Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 740
Filter
1.
Mikrochim Acta ; 191(8): 502, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39093358

ABSTRACT

An electrochemical sensor assisted by primer exchange reaction (PER) and CRISPR/Cas9 system (PER-CRISPR/Cas9-E) was established for the sensitive detection of dual microRNAs (miRNAs). Two PER hairpin (HP) were designed to produce a lot of extended PER products, which could hybridize with two kinds of hairpin probes modified on the electrode and initiate the cleavage of two CRISPR/Cas9 systems guided by single guide RNAs (sgRNAs) with different recognition sequences. The decrease of the two electrochemical redox signals indicated the presence of dual-target miRNAs. With the robustness and high specificity of PER amplification and CRISPR/Cas9 cleavage system, simultaneous detection of two targets was achieved and the detection limits for miRNA-21 and miRNA-155 were 0.43 fM and 0.12 fM, respectively. The developed biosensor has the advantages of low cost, easy operation, and in-situ detection, providing a promising platform for point-of-care detection of multiple miRNAs.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Electrochemical Techniques , Limit of Detection , MicroRNAs , MicroRNAs/analysis , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , Electrochemical Techniques/methods , Biosensing Techniques/methods , Humans , RNA, Guide, CRISPR-Cas Systems/genetics
2.
Food Chem ; 460(Pt 1): 140563, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39053269

ABSTRACT

Herein, a novel electrochemical sensor based on zirconium-doped cobalt oxyhydroxide (ZrCoOOH) was proposed for highly sensitive non-enzymatic determination of malathion (MAL). The doping of Zr can improve the electrical conductivity of CoOOH, of which the transfer resistance was reduced from 241.1 Ω to 140.2 Ω. Furthermore, the X-ray photoelectron spectroscopy confirmed that part of Co2+ was converted to Co3+ due to the introduction of Zr. The Co3+ in ZrCoOOH could react with MAL to form Co2+, which enhanced the electrooxidation current of Co2+. Therefore, the peak current of Co2+ was served as detection probe for MAL. Under optimal conditions, the developed sensor established the linear relationship for MAL in the concentration range of 0.001-10.0 µM with a low limit of detection (0.64 nM). The constructed sensor was employed to detect MAL in food samples (peach, kiwi fruit, spinach and tomato), verifying the accuracy and practicability of the sensor.

3.
Biosensors (Basel) ; 14(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056604

ABSTRACT

Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.


Subject(s)
Ascorbic Acid , Biosensing Techniques , Dopamine , Electrochemical Techniques , Gold , Microelectrodes , Uric Acid , Dopamine/analysis , Gold/chemistry , Ascorbic Acid/analysis , Uric Acid/analysis , Silver/chemistry , Cadmium/analysis
4.
Mikrochim Acta ; 191(8): 475, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037453

ABSTRACT

A novel electrochemical method is presented for ultrasensitive detection of the organophosphate pesticide (OPP) fenitrothion by using Ti3C2 MXene/CoAl-LDH nanocomposite as the electrode modifier. The Ti3C2 MXene/CoAl-LDH nanocomposite is synthesized by growing CoAl-LDH in situ on MXene nanosheets. The combination of two ultrathin 2D materials provides more active sites, larger specific surface area, superior adsorption properties, and better electrical conductivity, which leads to rapid electron-transfer and mass-transfer between the substrate electrode and analytes when it is acted as the electrochemical sensing material. In addition, through the chelation of phosphate groups with the Ti defect sites enriched in MXene, OPP is adsorbed on the electrode. Consequently, the corresponding modified electrode gives rise to a wide linear response range of 0.03 ~ 120 µmol/L for the differential pulse voltammetry detection of fenitrothion with a low detection limit of 5.8 nmol/L (3σ). The method offers good repeatability, stability, selectivity, and practicability for real samples. This strategy provides a reference platform for the electrochemical monitoring of trace OPPs residue by using MXene/LDH-based nanocomposites.

