Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Mol Metab ; 83: 101918, 2024 May.
Article in English | MEDLINE | ID: mdl-38499083

ABSTRACT

OBJECTIVE: In the small intestine, the products of digestion of dietary triacylglycerol (TAG), fatty acids (FA) and monoacylglycerol, are taken up by absorptive cells, enterocytes, for systemic energy delivery. These digestion products can also bind receptors on endocrine cells to stimulate the release of hormones capable of influencing systemic energy metabolism. The initial phase of intestinal FA absorption involves the acylation of FAs to acyl-CoA by the acyl-CoA long chain synthetase (ACSL) enzymes. ACSL5 is abundantly expressed in the small intestinal epithelium where it is the major ACSL isoform, contributing approximately 80% of total ACSL activity. In mice with whole body deficiency of ACSL5, the rate of dietary fat absorption is reduced and energy expenditure is increased. However, the mechanisms by which intestinal ACSL5 contributes to intestinal FA metabolism, enteroendocrine signaling, and regulation of energy expenditure remain undefined. Here, we test the hypothesis that intestinal ACSL5 regulates energy metabolism by influencing dietary fat absorption and enteroendocrine signaling. METHODS: To explore the role of intestinal ACSL5 in energy balance and intestinal dietary fat absorption, a novel mouse model of intestine specific ACSL5 deficiency (ACSL5IKO) was generated by breeding ACSL5 floxed (ACSL5loxP/loxP) to mice harboring the tamoxifen inducible, villin-Cre recombinase. ACSL5IKO and control, ACSL5loxP/loxP mice were fed chow (low in fat) or a 60% high fat diet (HFD), and metabolic phenotyping was performed including, body weight, body composition, insulin and glucose tolerance tests, energy expenditure, physical activity, and food intake studies. Pair-feeding studies were performed to determine the role of food intake in regulating development of obesity. Studies of dietary fat absorption, fecal lipid excretion, intestinal mucosal FA content, and circulating levels of glucagon like peptide 1 (GLP-1) and peptide YY (PYY) in response to a TAG challenge were performed. Treatment with a GLP-1 receptor antagonist was performed to determine the contribution of GLP-1 to acute regulation of food intake. RESULTS: We found that ACSL5IKO mice experienced rapid and sustained protection from body weight and fat mass accumulation during HFD feeding. While intestine specific deficiency of ACSL5 delayed gastric emptying and reduced dietary fat secretion, it did not result in increased excretion of dietary lipid in feces. Energy expenditure and physical activity were not increased in ACSL5IKO mice. Mice deficient in intestinal ACSL5 display significantly reduced energy intake during HFD, but not chow feeding. When HFD intake of control mice was matched to ACSL5IKO during pair-feeding studies, no differences in body weight or fat mass gain were observed between groups. Postprandial GLP-1 and PYY were significantly elevated in ACSL5IKO mice secondary to increased FA content in the distal small intestine. Blockade of GLP-1 signaling by administration of a long-acting GLP-1 receptor antagonist partially restored HFD intake of ACSL5IKO. CONCLUSIONS: These data indicate that intestinal ACSL5 serves as a critical regulator of energy balance, protecting mice from diet-induced obesity exclusively by increasing satiety and reducing food intake during HFD feeding. The reduction in food intake observed in ACSL5IKO mice is driven, in part, by increased postprandial GLP-1 and PYY secretion. These effects are only observed during HFD feeding, suggesting that altered processing of dietary fat following intestinal ACSL5 ablation contributes to GLP-1 and PYY mediated increases in satiety.


Subject(s)
Coenzyme A Ligases , Diet, High-Fat , Glucagon-Like Peptide 1 , Obesity , Peptide YY , Animals , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Mice , Obesity/metabolism , Male , Glucagon-Like Peptide 1/metabolism , Peptide YY/metabolism , Mice, Inbred C57BL , Eating , Postprandial Period , Energy Metabolism , Mice, Knockout
2.
Nutrients ; 15(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049588

