specific dielectric constant ranging from 1.89 to 18. Liquid mediums offer the possibility of environment tunability on the same device. For a back-gated field effect transistor, the field effect mobility exhibited more than two-order enhancement when exposed to a high dielectric constant medium. Further investigation into the effect of the dielectric environment on the optoelectronic properties demonstrated a variation in photoresponse relaxation time with the dielectric medium. The rise and decay times were observed to increase and decrease, respectively, with an increase in the dielectric constant of the medium. These results can be attributed to the dielectric screening provided by the surrounding medium, which strongly modifies the charged impurity scattering, the band gap, and defect levels of monolayer MoS2. These findings have important implications for the design of biological and chemical sensors, particularly those operating in a liquid environment. By leveraging the tunability of the dielectric medium, we can optimize the performance of such sensors and enhance their detection capabilities.

9.
Nanotechnology ; 34(38)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37257442

ABSTRACT

Single layers of transition metal dichalcogenides (TMDCs), such as WSe2have gathered increasing attention due to their intense electron-hole interactions, being considered promising candidates for developing novel optical applications. Within the few-layer regime, these systems become highly sensitive to the surrounding environment, enabling the possibility of using a proper substrate to tune desired aspects of these atomically-thin semiconductors. In this scenario, the dielectric environment provided by the substrates exerts significant influence on electronic and optical properties of these layered materials, affecting the electronic band-gap and the exciton binding energy. However, the corresponding effect on the luminescence of TMDCs is still under discussion. To elucidate these impacts, we used a broad set of materials as substrates for single-layers of WSe2, enabling the observation of these effects over a wide range of electrical permittivities. Our results demonstrate that an increasing permittivity induces a systematic red-shift of the optical band-gap of WSe2, intrinsically related to a considerable reduction of the luminescence intensity. Moreover, we annealed the samples to ensure a tight coupling between WSe2and its substrates, reducing the effect of undesired adsorbates trapped in the interface. Ultimately, our findings reveal how critical the annealing temperature can be, indicating that above a certain threshold, the heating treatment can induce adverse impacts on the luminescence. Furthermore, our conclusions highlight the influence the dielectric properties of the substrate have on the luminescence of WSe2, showing that a low electrical permittivity favours preserving the native properties of the adjacent monolayer.


Subject(s)
Hyperthermia, Induced , Luminescence , Electricity , Electronics , Electrons
10.
ACS Nano ; 17(6): 5316-5328, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36926838

ABSTRACT

Correlated quantum phenomena in one-dimensional (1D) systems that exhibit competing electronic and magnetic order are of strong interest for the study of fundamental interactions and excitations, such as Tomonaga-Luttinger liquids and topological orders and defects with properties completely different from the quasiparticles expected in their higher-dimensional counterparts. However, clean 1D electronic systems are difficult to realize experimentally, particularly for magnetically ordered systems. Here, we show that the van der Waals layered magnetic semiconductor CrSBr behaves like a quasi-1D material embedded in a magnetically ordered environment. The strong 1D electronic character originates from the Cr-S chains and the combination of weak interlayer hybridization and anisotropy in effective mass and dielectric screening, with an effective electron mass ratio of mXe/mYe ∼ 50. This extreme anisotropy experimentally manifests in strong electron-phonon and exciton-phonon interactions, a Peierls-like structural instability, and a Fano resonance from a van Hove singularity of similar strength to that of metallic carbon nanotubes. Moreover, because of the reduced dimensionality and interlayer coupling, CrSBr hosts spectrally narrow (1 meV) excitons of high binding energy and oscillator strength that inherit the 1D character. Overall, CrSBr is best understood as a stack of weakly hybridized monolayers and appears to be an experimentally attractive candidate for the study of exotic exciton and 1D-correlated many-body physics in the presence of magnetic order.

11.
Nano Lett ; 23(3): 1068-1076, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36637381

ABSTRACT

The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.