5.
Mikrochim Acta ; 191(8): 456, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38980419

ABSTRACT

Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Graphite , Indoles , Limit of Detection , Metal Nanoparticles , Polymers , Biosensing Techniques/methods , Indoles/chemistry , Polymers/chemistry , Electrochemical Techniques/methods , Graphite/chemistry , Gold/chemistry , Animals , Metal Nanoparticles/chemistry , Mycobacterium tuberculosis , Bivalvia/chemistry , Nanocomposites/chemistry , Electrodes , Norepinephrine/analysis
6.
Mikrochim Acta ; 191(8): 452, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970687

ABSTRACT

Novel zeolitic imidazolate frameworks (ZIFs), classical subtypes of metal organic frameworks (MOFs), and nanostructures are electro-engineered onto carbon fiber (CF), leading to a unique freestanding electrochemical platform of budlike nano Zn-ZIFs decorated CF (BN-Zn-ZIFs/CF). The unique morphology, structure, and composition are characterized by electron microscopy and energy spectrum analysis. Notably, the BN-Zn-ZIFs/CF platform displays superb electrocatalysis towards the oxidation of isoeugenol with encouragingly low overpotential and high current response. The strong electrocatalytic oxidation capability of BN-Zn-ZIFs/CF makes it an excellent sensing platform for isoeugenol detection. BN-Zn-ZIFs/CF sensor exhibits high-performance isoeugenol sensing with an extremely low limit of detection (13 nM) and wide detection range (0.1-700 µM). Besides, the BN-Zn-ZIFs/CF sensor can greatly resist interference from common ions, major biomolecules, and some amino acids. Moreover, excellent reliability, stability, and practicality are obtained. Our work demonstrates that the as-prepared BN-Zn-ZIFs/CF can act as an high-performance electrochemical sensor for the isoeugenol detection, the well-developed ZIF nanocrystal-modified conductive substrates can be a unique platform for the efficient sensing of other molecules, and the electrochemical engineering strategy can be an effective method for the growing of fresh MOF nanocrystals at conductive substrates in various electrochemical applications.

7.
Mikrochim Acta ; 191(8): 459, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985347

ABSTRACT

A renewable electrochemical screen-printed electrode (SPE) is proposed based on magnetic bamboo-like nitrogen-carbon (N-C) nanotubes loaded with nickel-cobalt alloy (NiCo) nanoparticles (NiCo@N-CNTs) for the determination of ractopamine (RAC). During the preparation of NiCo@N-CNTs, Co-MOF-67 (ZIF-67) was firstly synthesized, and then blended with dicyandiamide and nickel acetate, followed by a one-step pyrolysis procedure to prepare NiCo@N-doped carbon nanotubes. The surface morphology, structure, and chemical composition of NiCo@N-CNTs were characterized by SEM, TEM, XRD, XPS, and EDS. The electrocatalytic and electrochemical behavior of NiCo@N-CNTs were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results demonstrated that NiCo@N-CNTs possessed remarkable conductivity and electrocatalysis to the oxidation of ractopamine (RAC). By using screen-printed electrode (SPE), NiCo@N-CNTs, and a designed base support, a magnetic RAC sensor (NiCo@N-CNTs/SPE) was successfully constructed. It presented a detection linear range of 0.05-80 µM with a detection limit of 12 nM (S/N = 3). It also exhibited good sensitivity, reproducibility, and practicability in spiked real pork samples. Since the adhesion of NiCo/N-CNTs on SPE was controlled by magnet, the NiCo@N-CNTs was easily detached from the SPE surface by magnetism and thus displayed excellent renewability. This work broadened insights into portable devices for on-site and real-time analysis.

8.
Food Chem ; 459: 140353, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024884

ABSTRACT

This study presents a facial and quick electrochemical sensor platform that offers remarkable water and food safety applications. The present work represents a study of the synthesis and characterization for efficient cerium vanadate (CeVO4) with a functionalized carbon nanofiber (f-CNF) decorated electrode, which is a highly effective electrode modifier for sensitive nitrite detection. The CeVO4 nanoparticles were synthesized using the facial hydrothermal technique, and a composite (CeVO4@f-CNF) was prepared using the sonication method. Afterward, the produced materials were confirmed with spectroscopic and microscopic analysis. The electrochemical behavior of nitrite was studied through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DPV analysis depicts an excellent linear range of 0.1-1033 µM and a promising detection limit of 0.004 µM for the proposed electrode. The CeVO4@f-CNF electrode was applied to detect nitrite in water and meat samples. The proposed electrochemical sensor attributes the significant results towards the detection of nitrite.

9.
Mikrochim Acta ; 191(8): 471, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028342

ABSTRACT

Electrochemical alkalization of (Cu-S)n metal-organic framework (MOF) and graphene oxide ((Cu-S)n MOF/GO) composite yields a new CuO/(Cu-S)n MOF/RGO (reduced GO) composite with porous morphology on screen printed carbon electrode (SPCE) which facilitated the electron transfer properties in electrochemical quercetin (QUE) detection. A selective QUE detection ability has been demonstrated by the constructed electrochemical sensor (CuO/(Cu-S)n MOF/RGO/SPCE), which also has a broad dynamic range of 0.5 to 115 µM in pH 3 by differential pulse voltammetry. The detection limit is 0.083 µM (S/N = 3). In this study, it was  observed that the real samples contained 0.34 mg mL-1 and 27.7 µg g-1 QUE in wine and onion, respectively.