ABSTRACT

A great number of chemically diverse pancreatic lipase (PL) inhibitors have been identified to tackle obesity; however, very few of them have entered clinical studies. The ethanolic extract of sesame meal is a potent PL inhibitor, and its activity hinges exclusively on two free fatty acids: linoleic acid and oleic acid, which were proven to reduce postprandial triglyceride excursion in rats. Herein, to investigate the clinical efficacy of the sesame meal extract, in a crossover trial, 30 healthy volunteers were randomized to receive the sesame meal extract containing experimental food or placebo along with a high-fat meal. Treatment with the sesame meal extract significantly lowered the incremental postprandial serum triglyceride concentration and reduced the incremental area under the curve (iAUC) by 16.8% (p-value = 0.03) compared to placebo. Significant decreases in postprandial remnant-like lipoprotein particle cholesterol and low-density lipoprotein particles were also observed, whereas high-density lipoprotein cholesterol was increased. These results suggest that treatment with the sesame meal extract significantly reduced the postprandial excursion of triglycerides and improved the lipidemic profile after high dietary fat intake in healthy individuals, indicating the substantial potential of free linoleic acid and oleic acid and natural products rich in these compounds for the management of obesity and related conditions.


Subject(s)
Oleic Acid , Sesamum , Animals , Rats , Humans , Cross-Over Studies , Oleic Acid/pharmacology , Linoleic Acid/pharmacology , Lipase , Healthy Volunteers , Triglycerides , Cholesterol , Obesity , Postprandial Period , Dietary Fats
3.
Front Pharmacol ; 14: 1097835, 2023.
Article in English | MEDLINE | ID: mdl-36817150

ABSTRACT

The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.

4.
Annu Rev Nutr ; 41: 79-104, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34283920

ABSTRACT

Dietary fat absorption is required for health but also contributes to hyperlipidemia and metabolic disease when dysregulated. One step in the process of dietary fat absorption is the formation of cytoplasmic lipid droplets (CLDs) in small intestinal enterocytes; these CLDs serve as dynamic triacylglycerol storage organelles that influence the rate at which dietary fat is absorbed. Recent studies have uncovered novel factors regulating enterocyte CLD metabolism that in turn influence the absorption of dietary fat. These include peroxisome proliferator-activated receptor α activation, compartmentalization of different lipid pools, the gut microbiome, liver X receptor and farnesoid X receptor activation, obesity, and physiological factors stimulating CLD mobilization. Understanding how enterocyte CLD metabolism is regulated is key in modulating the absorption of dietary fat in the prevention of hyperlipidemia and its associated metabolic disorders.


Subject(s)
Dietary Fats , Lipid Droplets , Dietary Fats/metabolism , Enterocytes/metabolism , Humans , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Triglycerides/metabolism
5.
Am J Physiol Gastrointest Liver Physiol ; 321(1): G75-G86, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34009042

ABSTRACT

The absorptive cells of the small intestine, namely, enterocytes, contribute to postprandial blood lipid levels by secreting dietary triacylglycerol in chylomicrons. The rate and amount of dietary triacylglycerol absorbed vary along the length of the small intestine. Excess dietary triacylglycerol not immediately secreted in chylomicrons can be temporarily stored in cytoplasmic lipid droplets (CLDs) and repackaged in chylomicrons at later times. The characteristics of CLDs, including their size, number per cell, and associated proteins, may influence CLD metabolism and reflect differences in lipid processing or storage in each intestinal region. However, it is unknown whether the characteristics or proteomes of CLDs differ in enterocytes of each intestine region in response to dietary fat. Furthermore, it is unclear if obesity influences the characteristics or proteomes of CLDs in each intestine region. To address this, we used transmission electron microscopy and shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis to assess the characteristics and proteome of CLDs in the proximal, middle, and distal regions of the small intestine of lean and diet-induced obese (DIO) mice 2 h after an oil gavage. We identified differences in lipid storage along the length of the small intestine and between lean and DIO mice, as well as distinct CLD proteomes reflecting potentially unique roles of CLDs in each region. This study reveals differences in lipid processing along the length of the small intestine in response to dietary fat in lean and DIO mice and reflects distinct features of the proximal, middle, distal region of the small intestine.NEW & NOTEWORTHY This study reflects the dynamics of fat absorption along the length of the small intestine in lean and obese mice in the physiological response to dietary fat. We identified unique features of cytoplasmic lipid droplets (CLDs) in the proximal, middle, and distal regions of the small intestine of lean and obese mice that may contribute to regional differences in dietary fat processing, absorption, or CLD metabolism.