12.
Nano Lett ; 23(1): 363-370, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36410928

ABSTRACT

We demonstrate a large-area passivation layer for graphene by mechanical transfer of ultrathin amorphous Ga2O3 synthesized on liquid Ga metal. A comparison of temperature-dependent electrical measurements of millimeter-scale passivated and bare graphene on SiO2/Si indicates that the passivated graphene maintains its high field effect mobility desirable for applications. Surprisingly, the temperature-dependent resistivity is reduced in passivated graphene over a range of temperatures below 220 K, due to the interplay of screening of the surface optical phonon modes of the SiO2 by high-dielectric-constant Ga2O3 and the relatively high characteristic phonon frequencies of Ga2O3. Raman spectroscopy and electrical measurements indicate that Ga2O3 passivation also protects graphene from further processing such as plasma-enhanced atomic layer deposition of Al2O3.

13.
Sci Bull (Beijing) ; 67(12): 1243-1252, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-36546154

ABSTRACT

Perovskite solar cells (pero-SCs) performance is essentially limited by severe non-radiative losses and ion migration. Although numerous strategies have been proposed, challenges remain in the basic understanding of their origins. Here, we report a dielectric-screening-enhancement effect for perovskite defects by using organic semiconductors with finely tuned molecular structures from the atoms level. Our method produced various perovskite films with high dielectric constant values, reduced charge capture regions, suppressed ion migration, and it provides an efficient charge transport pathway for suppressing non-radiative recombination beyond the passivation effect. The resulting pero-SCs showed a promising power conversion efficiency (PCE) of 23.35% with a high open-circuit voltage (1.22 V); and the 1-cm2 pero-SCs maintained an excellent PCE (21.93%), showing feasibility for scalable fabrication. The robust operational and thermal stabilities revealed that this method paved a new way to understand the degradation mechanism of pero-SCs, promoting the efficiency, stability and scaled fabrication of the pero-SCs.

14.
Adv Mater ; 34(2): e2105376, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34647372

ABSTRACT

The control over material properties attainable through molecular doping is essential to many technological applications of organic semiconductors, such as organic light-emitting diodes or thermoelectrics. These excitonic semiconductors typically reach the degenerate limit only at impurity concentrations of 5-10%, a phenomenon that has been put in relation with the strong Coulomb binding between charge carriers and ionized dopants, and whose comprehension remained elusive so far. This study proposes a general mechanism for the release of carriers at finite doping in terms of collective screening phenomena. A multiscale model for the dielectric properties of doped organic semiconductor is set up by combining first principles and microelectrostatic calculations. The results predict a large nonlinear enhancement of the dielectric constant (tenfold at 8% load) as the system approaches a dielectric instability (catastrophe) upon increasing doping. This can be attributed to the presence of highly polarizable host-dopant complexes, plus a nontrivial leading contribution from dipolar interactions in the disordered and heterogeneous system. The enhanced screening in the material drastically reduces the (free) energy barriers for electron-hole separation, rationalizing the possibility for thermal charge release. The proposed mechanism is consistent with conductivity data and sets the basis for achieving higher conductivities at lower doping loads.

15.
Nano Lett ; 21(22): 9426-9432, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34780185

ABSTRACT

Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of low-dimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension.

16.
ACS Nano ; 15(9): 15371-15380, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34450007

ABSTRACT

The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 × 10-5 meV/(kV/cm)2, respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.

17.
Nano Lett ; 21(9): 3871-3878, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33938759

ABSTRACT

Auger recombination is the main nonradiative process in multicarrier states of high-quality quantum dots (QDs). For the most-studied CdSe/CdS core/shell QDs, we effectively reduce the biexciton Auger rate by enhancing dielectric screening of band-edge carriers via epitaxial growth of additional ZnS shells. Super volume scaling of negative-trion Auger lifetime for CdSe/CdS core/shell QDs is achieved with the outermost ZnS shells. The volume of CdSe/CdS/ZnS QDs can be less than half that of CdSe/CdS QDs with the same negative-trion Auger lifetime. Auger suppression by the ZnS shells is more pronounced for QDs with wave functions of band-edge carriers spreading close to the inorganic-organic interface, such as CdSe/CdS QDs with small cores. A maximum drop of biexciton Auger rate of ∼50% and a maximum enhancement of biexciton emission quantum yield of 75% are achieved. Auger engineering by dielectric screening opens up new opportunities to improve the emission properties of multicarrier states in QDs.