10.
Polymers (Basel) ; 16(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000638

ABSTRACT

Lead (Pb) is a hazardous metal that poses a significant threat to both the environment and human health. The presence of Pb in food products such as honey can pose a significant risk to human health and is therefore important to detect and monitor. In this study, we propose a voltammetric detection method using molecularly imprinted polymer (MIP) electrodes to detect Pb (II) ions in honey. Pb (II) ion-imprinted amino acid-based nanoparticles with magnetic properties on a carbon paste electrode (MIP-CPE) were designed to have high sensitivity and selectivity towards Pb (II) ions in the honey sample. Zetasizer measurements, electron spin resonance, and scanning electron microscopy were used to characterize magnetic polymeric nanoparticles. The results showed that the voltammetric detection method using MIP-CPE was able to accurately detect Pb (II) ions in honey samples with a low detection limit. The proposed method offers a simple, rapid, cost-effective solution for detecting Pb (II) ions in honey. It could potentially be applied to other food products to ensure their safety for human consumption. The MIP-CPE sensor was designed to have high sensitivity and selectivity towards Pb (II) ions in the honey sample. The results showed that the technique was able to deliver highly sensitive results since seven different concentrations were prepared and detected to obtain an R2 of 0.9954, in addition to a low detection limit (LOD) of 0.0912 µM and a low quantification limit (LOQ) of 0.276 µM. Importantly, the analysis revealed no trace of Pb (II) ions in the honey samples obtained from Cyprus.

11.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38955844

ABSTRACT

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Subject(s)
Chalcones , Cobalt , Electrochemical Techniques , Electrodes , Limit of Detection , Metal-Organic Frameworks , Cobalt/chemistry , Metal-Organic Frameworks/chemistry , Chalcones/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Hesperidin/analogs & derivatives , Hesperidin/analysis , Hesperidin/chemistry , Fluorocarbon Polymers/chemistry , Oxidation-Reduction , Carbon/chemistry , Reproducibility of Results , Iron/chemistry
12.
Talanta ; 279: 126612, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39084041

ABSTRACT

In the rapidly evolving field of medical diagnostics, biomarkers play a pivotal role, particularly in the early detection of cancer. Cluster of differentiation 5 (CD5), a cell surface glycoprotein found on T cells and B-1a lymphocytes, is instrumental in immune regulation and is associated with both autoimmune diseases and malignancies. Despite its significant diagnostic and therapeutic potential, CD5 detection has been limited by modern methods in the pg/ml range. This study presents a novel multimodal electrochemical immunosensor that employs laser-processed Ti/Au electrodes for the ultra-sensitive detection of CD5 in human blood serum. The "multimodal" approach combines different analytical techniques - differential pulse volctammetry (DPV) and electrochemical impedance spectroscopy (EIS) - to ensure comprehensive analysis, enhancing both the accuracy and reliability of the sensor. This novel sensor significantly outperforms existing commercial ELISA kits, achieving a limit of detection (LOD) of 1.1 ± 0.2 fg/mL with DPV and 3.9 ± 0.5 fg/mL with EIS in phosphate-buffered saline (PBS) and 6.6 ± 3.1 fg/mL and 15.6 ± 3.1 fg/mL in human serum (HS), respectively. These results highlight the immunosensor's potential for improving early-stage cancer diagnosis and broader medical applications.

13.
Bioelectrochemistry ; 160: 108783, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39079286

ABSTRACT

A sensitive electrochemical DNA biosensor has been developed for the detection of Buprenorphine (Bu), a narcotic pain reliever. To achieve this, double-stranded DNA (ds-DNA) was immobilized on a pencil graphite electrode that was modified with gold nanoparticles (Au NPs/PGE). The gold nanoparticles enhanced the performance of the DNA biosensor. The constructed ds-DNA/Au NPs/ PGE exhibited a linear detection range spanning from 0.05 to 100 µM with an impressive detection limit of 20 nM for Bu detection. Additionally, the DNA biosensor demonstrated good response in real samples evaluations. Finally, the interaction between carbon and gold atoms with DNA was confirmed through molecular dynamics simulation, while the interaction between DNA and the Bu drug was confirmed through molecular docking method. In conclusion, the electrochemical DNA biosensor presented in this study demonstrates exceptional sensitivity and reliability in the detection of buprenorphine. The incorporation of gold nanoparticles, as well as the use of molecular dynamics simulations and docking methods, contributes to a comprehensive understanding of the interactions involved in this detection process.