Subject(s)
Dietary Fats/metabolism , Intestine, Small/metabolism , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Animals , Cytosol/metabolism , Enterocytes/metabolism , Intestines , Mice , Triglycerides/metabolism
6.
J Lipid Res ; 60(9): 1503-1515, 2019 09.
Article in English | MEDLINE | ID: mdl-31152000

ABSTRACT

Chylomicron metabolism is critical for determining plasma levels of triacylglycerols (TAGs) and cholesterol, both of which are risk factors for CVD. The rates of chylomicron secretion and remnant clearance are controlled by intracellular and extracellular factors, including apoC-III. We have previously shown that human apoC-III overexpression in mice (apoC-IIITg mice) decreases the rate of chylomicron secretion into lymph, as well as the TAG composition in chylomicrons. We now find that this decrease in chylomicron secretion is not due to the intracellular effects of apoC-III, but instead that primary murine enteroids are capable of taking up TAG from TAG-rich lipoproteins (TRLs) on their basolateral surface; and via Seahorse analyses, we find that mitochondrial respiration is induced by basolateral TRLs. Furthermore, TAG uptake into the enterocyte is inhibited when excess apoC-III is present on TRLs. In vivo, we find that dietary TAG is diverted from the cytosolic lipid droplets and driven toward mitochondrial FA oxidation when plasma apoC-III is high (or when basolateral substrates are absent). We propose that this pathway of basolateral lipid substrate transport (BLST) plays a physiologically relevant role in the maintenance of dietary lipid absorption and chylomicron secretion. Further, when apoC-III is in excess, it inhibits BLST and chylomicron secretion.


Subject(s)
Apolipoprotein C-III/metabolism , Chylomicrons/metabolism , Intestinal Mucosa/metabolism , Triglycerides/metabolism , Animals , Cholesterol/metabolism , Chromatography, Thin Layer , Female , Flow Cytometry , Lipoproteins/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission
7.
Front Physiol ; 10: 180, 2019.
Article in English | MEDLINE | ID: mdl-30890954

ABSTRACT

Dietary fat absorption by the small intestine is an efficient, multistep process that regulates the uptake and delivery of essential nutrients and energy. Fatty acids taken up by enterocytes, the absorptive cells of the small intestine, are resynthesized into triacylglycerol (TAG) and either secreted in chylomicrons or temporarily stored in cytoplasmic lipid droplets (CLDs). Proteins that associate with CLDs are thought to regulate the dynamics of TAG storage and mobilization. It is currently unclear what effect diet induced obesity (DIO) has on the balance between dietary fat storage and secretion. Specifically, there is limited knowledge of how DIO affects the level and diversity of proteins that associate with CLDs and regulate CLD dynamics. In the current study, we characterize CLDs from lean and DIO mice through histological and proteomic analyses. We demonstrate that DIO mice have larger intestinal CLDs compared to lean mice in response to dietary fat. Additionally, we identified 375 proteins in the CLD fraction isolated from enterocytes of lean and DIO mice. We identified a subgroup of lipid related proteins that are either increased or unique to the DIO CLD proteome. These proteins are involved in steroid synthesis, TAG synthesis, and lipolysis. This analysis expands our knowledge of the effect of DIO on the process of dietary fat absorption in the small intestine (D'Aquila, 2016).

8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(4): 587-595, 2019 04.
Article in English | MEDLINE | ID: mdl-30342099