18.
Nanotechnology ; 32(31)2021 May 12.
Article in English | MEDLINE | ID: mdl-33892483

ABSTRACT

Hexagonal boron nitride (hBN) is one of the most suitable 2D materials for supporting graphene in electronic devices, and it plays a fundamental role in screening out the effect of charge impurities in graphene in contrast to inhomogeneous supports such as silicon dioxide (SiO2). Although many interesting surface science techniques such as scanning tunneling microscopy (STM) revealed dielectric screening by hBN and emergent physical phenomena were observed, STM is only appropriate for graphene electronics. In this paper, we demonstrate the dielectric screening by hBN in graphene integrated on a silicon photonic waveguide from the perspective of a near-field scanning optical microscopy (NSOM) and Raman spectroscopy. We found shifts in the Raman spectra and about three times lower slope decrease in the measured electric near-field amplitude for graphene on hBN relative to that for graphene on SiO2. Based on finite-difference time-domain simulations, we confirm lower electric field slope and scattering rate in graphene on hBN, which implies dielectric screening, in agreement with the NSOM signal. Graphene on hBN integrated on silicon photonics can pave the way for high-performance hybrid graphene photonics.

19.
ACS Appl Electron Mater ; 2: 1273-1279, 2020.
Article in English | MEDLINE | ID: mdl-33313511

ABSTRACT

Layered transition metal dichalcogenides (TMDs) and other two-dimensional (2D) materials are promising candidates for enhancing the capabilities of complementary metal-oxide-semiconductor (CMOS) technology. Field-effect transistors (FETs) made with 2D materials often exhibit mobilities below their theoretical limit, and strategies such as encapsulation with dielectrics grown by atomic layer deposition (ALD) have been explored to tune carrier concentration and improve mobility. While molecular adsorbates are known to dope 2D materials and influence charge scattering mechanisms, it is not well understood how ALD reactants affect 2D transistors during growth, motivating in situ or operando studies. Here, we report electrical characterization of MoS2 and MoTe2 FETs during ALD of MoOx. The field effect mobility improves significantly within the first five cycles of ALD growth using Mo(NMe2)4 as the metal-organic precursor and H2O as the oxidant. Analyses of the in situ transconductance at the growth temperature and ex situ variable temperature transconductance measurements indicate that the majority of the mobility enhancement observed at the beginning of dielectric growth is due to screening of charged impurity scattering by the adlayer. Control experiments show that exposure to only H2O or O2 induces more modest and reversible electronic changes in MoTe2 FETs, indicating that negligible oxidation of the TMD takes place during the ALD process. Due to the strong influence of the first <2 nm of deposition, when the dielectric adlayer may be discontinuous and still evolving in stoichiometry, this work highlights the need for further assessment of nucleation layers and initial deposition chemistry, which may be more important than the bulk composition of the oxide itself in optimizing performance and reproducibility.

20.
Nano Lett ; 20(2): 841-851, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31888332

ABSTRACT

The dielectric constant, which defines the polarization of the media, is a key quantity in condensed matter. It determines several electronic and optoelectronic properties important for a plethora of modern technologies from computer memory to field effect transistors and communication circuits. Moreover, the importance of the dielectric constant in describing electromagnetic interactions through screening plays a critical role in understanding fundamental molecular interactions. Here, we show that despite its fundamental transcendence, the dielectric constant does not define unequivocally the dielectric properties of two-dimensional (2D) materials due to the locality of their electrostatic screening. Instead, the electronic polarizability correctly captures the dielectric nature of a 2D material which is united to other physical quantities in an atomically thin layer. We reveal a long-sought universal formalism where electronic, geometrical, and dielectric properties are intrinsically correlated through the polarizability, opening the door to probe quantities yet not directly measurable including the real covalent thickness of a layer. We unify the concept of dielectric properties in any material dimension finding a global dielectric anisotropy index defining their controllability through dimensionality.

SELECTION OF CITATIONS
SEARCH DETAIL