14.
Mikrochim Acta ; 191(8): 484, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060755

ABSTRACT

Luteolin (Lu), a compound with various biochemical and pharmacological activities beneficial to human health, has attracted researchers' attention. This study proposes an efficient and scalable method using ultrasound to intercalate graphene oxide (GO)-coated silica spheres (SiO2) into MXenes, resulting in a 3D conductive interconnected structural composite material. Characterization of the composite material was conducted using SEM, TEM, XRD, XPS, and Raman spectroscopy. MXenes exhibit excellent electrical conductivity, and the SiO2@GO surface with abundant hydroxyl and silanol groups provides high-binding active sites that facilitate Lu molecule enrichment. The formation of the 3D conductive interconnected structural composites enhances charge transport, significantly improving sensor sensitivity. Consequently, the sensor demonstrates excellent detection capabilities (detection range 0.03-7000 nM, detection limit 12 pM). Furthermore, the sensor can be applied to quantitative determination of Lu in real samples, including chrysanthemums, Jiaduobao, honeysuckle, purple perilla, and peanut shells, achieving recoveries between 98.2 and 104.7%.


Subject(s)
Electrochemical Techniques , Graphite , Limit of Detection , Luteolin , Silicon Dioxide , Graphite/chemistry , Silicon Dioxide/chemistry , Luteolin/analysis , Luteolin/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis , Nanocomposites/chemistry , Arachis/chemistry , Electric Conductivity
15.
Mikrochim Acta ; 191(8): 492, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39066907

ABSTRACT

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.


Subject(s)
Burkholderia , Electrochemical Techniques , Electrodes , Graphite , Hydroxybutyrates , Molecularly Imprinted Polymers , Polyesters , Graphite/chemistry , Polyesters/chemistry , Hydroxybutyrates/chemistry , Burkholderia/chemistry , Burkholderia/metabolism , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Molecularly Imprinted Polymers/chemistry , Limit of Detection , Oxidation-Reduction , Polyhydroxybutyrates
16.
Sci Rep ; 14(1): 17306, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068200

ABSTRACT

Dimethyl 2-[2-(1-phenyl-4,5-dihydro-1H-imidazol-2-yl)hydrazinylidene]butanedioate (DIHB) and 8-(3-chlorophenyl)-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-dione (HDIT) are promising candidates for anticancer agents, the first analytical procedures of which are presented in this paper. The commercially available unmodified glassy carbon electrode (GCE) was used as a sensor for the individual and simultaneous differential pulse voltammetric (DPV) determination of these possible anticancer drugs. The findings concerning the electrochemical behaviour indicated that DIHB and HDIT display at GCE, as a sensor, the oxidation peaks at 1.18 and 0.98 V, respectively (vs. Ag/AgCl, 3.0 mol L-1 KCl) in the 0.125 mol L-1 acetate buffer of pH = 4.5, which were employed for their quantification. Various experimental parameters were carefully investigated, to achieve high sensitivity in voltammetric measurements. Finally, under the optimised conditions (t of 60 s, ΔEA of 75 mV, ν of 225 mV s-1, and tm of 2 ms), the proposed DPV procedure with the GCE demonstrated broad linear sensing ranges (1-200 nmol L-1-DIHB and 5-200 nmol L-1-HDIT), boasting the detection limits of 0.18 nmol L-1 for DIHB and 1.1 nmol L-1 for HDIT. Moreover, the developed procedure was distinguished by good selectivity, repeatability of DIHB and HDIT signals and sensor reproducibility. The practical application of this method was demonstrated by analysing the urine reference material without any prior treatment. The results showed that this environmentally friendly approach, with a modification-free sensor, is suitable for the sensitive, selective and rapid quantification of DIHB and HDIT.


Subject(s)
Antineoplastic Agents , Carbon , Electrochemical Techniques , Electrodes , Antineoplastic Agents/analysis , Carbon/chemistry , Humans , Electrochemical Techniques/methods , Limit of Detection , Oxidation-Reduction
17.
Mikrochim Acta ; 191(6): 362, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822867

ABSTRACT

Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.