ABSTRACT

Enterocytes, the absorptive cells of the small intestine, mediate the process of dietary fat absorption by secreting triacylglycerol (TAG) into circulation. When levels of dietary fat are high, TAG is stored in cytoplasmic lipid droplets (CLDs) and sequentially hydrolyzed for ultimate secretion. Mice with deficiency in acyl CoA: diacylglycerol acyltransferase 1 (Dgat1-/- mice) were previously reported to have a reduced rate of intestinal TAG secretion and abnormal TAG accumulation in enterocyte CLDs. This unique intestinal phenotype is critical to their resistance to diet-induced obesity; however, the underlying mechanism remains unclear. Emerging evidence shows that lysosomal TAG hydrolysis contributes to autophagy-mediated CLD mobilization termed lipophagy, and when disrupted results in CLD accumulation. In order to study how lipophagy contributes to the unique intestinal phenotype of Dgat1-/- mice, enterocytes from wild-type (WT) and Dgat1-/- mice were examined at 2 and 6 h after oral oil gavage. Through ultrastructural analysis we observed TAG present within autophagic vesicles (AVs) in mouse enterocytes, suggesting the role of lipophagy in intestinal CLD mobilization during dietary fat absorption. Furthermore, we found that Dgat1-/- mice had abnormal TAG accumulation within AVs and less acidic lysosomes compared to WT mice. Together these findings suggest that the delayed dietary fat absorption seen in Dgat1-/- mice is, in part, due to the dysregulated flux of autophagy-mediated CLD mobilization and impairment of lysosomal acidification in enterocytes. The present study highlights the critical role of lysosome in enterocyte CLD mobilization for proper dietary fat absorption.


Subject(s)
Diacylglycerol O-Acyltransferase/deficiency , Dietary Fats/administration & dosage , Enterocytes/physiology , Lysosomes/physiology , Animals , Autophagy , Cytoplasm/metabolism , Diacylglycerol O-Acyltransferase/genetics , Hydrolysis , Intestinal Absorption , Lipid Droplets/metabolism , Lysosomes/metabolism , Mice , Triglycerides/metabolism
9.
Biochem Biophys Res Commun ; 491(3): 747-753, 2017 09 23.
Article in English | MEDLINE | ID: mdl-28739253

ABSTRACT

ApoC-III is a critical cardiovascular risk factor, and humans expressing null mutations in apoC-III are robustly protected from cardiovascular disease. Because of its critical role in elevating plasma lipids and CVD risk, hepatic apoC-III regulation has been studied at length. Considerably less is known about the factors that regulate intestinal apoC-III. In this work, we use primary murine enteroids, Caco-2 cells, and dietary studies in wild-type mice to show that intestinal apoC-III expression does not change in response to fatty acids, glucose, or insulin administration, in contrast to hepatic apoC-III. Intestinal apoC-III is not sensitive to changes in FoxO1 expression (which is itself very low in the intestine, as is FoxO1 target IGFBP-1), nor is intestinal apoC-III responsive to western diet, a significant contrast to hepatic apoC-III stimulation during western diet. These data strongly suggest that intestinal apoC-III is not a FoxO1 target and support the idea that apoC-III is not regulated coordinately with hepatic apoC-III, and establishes another key aspect of apoC-III that is unique in the intestine from the liver.


Subject(s)
Apolipoprotein C-III/metabolism , Forkhead Box Protein O1/metabolism , Gene Expression Regulation/physiology , Intestinal Mucosa/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Animals , Caco-2 Cells , Diet, Western , Female , Glucose/metabolism , Humans , In Vitro Techniques , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Organ Specificity/physiology
10.
J Lipid Res ; 58(5): 853-865, 2017 05.
Article in English | MEDLINE | ID: mdl-28159868

ABSTRACT

Since its initial report in 2009, the intestinal enteroid culture system has been a powerful tool used to study stem cell biology and development in the gastrointestinal tract. However, a major question is whether enteroids retain intestinal function and physiology. There have been significant contributions describing ion transport physiology of human intestinal organoid cultures, as well as physiology of gastric organoids, but critical studies on dietary fat absorption and chylomicron synthesis in primary intestinal enteroids have not been undertaken. Here we report that primary murine enteroid cultures recapitulate in vivo intestinal lipoprotein synthesis and secretion, and reflect key aspects of the physiology of intact intestine in regard to dietary fat absorption. We also show that enteroids can be used to elucidate intestinal mechanisms behind CVD risk factors, including tissue-specific apolipoprotein functions. Using enteroids, we show that intestinal apoC-III overexpression results in the secretion of smaller, less dense chylomicron particles along with reduced triacylglycerol secretion from the intestine. This model significantly expands our ability to test how specific genes or genetic polymorphisms function in dietary fat absorption and the precise intestinal mechanisms that are critical in the etiology of metabolic disease.


Subject(s)
Absorption, Physicochemical , Apolipoprotein C-III/metabolism , Chylomicrons/biosynthesis , Dietary Fats/metabolism , Intestinal Mucosa/metabolism , Triglycerides/metabolism , Animals , Apolipoprotein C-III/genetics , Cell Differentiation , Chylomicrons/metabolism , Humans , Intestines/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity
11.
Biochim Biophys Acta ; 1861(8 Pt A): 730-47, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27108063

ABSTRACT

Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.


Subject(s)
Cytoplasm/metabolism , Dietary Fats/metabolism , Enterocytes/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Adsorption , Animals , Cardiovascular Diseases/metabolism , Chylomicrons/metabolism , Diabetes Mellitus/metabolism , Humans , Neoplasms/metabolism , Obesity/metabolism
12.
Mol Metab ; 5(3): 210-220, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26977393

ABSTRACT

OBJECTIVE: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ACSL isoforms. In vitro studies have suggested a role for ACSL5 in triglyceride synthesis; however, we have limited understanding of the in vivo actions of this ACSL isoform. METHODS: To elucidate the in vivo actions of ACSL5 we generated a line of mice in which ACSL5 expression was ablated in all tissues (ACSL5 (-/-) ). RESULTS: Ablation of ACSL5 reduced ACSL activity by ∼80% in jejunal mucosa, ∼50% in liver, and ∼37% in brown adipose tissue lysates. Body composition studies revealed that ACSL5 (-/-) , as compared to control ACSL5 (loxP/loxP) , mice had significantly reduced fat mass and adipose fat pad weights. Indirect calorimetry studies demonstrated that ACSL5 (-/-) had increased metabolic rates, and in the dark phase, increased respiratory quotient. In ACSL5 (-/-) mice, fasting glucose and serum triglyceride were reduced; and insulin sensitivity was improved during an insulin tolerance test. Both hepatic mRNA (∼16-fold) and serum levels of fibroblast growth factor 21 (FGF21) (∼13-fold) were increased in ACSL5 (-/-) as compared to ACSL5 (loxP/loxP) . Consistent with increased FGF21 serum levels, uncoupling protein-1 gene (Ucp1) and PPAR-gamma coactivator 1-alpha gene (Pgc1α) transcript levels were increased in gonadal adipose tissue. To further evaluate ACSL5 function in intestine, mice were gavaged with an olive oil bolus; and the rate of triglyceride appearance in serum was found to be delayed in ACSL5 (-/-) mice as compared to control mice. CONCLUSIONS: In summary, ACSL5 (-/-) mice have increased hepatic and serum FGF21 levels, reduced adiposity, improved insulin sensitivity, increased energy expenditure and delayed triglyceride absorption. These studies suggest that ACSL5 is an important regulator of whole-body energy metabolism and ablation of ACSL5 may antagonize the development of obesity and insulin resistance.

13.
Physiol Rep ; 2(3): e00247, 2014.
Article in English | MEDLINE | ID: mdl-24760506

ABSTRACT

Abstract Apolipoprotein C-III (apoC-III) is not only predominantly synthesized by the liver but also by the small intestine. Because apoC-III is secreted from the intestine on the chylomicron along with lipid absorption, we questioned whether apoC-III might play a role in intestinal lipid absorption and/or transport. Using both wild-type (WT) and apoC-III transgenic (apoC-III Tg) mice, we showed that apoC-III Tg mice have decreased lymphatic lipid transport compared with WT mice in response to an intraduodenal infusion of radiolabeled lipid. This is associated with accumulation of radiolabeled lipids in the luminal compartment of the apoC-III Tg mice, indicating delayed lipid uptake from the lumen. The total amount of radioactive lipids in the mucosal compartment did not differ between apoC-III Tg and WT mice, but the lipid distribution analysis indicated a predominance of free fatty acids and monoacylglycerol in the mucosa of apoC-III Tg mice, implying impaired esterification capacity. Thus, the mechanisms underlying the reduced lymphatic lipid transport in apoC-III Tg mice involve both a delayed lipid uptake into enterocytes, as well as impaired esterification to form triglyceride in the mucosa. These data document a novel role for apoC-III in the uptake, re-esterification, and lymphatic transport of dietary lipids in the intestine.

14.
Front Physiol ; 3: 26, 2012.
Article in English | MEDLINE | ID: mdl-22375122

ABSTRACT

Obesity results in abnormally high levels of triglyceride (TG) storage in tissues such as liver, heart, and muscle, which disrupts their normal functions. Recently, we found that lean mice challenged with high levels of dietary fat store TGs in cytoplasmic lipid droplets in the absorptive cells of the intestine, enterocytes, and that this storage increases and then decreases over time after an acute dietary fat challenge. The goal of this study was to investigate the effects of obesity on intestinal TG metabolism. More specifically we asked whether TG storage in and secretion from the intestine are altered in obesity. We investigated these questions in diet-induced obese (DIO) and leptin-deficient (ob/ob) mice. We found greater levels of TG storage in the intestine of DIO mice compared to lean mice in the fed state, but similar levels of TG storage after a 6-h fast. In addition, we found similar TG storage in the intestine of lean and DIO mice at multiple time points after an acute dietary fat challenge. Surprisingly, we found remarkably lower TG secretion from both DIO and ob/ob mice compared to lean controls in response to an acute dietary fat challenge. Furthermore, we found altered mRNA levels for genes involved in regulation of intestinal TG metabolism in lean and DIO mice at 6 h fasting and in response to an acute dietary fat challenge. More specifically, we found that many of the genes related to TG synthesis, chylomicron synthesis, TG storage, and lipolysis were induced in response to an acute dietary fat challenge in lean mice, but this induction was not observed in DIO mice. In fact, we found a significant decrease in intestinal mRNA levels of genes related to lipolysis and fatty acid oxidation in DIO mice in response to an acute dietary fat challenge. Our findings demonstrate altered TG handling by the small intestine of obese compared to lean mice.

15.
J Sci Food Agric ; 92(3): 503-10, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21918995

ABSTRACT

BACKGROUND: A few common spices are known to stimulate secretion of bile with higher amount of bile acids which play a major role in digestion and absorption of dietary lipids. It would be appropriate to verify if these spices enable efficient digestion and absorption during high-fat intake. In this context, dietary ginger (0.05%), piperine (0.02%), capsaicin (0.015%), and curcumin (0.5%) were examined for their influence on bile secretion, digestive enzymes of pancreas and absorption of dietary fat in high-fat (30%) fed Wistar rats for 8 weeks. RESULTS: These spices enhanced the activity of pancreatic lipase, amylase, trypsin and chymotrypsin by 22-57%, 32-51%, 63-81% and 12-38%, respectively. Dietary intake of spices along with high-fat enhanced fat absorption. These dietary spices increased bile secretion with higher bile acid content. Stimulation of lipid mobilisation from adipose tissue was suggested by the decrease in perirenal adipose tissue weight by dietary capsaicin and piperine. This was also accompanied by prevention of the accumulation of triglyceride in liver and serum in high-fat fed rats. Activities of key lipogenic enzymes in liver were reduced which was accompanied by an increased activity of hormone-sensitive lipase. CONCLUSION: Thus, dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase. At the same time, the energy expenditure is facilitated by these spices to prevent the accumulation of absorbed fat.


Subject(s)
Bile/metabolism , Dietary Fats/metabolism , Digestion , Intestinal Absorption , Spices , Up-Regulation , Zingiber officinale , Adiposity , Alkaloids/administration & dosage , Animals , Benzodioxoles/administration & dosage , Bile/chemistry , Bile Acids and Salts/analysis , Bile Acids and Salts/metabolism , Capsaicin/administration & dosage , Curcumin/administration & dosage , Diet, High-Fat/adverse effects , Zingiber officinale/chemistry , Hydrolases/chemistry , Hydrolases/metabolism , India , Lipid Metabolism , Liver/metabolism , Male , Pancreas/enzymology , Pancreas/metabolism , Piperidines/administration & dosage , Polyunsaturated Alkamides/administration & dosage , Rats, Wistar , Rhizome/chemistry , Spices/analysis , Spices/economics
SELECTION OF CITATIONS
SEARCH DETAIL