Subject(s)
Dopamine , Graphite , Microelectrodes , Polystyrenes , PC12 Cells , Dopamine/blood , Humans , Rats , Animals , Polystyrenes/chemistry , Graphite/chemistry , Limit of Detection , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Thiophenes/chemistry , Lab-On-A-Chip Devices , Polymers
18.
Bioelectrochemistry ; 160: 108767, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878458

ABSTRACT

Golgi protein 73 (GP73) is a novel tumor marker in the early diagnosis and prognosis of hepatocellular carcinoma (HCC). Herein, a competitive electrochemical aptasensor for detecting GP73 was constructed using reduced graphene oxide-ferrocene-polyaniline nanocomposite (rGO-Fc-PANi) as the biosensing platform. The rGO-Fc-PANi had larger specific surface area, excellent conductivity and outstanding electroactive performance, which served as nanocarrier for GP73 aptamer (GP73Apt) binding and as redox nanoprobe for record electrical signal. Then, a complementary chain (cDNA) was fixed to the electrode by hybridization with GP73Apt. When GP73 was present, a competitive process happened among cDNA, GP73Apt and GP73, formed the GP73-GP73Apt stable chemical structure and made cDNA detach from the sensing electrode, resulting in enhancement of electrical signal. The difference in the corresponding peak current before and after the competition can be used to indicate the quantitative of GP73. Under optimal conditions, the DPV current response showed a good log-linear relationship with GP73 concentrations (0.001 âˆ¼ 100.0 ng/mL) with a detection limit of 0.15 pg/mL (S/N = 3). It was successfully used for GP73 detection in human serum with RSDs ranging from 1.08 % to 6.96 %. Therefore, the aptasensor could provide an innovative technology platform and hold a great potential in clinical application.

19.
Bioelectrochemistry ; 159: 108748, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38824746

ABSTRACT

In this study, we have designed an electrochemical biosensor based on topological material Bi2Se3 for the sensitive detection of SARS-CoV-2 in the COVID-19 pandemic. Flake-shaped Bi2Se3 was obtained directly from high-quality single crystals using mechanical exfoliation, and the single-stranded DNA was immobilized onto it. Under optimal conditions, the peak current of the differential pulse voltammetry method exhibited a linear relationship with the logarithm of the concentration of target-complementary-stranded DNA, ranging from 1.0 × 10-15 to 1.0 × 10-11 M, with a detection limit of 3.46 × 10-16 M. The topological material Bi2Se3, with Dirac surface states, enhanced the signal-to-interference plus noise ratio of the electrochemical measurements, thereby improving the sensitivity of the sensor. Furthermore, the electrochemical sensor demonstrated excellent specificity in recognizing RNA. It can detect complementary RNA by amplifying and transcribing the initial DNA template, with an initial DNA template concentration ranging from 1.0 × 10-18 to 1.0 × 10-15 M. Furthermore, the sensor also effectively distinguished negative and positive results by detecting splitting-synthetic SARS-CoV-2 pseudovirus with a concentration of 1 copy/µL input. Our work underscores the immense potential of the electrochemical sensing platform based on the topological material Bi2Se3 in the detection of pathogens during the rapid spread of acute infectious diseases.


Subject(s)
Biosensing Techniques , Bismuth , COVID-19 , Electrochemical Techniques , Limit of Detection , SARS-CoV-2 , Biosensing Techniques/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Bismuth/chemistry , Electrochemical Techniques/methods , Humans , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Selenium Compounds/chemistry
20.
Mikrochim Acta ; 191(7): 426, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38935329

ABSTRACT

Proteins from different species have been docked with aflatoxin B1 (AFB1) and identified 3 proteins (prostaglandin-E(2)9-reductase from Oryctolagus uniculus, proto-oncogene serine/threonine-protein kinase Pim-1 and human immunoglobulin G (hIgG)) as potential candidates to develop an electrochemical sensor. Fluorescence spectroscopy experiments have confirmed the interaction of hIgG with AFB1 with an affinity constant of 4.6 × 105 M-1. As a proof-of-concept, hIgG was immobilized on carbon nanocomposite (carbon nanotube-nanofiber, CNT-F)-coated glassy carbon electrode (GCE). FT-IR spectra, HR-TEM and BCA assay have confirmed successful immobilization of hIgG on the electrode (hIgG@CNT-F/GCE). The preparation of this protein electrochemical sensor requires only 1 h 36 min, which is fast as compared with preparing an electro immunosensor. hIgG@CNT-F/GCE has displayed an excellent AFB1 limit of detection (0.1 ng/mL), commendable selectivity in the presence of two other mycotoxins (ochratoxin A and patulin) and the detection of  AFB1 in spiked peanuts and corn samples.


Subject(s)
Aflatoxin B1 , Electrochemical Techniques , Immunoglobulin G , Nanotubes, Carbon , Aflatoxin B1/analysis , Aflatoxin B1/immunology , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Proto-Oncogene Mas , Electrodes , Biosensing Techniques/methods , Molecular Docking Simulation , Arachis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL